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Abstract: In increasing manufacturing productivity with automated surface inspection in smart
factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs)
have demonstrated outstanding performance and solved many problems in the field of computer
vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this
study, we developed an effective data augmentation method for grayscale images in CNN-based
machine vision with mono cameras. Our method can apply to grayscale industrial images, and we
demonstrated outstanding performance in the image classification and the object detection tasks.
The main contributions of this study are as follows: (1) We propose a data augmentation method that
can be performed when training CNNs with industrial images taken with mono cameras. (2) We
demonstrate that image classification or object detection performance is better when training with
the industrial image data augmented by the proposed method. Through the proposed method, many
machine-vision-related problems using mono cameras can be effectively solved by using CNNs.

Keywords: machine vision; data augmentation; deep learning; convolutional neural networks;
transfer learning

1. Introduction

With the increasing demand for machine vision to automate the surface inspection
of factories, the requirement for higher inspection speed and accuracy has also increased.
Machine vision refers to any software or hardware that utilizes visual information of the
inspection target to perform the inspection. Conventional machine vision [1–3] is capable
of inspecting formalized defects through rule-based inspections. However, detecting
non-formalized defects is challenging to conventional machine vision applications.

In 2012, AlexNet [4] won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) by using CNNs. Since then, CNNs have been applied in various fields that use
image data. Machine vision researchers are also conducting studies to detect defects by
applying CNNs [5–21]. Generally, when applied to machine vision, CNNs perform one of
the following three tasks: (1) classification into normal or defective at a specific part, (2)
detection of standard and defective parts, and (3) segmentation of the defective area.

Most of the machine vision applications use mono cameras because they utilize
structural features of the inspection target. As shown in Figure 1, the color camera typically
obtains a three-channel RGB image via interpolation after shooting with the Bayer pattern.
However, the mono camera does not require interpolation after acquiring. As a result,
mono cameras with the same pixel have a better resolution than color cameras. Because
most machine visions do not require color information for defect inspection, they leverage
mono cameras to obtain grayscale images.

Regarding the application of CNN-based machine vision with mono cameras, Yang
et al. [16] confirmed that transfer learning from the network that won the ILSVRC com-
petition performs higher classification accuracy than one trained from scratch. In image
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classification with grayscale images, Xie and Richmond [22] showed that transfer learn-
ing from the network pretrained with grayscale ILSVRC data shows better classification
accuracy than transfer learning from the network pretrained with original ILSVRC data.
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Figure 1. Structure of the camera sensor: (a) Bayer pattern of the color camera and (b) mono camera.

Burduja et al. [23] performed intracranial hemorrhage detection by using color images
merged from three grayscale images that extracted different features from one CT image.

To solve the machine vision issues due to scarce data on defective products, Yun
et al. [17] performed a data augmentation through a conditional convolutional variable
autoencoder (CCVAE) for defect classification. However, if surface defect inspection is
performed with object detection, the application of CCVAE-based data augmentation is
limited.

In general computer vision, CNNs are trained by using large amounts of data, such
as a million images for a thousand classes provided by ILSVRC or 110,000 images for 80
classes provided by COCO [24]. However, collecting that amount of balanced dataset
for training each application in machine vision is less productive. Eventually, most of
the CNN applications are trained by the imbalanced small amount of data. Therefore,
reliable methods to train the surface inspection networks with these small datasets must be
devised.

In this study, we devised a data augmentation method that can be easily applied
when preparing CNN-based machine vision systems, using mono cameras. Our proposed
method does not leverage neural networks, so that it can perform data augmentation
quickly. We also demonstrate that it can be applicable for imbalanced datasets. Experi-
ments show that our proposed method is effective for both image classification and object
detection processes. The data augmentation method developed in this study is based on
the following methods: (1) imitating the various changes that can occur while acquiring
images from mono cameras in machine vision systems; (2) extracting structural features of
the images, which are the primary purpose of using the mono cameras; and (3) merging
them into color images.

2. Materials and Methods
2.1. Dataset
2.1.1. The NEU-DET Dataset

The NEU-DET dataset [3], which was collected by the Northeastern University, is a
dataset for detecting six types of defects on metal surfaces. Object annotations for defect
detection are provided, but we used them as a dataset for image classification in this paper.
Each class has 240 images for training and 60 images for validation, and each image is
200 × 200 pixels. Figure 2 shows some samples of the NEU-DET dataset.
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Figure 2. Surface defect samples in the NEU-DET dataset.

2.1.2. Brake Pad Dataset

The machine vision system structure is shown in Figure 3a, and the brake pad image
for inspection is shown in Figure 3b. The brake pad image was obtained by using a 2.5-
megapixel complementary metal–oxide–semiconductor (CMOS) sensor mono camera. The
type of product that performs the inspection is shown in Figure 4.
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The total number of original images was 545, of which 490 images were used for
training and 55 for validation. Table 1 shows the number of each object to detect.

Table 1. The number of objects to detect.

Protruding Part Unriveted Sensor Riveted Sensor

Training dataset 1236 320 112
Validation dataset 138 37 12

The primary defect types are shown in Figure 5. The following procedure can be
applied to inspect them:
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1. Inspecting the location of the protruding part of the product to inspect whether the
product is loaded in the wrong location, as shown in Figure 5b.

2. Inspecting whether the metal sensor is located correctly in the specified location of
the product, as shown in Figure 5a,c.

3. Inspecting whether the riveting is performed correctly to secure the sensor. Figure 5d
shows an incorrectly riveted product.
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Object detection via CNNs was performed to inspect these defects. The objects for
detection are as follows: (1) protruding part, (2) unriveted sensor, and (3) riveted sensor.

2.2. Proposed Data Augmentation Method

The proposed data augmentation method was performed in two steps. First, we
imitated the characteristics of the camera and extracted the structural features of the
inspection target. In this step, all the images after augmentation were one-channel grayscale
images. Then, we combined the corresponding images to generate several three-channel
color images. Four types of data, including the original data, were prepared to validate the
superiority of the proposed data augmentation method.

1. Original images (original).
2. Augmented one-channel grayscale images with original images (one-channel).
3. Grayscale images were converted after augmentation, using the proposed method

with original images (three-channel, gray).
4. Color images augmented by using the proposed method with original images (three-

channel, color).
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Then neural networks were trained, using each dataset, and their performances were
compared.

We used OpenCV in Python for data augmentation, and the implementation proposed
in this paper is opened on a Github repository (github.com/jinfree/GrayscaleImageAug
mentation) (accessed on 9 July 2021), under an AGPLv3 license.

2.2.1. One-Channel Augmentation

This section discusses the first of the two steps of data augmentation. We performed
one-channel augmentation via four approaches: random pixel noise, bright adjustment,
blur, and edge extraction. Edge extraction is conducted to extract structural information of
the inspection target. The other approaches imitate image changes that can occur when
acquiring images from the CMOS camera.

Pixel Noise

As shown in Figure 6, there are two types of image sensors used in machine vision,
namely charge-coupled device (CCD) and CMOS. A CCD is a sensor that accumulates
and transmits charges generated by using light energy and eventually converts them into
electrical signals. CMOS sensors immediately amplify and transmit the charges generated
by using light energy into electrical signals. CMOS sensors outperform CCD sensors re-
garding the number of frames per second, resolution, and power consumption. As a result,
the CMOS sensor is used for high-resolution machine vision cameras; however, it has the
disadvantage of pixel-level noise, as shown in Figure 7. We performed data augmentation
by imitating such pixel noise; the pseudo-code is shown in Algorithm 1.

Algorithm 1. Pseudo-code of applying pixel noise to the given image.

Input: Original grayscale image
Output: Grayscale image with pixel noise.
for x in range of 0 to width of image
for y in range of 0 to height of image
value = image[x, y] + random number in range of −10 to 10
if value > 255
value = 255
else if value < 0
value = 0
image[x, y] = value
end for
end for
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Contrast Limited Adaptive Histogram Equalization (CLAHE)

Even if the optical system that inspects the product is configured to minimize the
effect of external light sources, the brightness of the captured image is sometimes different
because of the external reflective light. Neural networks can get robust against brightness
changes by adjusting the brightness distribution of the dataset. To equalize the brightness
distribution, we used the CLAHE algorithm published by Pizer et al. [25]. Figure 8a,b
shows the difference in brightness before and after the application of CLAHE, respectively.
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Gaussian Blur

If the focus of the lens is not aligned, the image of the inspection target is blurred.
To ensure that the CNNs are robust to image blurring resulting from an inexperienced
operator’s lens manipulation, blur was applied via the Gaussian kernel generated through
Equation (1). We applied the GaussianBlur function of OpenCV Python, and ksize = (11, 11),
sigmaX = 11, and sigmaY = 11 were used as input factors.

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

Morphological Gradient

Edges are extracted as structural features of the inspection target. Generally, the Canny
Edge algorithm [26] is used for edge detection. However, we performed morphological
gradient operations to preserve the importance of information while extracting all the
structural information from the image under examination in the form of edges. We used
the getStructuringElement function to obtain the kernel and morphologyEx to perform
the morphological gradient operation. We used the input parameters of the getStruc-
turingElement function as flag = cv2.MORPH_ELIPSE and ksize = (11, 11). Additionally,
op = cv2.MORPH_GRADIENT for the morphologyEx function. Figure 8c shows the re-
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sults of the morphological gradient operation. Input and output images are both grayscale
images.

2.2.2. Three-Channel Augmentation

When reading images from OpenCV, the channel order is Blue–Green–Red. However,
other image processing libraries read images in the order of Red–Green–Blue. To use the
data independently of the libraries that read the images, we used images applied with
morphological gradients in the Green channel. The Red and Blue channels combine the rest
of the one-channel augmented images and the original images to create the three-channel
images.

Figure 9a depicts an example of the order of one-channel images entered into each
channel while creating a three-channel image. Figure 9b is a color image combined accord-
ing to the proposed method. In addition, we prepared the data transformed into grayscale
images, as shown in Figure 9c, to verify that neural networks are well-trained when trained
with data of different features in all three channels and not well-trained only because of a
large amount of data.
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The method used to preprocess one channel and combine it when augmenting to three
channels is shown in Table 2. The number of data of the NEU-DET dataset and the brake
pad dataset after the augmentation is shown in Tables 3 and 4.

Table 2. Proposed data augmentation methods.

Augmentation Methods Data Augmentation Methods of Each Image

One-channel Augmentation

Pixel Noise
CLAHE

Gaussian Blur
Morphological gradient

Three-channel Augmentation

Original + Morphological gradient + Pixel noise
Original + Morphological gradient + Gaussian blur

Original + Morphological gradient + CLAHE
Pixel noise + Morphological gradient + Gaussian blur

Pixel noise + Morphological gradient + CLAHE
Gaussian blur + Morphological gradient + CLAHE
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Table 3. Number of datasets after the augmentation, NEU-DET dataset.

Dataset Configuration # of Training Datasets # of Validation Datasets

Original dataset 240 60
Original dataset + one-channel mixed

dataset 1200 300

Original dataset + three-channel mixed
dataset 1680 420

Table 4. Number of datasets after the augmentation, brake pad dataset.

Dataset Configuration # of Training Datasets # of Validation Datasets

Original dataset 490 55
Original dataset + one-channel mixed

dataset 2450 275

Original dataset + three-channel mixed
dataset 3430 385

2.3. Networks

Unlike the ordinary CNN-based computer vision tasks, the machine vision problem
has relatively few classes required to be classified or detected. Owing to the small number
of classes to be inspected, the accuracy of the relatively simple neural networks is not
significantly lower than that of the complex neural networks. It is more economical to
increase the inspection speed in the production process at the factory. As a result, we
focused on inspection speed, and the neural networks are chosen based on the inference
speed in this paper.

Four types of datasets were trained by using the same hyperparameters.

2.3.1. Image Classification Networks

Image classification networks are trained by using the NEU-DET dataset. MobileNetV2
by Sandler [27] and Resnet18 by He et al. [28] are transfer-learned, using the prepared data.
The framework to train both networks is Pytorch, and GPU is GTX 1080Ti.

Hyperparameters used in the training of both neural networks are shown in Table 5.

Table 5. Hyperparameters to train image classification networks using the NEU-DET dataset.

Learning Rate Batch Size Optimizer Epochs

0.001 16 SGD 2

2.3.2. Object Detection Networks

There are two types of object detection networks, which are of two types and are
shown in Figure 10. Figure 10a shows the architecture of the two-stage detector, which
involves the following steps: (1) image input, (2) feature extraction, (3) region proposal,
and (4) object classification. Although the object detection accuracy was high, the inference
speed was relatively slow. Figure 10b shows the structure of the one-stage detector, which
goes through the steps of image input, feature extraction, and object detection. It has the
advantage of being less accurate albeit faster in inference than the two-stage detectors.
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Figure 10. Generalized object detection architecture: (a) two-stage detector and (b) one-stage detector.

The neural network trained for object detection uses YOLOv4 [29] and YOLOv4-tiny.
The framework to train both networks is Darknet, and GPU is GTX 1060; the generalized
architecture of YOLOv4 and YOLOv4-tiny is shown in Figure 11.
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Hyperparameters used in the training of both neural networks are shown in Table 6.
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Table 6. Hyperparameters to train object detection networks using the brake pad dataset.

Networks Learning Rate Batch Size Subdivisions Epochs

YOLOv4 0.0013 64 32 10
YOLOv4-tiny 0.00261 64 16 10

3. Results
3.1. Evaluation Metrics
3.1.1. Image Classification Metrics

Classification accuracy and F1 scores on the validation datasets were used for the
evaluation of the trained networks. Classification accuracy is the ratio of results classified
as correct for all the classification results and is calculated by using Equation (2). The F1
score is a harmonic mean of precision and recall, an indicator that allows a more accurate
evaluation of the networks when the data label is unbalanced. F1 score is calculated using
Equation (3). Precision and recall are calculated by using Equations (4) and (5), respectively.
The definitions of TP, FP, FN, and TN are tabulated in Table 7.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1Score =
2× precision× recall

precision + recall
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

Table 7. Details of TP, FP, FN, and TN.

Prediction

Positive Negative

Ground truth
Positive TP (true positive) FN (false negative)

Negative FP (false positive) TN (true negative)

3.1.2. Object Detection Metrics

We can use the mean average precision (mAP) as an evaluation metric for object
detection neural networks. mAP metrics include mAP@0.5 and mAP@0.5:0.95. Everingham
et al. [30] used mAP@0.5 at the Pascal VOC competition and mAP@0.5:0.95 at the COCO
Object Detection competition [24]. Moreover, mAP@0.5 is the average value of the class-
wise average precision (AP) for an intersection over union (IoU) threshold of 0.5. Similarly,
mAP@0.5:0.95 is the average value of 10 APs for the IoU threshold of 0.5–0.95 with an
interval of 0.05. IoU refers to the superposition ratio of the predicted object box to the
ground-truth object box by the object detection neural network and is calculated as follows:

IoU =
boxprediction ∩ boxgroundtruth

boxprediction ∪ boxgroundtruth
(6)

AP is the area below the line on the precision–recall graph.
In the object detection task of machine vision, it is essential to locate the object accu-

rately. Therefore, the value of mAP@0.5:0.95 is more important than the value of mAP@0.5
because mAP@0.5:0.95 needs to compute a high IoU ratio while mAP@0.5 does not.
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3.2. Quantitative Results

The image classification networks and object detection networks were trained using
four prepared datasets for comparison, including the data augmentation method proposed
in this study. The types of datasets are as follows: (1) original dataset, (2) one-channel
dataset with the original dataset, (3) three-channel grayscale dataset with the original
dataset, and (4) three-channel color dataset with the original dataset.

During the evaluation process, the trained network was validated (1) using the orig-
inal validation data with the augmented validation data and (2) only using the original
validation data.

The networks were trained ten times for each experimental condition to verify the re-
producibility and repeatability of each metric. Subsequently, we showed average, standard
deviation, and boxplot for each metric.

3.2.1. Image Classification

We train two neural networks with the NEU-DET dataset to demonstrate that the
proposed data augmentation method affects image classification tasks.

MobileNetV2 Results

With augmented validation data and original validation data, the average and stan-
dard deviation of the classification accuracy and the F1 score are obtained and shown in
Table 8.

Table 8. Average and standard deviation of MobileNetV2 validation result.

Original One-Channel Three-Channel Grayscale Three-Channel Color

Mean SD Mean SD Mean SD Mean SD

Augmented
dataset

accuracy 0.990 0.008 0.991 0.004 0.998 0.002 0.999 0.001

F1 score 0.990 0.007 0.991 0.004 0.998 0.002 0.999 0.001

Original
dataset

accuracy 0.990 0.008 0.998 0.003 0.994 0.002 0.997 0.002

F1 score 0.990 0.007 0.998 0.003 0.994 0.005 0.997 0.002

Due to balanced datasets, the accuracy and F1 score tend to be the same. Moreover,
the networks trained by the proposed three-channel augmented color dataset has higher
accuracy and lower standard deviation. In the validation results with the original dataset,
the average accuracy of the networks trained with the one-channel augmented dataset
is higher than that of networks trained with the three-channel augmented color dataset.
However, the networks trained with the three-channel augmented color dataset have a
lower standard deviation.

Figure 12 shows the boxplots of validation accuracy on each dataset. Figure 12a is
the validation results with the augmented dataset, and Figure 12b is the validation results
with the original dataset. The network trained by the three-channel augmented color
dataset shows good accuracy than the network trained by the original dataset in both
validation results. The networks trained with the one-channel augmented dataset do not
have higher accuracy in Figure 12a. However, although it has an outlier that cannot assume
consistent performance, it has higher accuracy in Figure 12b. The networks trained with
the three-channel augmented grayscale dataset have an outlier in Figure 12a.
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By training with the three-channel augmented color dataset, we can assume that the
performance of networks will not fall below expected performance in both cases.

Resnet18 Results

With augmented validation data and original validation data, the average and stan-
dard deviation of the classification accuracy and the F1 score are obtained and shown in
Table 9.

Table 9. Average and standard deviation of Resnet18 validation result.

Original One-Channel Three-Channel Grayscale Three-Channel Color

Mean SD Mean SD Mean SD Mean SD

Augmented
dataset

accuracy 0.956 0.029 0.988 0.012 0.998 0.002 0.998 0.003

F1 score 0.960 0.025 0.988 0.011 0.998 0.002 0.998 0.003

Original
dataset

accuracy 0.956 0.029 0.995 0.011 0.993 0.002 0.997 0.005

F1 score 0.960 0.025 0.995 0.010 0.993 0.006 0.997 0.005

The validation accuracy of Resnet18 is lower than that of MobileNetV2. ResNet18 has
more parameters to train than MobilenetV2. Since only two epochs have been trained, it
can be expected that Resnet18 is not optimized parameters to classify the NEU-DET dataset.
However, the tendency of validation results via trained datasets can be confirmed.

Similar to the validation results of MobileNetV2, accuracy and F1 score tend to be
the same. Moreover, the average validation accuracy of the networks trained with the
three-channel augmented color dataset is higher than other results.

Figure 13 shows the boxplots of validation accuracy on each dataset. Figure 13a is the
validation results with the augmented dataset, and Figure 13b is the validation results with
the original dataset. The network trained by the three-channel augmented color dataset
shows good accuracy than the network trained by the original dataset in both validation
results.



Appl. Sci. 2021, 11, 6721 14 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 19 
 

Resnet18 Results 

With augmented validation data and original validation data, the average and stand-

ard deviation of the classification accuracy and the F1 score are obtained and shown in 

Table 9. 

Table 9. Average and standard deviation of Resnet18 validation result. 

 Original One-Channel 
Three-Channel Gray-

scale 
Three-Channel Color 

Mean SD Mean SD Mean SD Mean SD 

Augmented da-

taset 

accuracy 0.956 0.029 0.988 0.012 0.998 0.002 0.998 0.003 

F1 score 0.960 0.025 0.988 0.011 0.998 0.002 0.998 0.003 

Original da-

taset 

accuracy 0.956 0.029 0.995 0.011 0.993 0.002 0.997 0.005 

F1 score 0.960 0.025 0.995 0.010 0.993 0.006 0.997 0.005 

The validation accuracy of Resnet18 is lower than that of MobileNetV2. ResNet18 has 

more parameters to train than MobilenetV2. Since only two epochs have been trained, it 

can be expected that Resnet18 is not optimized parameters to classify the NEU-DET da-

taset. However, the tendency of validation results via trained datasets can be confirmed. 

Similar to the validation results of MobileNetV2, accuracy and F1 score tend to be the 

same. Moreover, the average validation accuracy of the networks trained with the three-

channel augmented color dataset is higher than other results. 

Figure 13 shows the boxplots of validation accuracy on each dataset. Figure 13a is the 

validation results with the augmented dataset, and Figure 13b is the validation results 

with the original dataset. The network trained by the three-channel augmented color da-

taset shows good accuracy than the network trained by the original dataset in both vali-

dation results. 

The validation results of Resnet18 also show that the networks trained with the three-

channel augmented color dataset have high average accuracy. 

  

(a) (b) 

Figure 13. Boxplots of validation accuracy with Resnet18: (a) results validate with the augmented dataset; (b) results val-

idate with the original dataset. 

As a result, the proposed data augmentation method was effective for the image clas-

sification task, which uses the grayscale image captured by mono cameras for surface in-

spection. 

Figure 13. Boxplots of validation accuracy with Resnet18: (a) results validate with the augmented dataset; (b) results
validate with the original dataset.

The validation results of Resnet18 also show that the networks trained with the
three-channel augmented color dataset have high average accuracy.

As a result, the proposed data augmentation method was effective for the image
classification task, which uses the grayscale image captured by mono cameras for surface
inspection.

3.2.2. Object Detection

We trained two neural networks with the brake pad dataset to demonstrate that the
proposed data augmentation method affects object detection tasks.

YOLOv4 Results

We tabulated average and standard deviations for all mAPs of trained YOLOv4 net-
works to determine how mAP changes with the IoU threshold. Each mAP and mAP@0.5:0.95
by augmented data are shown in Table 10, and corresponding results by the original data
are shown in Table 11.

Table 10. YOLOv4 object detection validation results with the augmented dataset.

Original One-Channel Three-Channel Grayscale Three-Channel Color

Mean SD Mean SD Mean SD Mean SD

mAP@0.5 0.894 0.044 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.55 0.857 0.072 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.6 0.817 0.079 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.65 0.727 0.092 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.7 0.588 0.101 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.75 0.397 0.049 0.998 0.001 1.000 0.001 1.000 0.000

mAP@0.8 0.224 0.061 0.986 0.010 0.996 0.001 0.997 0.001

mAP@0.85 0.077 0.033 0.963 0.016 0.989 0.001 0.988 0.001

mAP@0.9 0.016 0.015 0.726 0.030 0.884 0.026 0.884 0.018

mAP@0.95 0.001 0.001 0.150 0.062 0.272 0.069 0.293 0.063

mAP@0.5:0.95 0.460 0.040 0.882 0.008 0.914 0.007 0.916 0.007
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Table 11. YOLOv4 object detection validation results with the original dataset.

Original One-Channel Three-Channel Grayscale Three-Channel Color

Mean SD Mean SD Mean SD Mean SD

mAP@0.5 0.894 0.044 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.55 0.857 0.072 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.6 0.817 0.079 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.65 0.727 0.092 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.7 0.588 0.101 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.75 0.397 0.049 0.999 0.002 0.999 0.001 1.000 0.000

mAP@0.8 0.224 0.061 0.986 0.016 0.996 0.001 0.997 0.000

mAP@0.85 0.077 0.033 0.972 0.017 0.989 0.001 0.988 0.002

mAP@0.9 0.016 0.015 0.767 0.022 0.885 0.034 0.860 0.045

mAP@0.95 0.001 0.001 0.192 0.086 0.234 0.052 0.275 0.064

mAP@0.5:0.95 0.460 0.040 0.892 0.009 0.910 0.007 0.912 0.008

All results show the phenomenon in which the IoU threshold increases and the
mAP value decreases similarly. Table 10 shows the high mAPs and mAP@0.5:0.95 of
YOLOv4 networks trained with the three-channel augmented color dataset. Nevertheless,
in Table 11, some average mAP of YOLOv4 networks trained with the three-channel
augmented grayscale dataset has a higher average mAP than YOLOv4 networks trained
with the three-channel augmented color dataset. However, the YOLOv4 networks trained
with the three-channel augmented color dataset has the highest mAP@0.5:0.95.

The boxplot of mAP0.5:0.95 obtained from both datasets is shown in Figure 14.
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Figure 14 shows that the YOLOv4 networks can better infer performance when trained
with the three-channel augmented color dataset than trained with the other datasets.
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YOLOv4-Tiny Results

We also tabulated average and standard deviations for all mAPs of trained YOLOv4-
tiny networks. Each mAP and mAP@0.5:0.95 by augmented data are shown in Table 12,
and corresponding results by the original data are shown in Table 13.

Table 12. YOLOv4-tiny object detection validation results with the augmented dataset.

Original One-Channel Three-Channel Grayscale Three-Channel Color

Mean SD Mean SD Mean SD Mean SD

mAP@0.5 0.857 0.044 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.55 0.761 0.067 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.6 0.620 0.080 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.65 0.464 0.075 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.7 0.306 0.061 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.75 0.160 0.045 0.997 0.002 0.997 0.003 0.999 0.001

mAP@0.8 0.070 0.019 0.979 0.005 0.988 0.004 0.985 0.004

mAP@0.85 0.013 0.009 0.897 0.019 0.954 0.005 0.958 0.009

mAP@0.9 0.001 0.001 0.548 0.039 0.657 0.054 0.717 0.043

mAP@0.95 0.000 0.000 0.050 0.027 0.081 0.040 0.092 0.031

mAP@0.5:0.95 0.325 0.028 0.847 0.006 0.868 0.009 0.875 0.006

Table 13. YOLOv4-tiny object detection validation results with the original dataset.

Original One-Channel Three-Channel Grayscale Three-Channel Color

Mean SD Mean SD Mean SD Mean SD

mAP@0.5 0.857 0.044 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.55 0.761 0.067 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.6 0.620 0.080 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.65 0.464 0.075 1.000 0.000 1.000 0.000 1.000 0.000

mAP@0.7 0.306 0.061 1.000 0.000 1.000 0.001 1.000 0.000

mAP@0.75 0.160 0.045 0.996 0.003 0.999 0.003 0.998 0.002

mAP@0.8 0.070 0.019 0.983 0.005 0.989 0.006 0.986 0.005

mAP@0.85 0.013 0.009 0.923 0.029 0.939 0.017 0.951 0.015

mAP@0.9 0.001 0.001 0.593 0.049 0.645 0.079 0.704 0.050

mAP@0.95 0.000 0.000 0.077 0.052 0.068 0.049 0.097 0.036

mAP@0.5:0.95 0.325 0.028 0.857 0.011 0.864 0.012 0.874 0.007

Similar to the results of YOLOv4, Tables 12 and 13 show the tendency in which the IoU
threshold increases and the mAP value decreases. In Table 12, mAP@0.8 of YOLOv4-tiny
networks trained with the three-channel augmented color dataset is lower than that of net-
works trained with the three-channel augmented grayscale dataset. In Table 13, mAP@0.75
and mAP@0.8 of YOLOv4-tiny networks trained with the three-channel augmented color
dataset are lower than that of networks trained with the three-channel augmented grayscale
dataset. However, in most cases, YOLOv4-tiny networks trained with the three-channel
augmented color dataset have the highest mAP value.

The boxplot of mAP0.5:0.95 obtained from both datasets is shown in Figure 15.
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Figure 15. Boxplots of validation mAP@0.5:0.95 with YOLOv4-tiny: (a) results validate with the augmented dataset; (b)
results validate with the original dataset.

Figure 15 also shows that the YOLOv4-tiny networks can have outstanding inference
performance when trained with the three-channel augmented color dataset.

As a result, the proposed data augmentation method effective in the grayscale image
data captured by mono cameras in the surface inspection by object-detection tasks.

4. Discussion

In the experiments performed in this study, the NEU-DET dataset was used to train
MobileNetV2 and Resnet18 for the image classification task, and the braked pad dataset
was used to train YOLOv4 and YOLOv4-tiny for the object detection task. The image
classification task and the object-detection task show that the proposed data augmentation
method effectively trains the CNNs for machine vision systems using mono cameras.

This shows that the CNNs trained with the proposed three-channel augmented color
dataset perform better than the CNNs trained using the other methods. Suppose the CNNs
perform better only owing to the number of augmented data. In that case, there should be
no difference in the performance of the CNNs trained with the three-channel augmented
color dataset and the ones trained with the three-channel augmented grayscale dataset.
However, the results show that the CNNs trained with the three-channel augmented color
dataset preprocessed by using different methods for each channel performed better.

The reasons are as follows. (1) We imitate the possible variations in the image captured
with mono cameras: random oscillation of pixel values in CMOS sensors, brightness
changes caused by the light conditions, and blurring effect caused by improper lens
alignment. Furthermore, we extract structural information needed for surface defects
by extracting the edges. In most experimental results, validation results show that the
network trained with the one-channel augmented dataset performs better than the network
trained with the original dataset. These results imply that the data augmentation based
on characteristics of machine vision is effective in training the CNN for surface defect
inspection. (2) When transfer learning on typical CNNs, we assume that the input of
CNN is a color image. Moreover, color images have different information for each channel.
However, the machine vision system using mono cameras uses grayscale images. Moreover,
existing machine vision studies have trained CNNs by opening them as color images so that
the three channels have the same original grayscale information. In the work of Burduja
et al. [23], they trained CNN by preprocessed color images merged from three grayscale
images that extracted different features from one CT image. Based on this work, we train by
synthesizing the various information used for inspection in the grayscale machine vision
images into color images. The CNNs for surface inspection in the machine vision systems
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using mono cameras can be trained with a small amount of unbalanced dataset with the
proposed data augmentation method.

5. Conclusions

This study proposes a data augmentation method for training high-performance
CNNs in machine vision applications using mono cameras. There has been no research to
utilize and apply the characteristics of the images to the CNNs, which can arise from mono
cameras, in the industry. This work shows that the CNN-based machine vision using mono
cameras can perform when trained with combined three-channel images from multiple
variations of images.

Future work will include the application of defect inspection via instance segmentation
and anomaly detection. The applicability of the proposed data augmentation method to
instance segmentation and anomaly detection will be confirmed in future work.
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