
applied  
sciences

Article

Development of Folded Expanded Metal Mesh with Sound
Absorption Performance

Jui-Yen Lin, Yaw-Shyan Tsay * and Pin-Chieh Tseng

����������
�������

Citation: Lin, J.-Y.; Tsay, Y.-S.;

Tseng, P.-C. Development of Folded

Expanded Metal Mesh with Sound

Absorption Performance. Appl. Sci.

2021, 11, 7021. https://doi.org/

10.3390/app11157021

Academic Editor: Giuseppe

Lacidogna

Received: 16 July 2021

Accepted: 27 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Architecture, National Cheng Kung University, Tainan 70101, Taiwan;
N78031132@mail.ncku.edu.tw (J.-Y.L.); 10908061@mail.ncku.edu.tw (P.-C.T.)
* Correspondence: tsayys@mail.ncku.edu.tw; Tel.: +886-6-2757575 (ext. 54155)

Abstract: Reverberation time (RT) is an important factor affecting the quality of indoor acoustics.
Using sound-absorbing materials is one method for quickly and effectively controlling RT, and
installation in the ceiling is a common location. Sound-absorbing ceilings come in many forms,
with light steel joist ceilings commonly used in office spaces, classrooms, and discussion rooms.
Light steel joist ceilings are often matched with sound-absorbing materials such as gypsum board,
mineral fiberboard, rock wool, and coated glass wool, but such materials may have durability and
exfoliation problems. Therefore, considering performance and health, in this research, we aimed to
design an expanded metal mesh (EMM) structure specimen for sound-absorption material, namely
folded expanded metal mesh (FEMM). The results show that the FEMM can significantly improve
the sound-absorption performance of the expanded metal mesh. The αw of single panel is 0.05–0.35,
and the αw of FEMM is 0.65–0.85. On the other hand, the sound-absorption performance of the full
frequency band has been significantly improved. Furthermore, the field validation result shows that
RT decreased from 1.05–0.56 s at 500 Hz, meanwhile, the sound pressure level (SPL) is still evenly
distributed, and speech clarity (C50) is increased by 5.6–6.5.

Keywords: folded expanded metal mesh; ceiling panels; room acoustics

1. Introduction

In acoustics, mastering reverberation time (RT) is an important item for creating a great
indoor acoustic environment, and one of the common control methods is to use a sound-
absorbing ceiling. However, many types of ceiling systems are currently available, light
steel joist ceilings in particular are commonly used in such places as offices, classrooms,
discussion rooms, etc. Common sound-absorbing materials used with light steel joist
ceilings include gypsum board, mineral fiberboard, rock wool board, calcium silicate board,
and covered glass wool, all of which perform well with sound-absorbing ability and are
easy to obtain. However, these materials can become warped, deformed, grow fungus, or
peel off and may even cause air pollution that affects the health of users due to various
environments and times [1]. For solving this problem, Yang et al. [2] found that natural
materials such as kapok fiber, pineapple-leaf fiber, and hemp fiber are ideal substitutes
for traditional sound-absorbing materials, but as building materials, it is still necessary to
notice a moisture resistance problem. Therefore, both performance and durability of the
material should be considered in the design when using sound-absorbing materials.

Offices and classrooms are the most intensive spaces for intellectual and cognitive
activities in daily life, so the indoor acoustic design of such spaces has become a popular
research topic. Kaarlela-Tuomaala et al. [3] compared the acoustic differences between
small offices and open-plan offices. When the acoustic environment has a negative impact,
employees became distracted, and work efficiency decreased. Rachel and Roy [4] pointed
out that 70% of causes for distracted employees in open office spaces are noise interference.
Passero and Zannin [5] conducted a field measurement of indoor acoustics in an open
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office space, including sound pressure level, RT, and speech intelligibility, and their results
showed that the separation between working seat panels and the installation of ceilings
with high sound-absorbing capacity were necessary conditions for better acoustics. For
the classroom, many studies have proposed that a comfortable acoustic environment is
highly correlated with users’ learning ability [6–8]. Ricciardi and Buratti pointed out that
being in a noisy environment for a long time has a high correlation with the effect of speech
(R2 = 0.9), indicating that noise will seriously reduce learning ability [9].

In order to achieve full-band sound absorption, most products on the market are
manufactured with a multi-layer structure, which contains more than two materials and
in turn produces different sound-absorption performances. Such structures then create
a wider sound-absorption band [10,11]; for instance, metal composite materials are often
combined with filler material in ceilings [12–14].

In 1988, Maa [15] proposed a double-layer micro-perforated panel structure, which
proved that the sound-absorption characteristics of the said structure were the same as
the acoustic resonance structure of a single panel at high frequency, and an additional
absorption peak appeared at middle-low frequency. Meanwhile, Maa also pointed out
that pore size, perforation rate, thickness, and cavity of the panels affected the sound-
absorption coefficient.

In recent years, more and more studies have discussed the multi-layer structure and the
structure behind the micro-perforated panel. Meng et al. [16] used the sandwich board to
carry out sound-absorption coefficient experiments for four specimens and found that the
sound-absorption coefficient was effectively improved via the perforated panel. Jung et al. [17]
proposed a multi-layer sound-absorption material of the micro-perforated panel that effec-
tively increased the sound-absorption band and the coefficient. Other studies have proposed
different shapes of structures in an attempt to increase the support capacity of the speci-
men while also improving the sound-absorption performance of the material. For instance,
Yu et al. [18] proposed to add the concept of origami to the design of the sound barrier. Mean-
while, Wang et al. [19] disassembled a multi-layer structure of the folding panel into multiple
units of Helmholtz resonance to calculate the sound-absorption coefficient. However, the
manufacturing costs of micro-perforated panels are considerably higher than other materials.

Regarding the shape of the cavity in a sound-absorbing structure, some studies have
pointed out that an incomplete cavity could effectively improve sound-absorption perfor-
mance [11,20,21]. Furthermore, after an unshaped cavity structure is divided into several
independent cavities, the results show that the low-frequency sound-absorption ability
was improved [22–24]. Meanwhile, the multi-layer structure with a folding panel has been
used as a support structure for the surface panel.

Expanded metal mesh (EMM) is very different from the common perforated metal
plate. In the manufacturing process, EMM is formed by equidistant slitting and stretching,
which can reduce material waste. In addition, the tiny holes on the EMM plate generate
the potential for sound-absorbing.

In this study, we focused on the acoustic resonance structure of the metal panel based
on the manufacturing cost; therefore, the object in this study is EMM with a lower cost. In
order to obtain higher sound-absorbing performance while considering the structure of the
material, this research proposed sound-absorption structures composed of EMM based on
the height of the specimen, the thickness of the cavity, and the folded shape, followed by
the development of the folded expanded metal mesh (FEMM). Furthermore, we used the
light steel joist ceiling of an office as the application target. After installing the FEMM with
better sound-absorption performance in the space, we then carried out field verification.

2. Folded Expanded Metal Mesh (FEMM) Development and Prototyping

This research was divided into two stages: laboratory measurement and field veri-
fication. In the first stage, we analyzed the basic sound-absorption performance of the
specimen and then separately discussed the sound-absorption performance of a single
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panel and folded structure. In the second stage, the developed product was installed in an
office to perform indoor acoustic measurements.

2.1. Specimens

EMM was selected as the development object for this research. Figure 1 shows the
panel surface of EMM and the arrangement of the holes, and the wavy recesses of the
surface are produced during the manufacturing process, and the waves likely provide the
sound-absorption effect. This research shows that different specimen structures have been
designed to develop a FEMM with high sound-absorption performance as the purpose.
Therefore, by discussing different specimen sizes and cavity depths, we were able to pro-
pose specimen structures and analyze the influence of each structure on sound-absorbing
performance, as shown in Figure 2.
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In the first part, we used four different types of EMM to confirm the basic sound-
absorption performance, which measured 12 sets, and the size of each EMM was
750 mm × 900 mm. The second part adopted one type of EMM from the first part for
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extended development. However, since this research was aimed at light steel joist ceil-
ings, considering structural strength and size, we proposed 600 mm × 600 mm of each
piece of FEMM with different structures and carried out 30 sets of sound-absorption
performance measurements. Figures 3 and 4 show the installation method of specimens
in the laboratory.
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Figure 4. Diagram of the FEMM specimen in the laboratory.

2.2. Experiments

In this study, we measured the sound-absorption coefficient pursuant to the ISO 354
regulation [25], and the value was carried out according to the sound-absorption rating in
ISO 11654 [26], and we measured six points and recorded the temperature and humidity
before and after the introduction of the specimen. The volume of the reverberation room
was 171.3 m3, its surface area was 184.3 m2, and its floor area was 32.8 m2. The laboratory
features a floating structure to reduce outside interference in the experiment. The total area
of the test specimen was 10.8 m2 (3 m × 3.6 m), and it was placed at the center of the floor.
The calculation of the sound absorption coefficient are shown in Equation (1), as shown
in Figure 5.

αs = 55.3 × V
(

1
c2T2

− 1
c1T1

)
− 4V(m2 − m1) (1)

where V is the volume of the empty reverberation room (m3); c1 is the propagation speed
of sound in air at the temperature T1 (m/s); c2 is the propagation speed of sound in air at
the temperature T2 (m/s); T1 is the reverberation time of the empty reverberation room (s);
T2 is the reverberation time of the reverberation room after the test specimen has been
introduced (s); and m1 and m2 are the power attenuation coefficients (m−1).
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3. Measurement Results
3.1. The Single-Panel Structure

Table 1 shows the EMM of four single panels that are divided into two different board
thicknesses and the distance of the hole, with three different cavities (Type A to Type D).
We tested and analyzed the sound-absorption performance of EMM of 12 specimens.

Table 1. The specimen setting and measurement results of expanded metal mesh (EMM).

No.
Arrangement of the Holes

Panel Thickness
(mm)

Cavity
(mm)

αwHorizontal Distance
(mm)

Vertical Distance
(mm)

A1
1 2 0.5

210 0.30
A2 260 0.30
A3 460 0.30

B1
2 4 0.5

210 0.05
B2 260 0.05
B3 460 0.10

C1
1 2 0.6

210 0.35
C2 260 0.35
C3 460 0.35

D1
2 4 0.6

210 0.20
D2 260 0.20
D3 460 0.15

The arrangement of the holes had a significant effect on sound-absorption performance
when compared to the thickness of the board. Figures 6–8 show that increasing the thickness
of the cavity mainly improves low-frequency sound-absorption performance. Furthermore,
comparing the results of different EMM with the same cavity thickness showed the same
trend in the sound-absorption coefficient curve. However, different cavity thicknesses had
no significant effect on the weighted sound-absorption coefficient (αw), as shown in Table 1.
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Therefore, we selected Type C, which had smaller hole distance and a thicker panel,
for further development in the second part.
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3.2. FEMM Development and Prototyping

As shown in Table 2, we used three types of forms to build the FEMM, which were
triangle, square, and trapezoid.

Table 2. The specimen setting and measurement results of folded expanded metal mesh (FEMM).

No. Folding Shapes
FEMM

Thickness
(mm)

Cavity
(mm)

Total
Thickness

(mm)
αw

E1
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E17  0.80 

E18  0.70 

E19  

55 

450 505 

0.70 

E20  0.70 

E21  0.75 

E22  0.70 

E23  0.80 

E24  0.65 

E25  

200 255 

0.70 

E26  0.75 

E27  0.85 

E28  0.75 

E29  0.80 

E30  0.70 

As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 

 

0.70

E19

Appl. Sci. 2021, 11, 7021 8 of 15 
 

E17  0.80 

E18  0.70 

E19  

55 

450 505 

0.70 

E20  0.70 

E21  0.75 

E22  0.70 

E23  0.80 

E24  0.65 

E25  

200 255 

0.70 

E26  0.75 

E27  0.85 

E28  0.75 

E29  0.80 

E30  0.70 

As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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Table 2. Cont.

No. Folding Shapes
FEMM

Thickness
(mm)

Cavity
(mm)

Total
Thickness

(mm)
αw
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorp-
tion coefficient had the same trend under the same height of the specimen, as shown in 
Figures 9–14. The  of the specimen with a 200 mm cavity was better than that with a 
450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity 
achieved high sound-absorption performance (  0.8). 

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the 
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had 
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three 
convex forms (E4, E9, E17, E23, and E29) all achieved  0.8, except for E13. Using the 
trapezoidal concept to fold specimens, low material costs can be selected to achieve better 
sound-absorption performance. 

As described above, folding EMM has less impact on sound-absorption performance 
than changing the size of the cavity, but a folding structure improved the strength of the 
specimen. 
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As a whole, regardless of the panel curve, the results showed that the sound-absorption
coefficient had the same trend under the same height of the specimen, as shown in
Figures 9–14. The αw of the specimen with a 200 mm cavity was better than that with
a 450 mm cavity. Moreover, the 30 mm height of the specimen with a 200 mm cavity
achieved high sound-absorption performance (αw ≥ 0.8).
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and contained no other materials with sound-absorption properties except curtains, as 

shown in Figure 15. The volume of the space was 147.3 m3, the ceiling area was 46 m2, the 

installation area was 22 m2 (61 pieces of the specimen), and the cavity behind the ceiling 

was 62.5 cm. Since the measuring environment had air conditioning, the noise criterion 

(NC) was 25, the temperature was 26.6 °C, and the relative humidity was 51.5%. 
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Figure 14. The sound-absorption coefficient of 55 mm FEMM with a 200 mm cavity.

As shown in Table 2, among FEMM, E6, E15, E16, and E27 had the greatest sound-
absorption performance, and most of those had a rectangular structure. Regarding the
trapezoidal structures, those with six convex forms (E5, E10, E14, E18, E24, and E30) had
poor sound-absorption performance. Meanwhile, the trapezoidal structures with three
convex forms (E4, E9, E17, E23, and E29) all achieved αw ≥ 0.8, except for E13. Using the
trapezoidal concept to fold specimens, low material costs can be selected to achieve better
sound-absorption performance.

As described above, folding EMM has less impact on sound-absorption performance
than changing the size of the cavity, but a folding structure improved the strength of
the specimen.

4. Field Validation of FEMM
4.1. Field Environment

This research selected an office room in a university as the study object for field
verification. The office is a rectangular room with a light steel joist structure on the ceiling
and contained no other materials with sound-absorption properties except curtains, as
shown in Figure 15. The volume of the space was 147.3 m3, the ceiling area was 46 m2, the
installation area was 22 m2 (61 pieces of the specimen), and the cavity behind the ceiling
was 62.5 cm. Since the measuring environment had air conditioning, the noise criterion
(NC) was 25, the temperature was 26.6 ◦C, and the relative humidity was 51.5%.
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4.2. Acoustic Index

Room acoustical parameters are commonly used to evaluate or predict the acoustical
performance in rooms. For instance, the distribution of sound energy in a space can be
obtained by measuring the sound pressure level (SPL). Furthermore, the comfort and
quality of user experience can be obtained through reverberation time (RT) and speech
clarity (C50).

RT, the time for sound energy to fade away or decay in a closed space, is defined
as the time it takes for sound to decay by 60 dB and was also written as T60. However,
accurately measuring T60 is difficult. Therefore, it is often common to measure T20 and T30
and then multiply these by 3 and 2, respectively, to obtain the overall T60. Speech clarity
(C50) is the ratio of early-to-late arriving sound energy ratio. When C50 > 0, early sound
energy dominates the sound field and satisfies basic speech intelligibility. In general, C50
has a high relation with RT, where the lower the RT, the better the C50. In this paper, these
acoustical parameters are introduced and given by Equations (2)–(5).

SPL = 10 log (
p
p0

)
2

(2)

p0 = 2 × 10−5 (3)

where SPL is the sound pressure level (dB); p the instantaneous sound pressure of the
impulse response measured at the measurement point (Pa); and p0 is the basic sound
pressure (Pa).

T =
0.161V

Sα
(4)

where T is the reverberation time (s); V is the volume of the room (m3); S is the total surface
area of the room; and α is the average sound-absorption coefficient of materials in the room.

C50 = 10lg

∫ 50
0 p2(t)dt∫ ∞
50 p2(t)dt

dB (5)

where C50 is the early-to-late index (dB); and p(t) is the instantaneous sound pressure of
the impulse response measured at the measurement point (Pa).

4.3. Measurements

Pursuant to ISO 3382-1 [27] and ISO 3382-2 [28], experiments were carried out before
and after the installation of the folding structure. In this study, the sound source was
an omnidirectional loudspeaker via Dirac software (Brüel & Kjær, Nærum, Denmark)
that output Maximum Length Sequence (MLS) digital signals and analysis after a 1/2
free-field microphone received the sound power, as shown in Figure 16. In Figure 17, the
sound source was set in the center of the office, and all microphone positions were evenly
distributed throughout the office (P1–P4). The measured data were the total average of the
four points.
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Figure 18 shows that following the introduction of FEMM, the SPL of each microphone
position was reduced by 2.2–3.3 dB and further demonstrates that the sound energy in the
space was evenly distributed.
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the premise that the specimens were not filled with porous sound-absorption materials, 

the 𝛼𝑤 of all specimens was lower than 0.35. 

To achieve better sound-absorption performance, we designed a sound-absorption 

material with a folding structure in three different shapes: triangle, square, and trapezoid, 

respectively. The results showed that the main factor influencing the octave of sound ab-

sorption was the thickness of the cavity. In this part, we carried out 30 measurement re-
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Figure 18. Comparison of the sound pressure level (SPL) at each microphone position.

The RT decreased from 1.05–0.56 s at 500 Hz and decreased about 0.25–0.46 s at all
frequencies, as shown in Figure 19.
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As shown in Figure 20, the C50 result shows a negative value at 125 Hz without the
FEMM, indicating that the clarity at low frequency was under-performing. Furthermore,
the C50 increased by 2.6–6.5 dB at all frequencies after installing the FEMM, indicating that
the speech clarity of each frequency achieved better performance.

Appl. Sci. 2021, 11, 7021 13 of 15 
 

 

Figure 18. Comparison of the sound pressure level (SPL) at each microphone position. 

 

Figure 19. Comparison of the RT at each band. 

 

Figure 20. Comparison of speech clarity (C50) at each band. 

5. Conclusions 

In this research, we develop FEMM prototypes with three different structures and 

measured the sound-absorption performance to confirm the characteristics of FEMM. Af-

terward, we selected a specimen with high sound-absorption performance to apply to the 

field and then discussed the improvement in office acoustics. 

The first part of stage 1 shows four types of single-panel EMM that were tested. On 

the premise that the specimens were not filled with porous sound-absorption materials, 

the 𝛼𝑤 of all specimens was lower than 0.35. 

To achieve better sound-absorption performance, we designed a sound-absorption 

material with a folding structure in three different shapes: triangle, square, and trapezoid, 

respectively. The results showed that the main factor influencing the octave of sound ab-

sorption was the thickness of the cavity. In this part, we carried out 30 measurement re-

sults, in which the 𝛼𝑤 was 0.65–0.85. Regardless of the folding shape of the FEMM and 

Figure 20. Comparison of speech clarity (C50) at each band.

5. Conclusions

In this research, we develop FEMM prototypes with three different structures and
measured the sound-absorption performance to confirm the characteristics of FEMM.
Afterward, we selected a specimen with high sound-absorption performance to apply to
the field and then discussed the improvement in office acoustics.

The first part of stage 1 shows four types of single-panel EMM that were tested. On
the premise that the specimens were not filled with porous sound-absorption materials,
the αw of all specimens was lower than 0.35.

To achieve better sound-absorption performance, we designed a sound-absorption
material with a folding structure in three different shapes: triangle, square, and trapezoid,
respectively. The results showed that the main factor influencing the octave of sound
absorption was the thickness of the cavity. In this part, we carried out 30 measurement
results, in which the αw was 0.65–0.85. Regardless of the folding shape of the FEMM and
the cavity thickness, the sound-absorption coefficient was maintained at 0.6–0.9 above
1000 Hz. Finally, the folding shapes did not significantly affect the sound-absorption
performance, and the difference in the sound-absorption coefficient was only 0.2 at most at
a specific frequency.

The field verification results showed that when the FEMM was installed in the office,
which covered about 47.8% of the ceiling area, the RT was effectively reduced by about
0.25–0.46 s, while the C50 improved significantly. The overall results show that FEMM
not only has high sound-absorption performance but also provides sound-absorption
capability of space and could provide a better acoustics environment.

In the end, comparing the cost of EMM and perforated panel. when perforating a
perforated plate, residual material will be generated. The EMM is created with numerous
holes through the stretching process, therefore, the cost of the expanded metal mesh is
lower than that of the perforated plate.
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