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Featured Application: The presented model can be used as a baseline model for the implemen-
tation of peak demand response systems in Jordan. The day-ahead prediction model can aid in
giving better demand predictions in order to achieve more optimized day-ahead unit commit-
ment scheduling for the Jordanian power sector.

Abstract: In this paper, a comprehensive demand response model for the residential sector in the
Jordanian electricity market is introduced, considering the interaction between the power generators
(PGs), grid operators (GOs), and service providers (SPs). An accurate day-ahead hourly short-term
load forecasting is conducted, using deep neural networks (DNNs) trained on four-year data collected
from the National Electric Power Company (NEPCO) in Jordan. The customer behavior is modeled
by developing a precise price elasticity matrix of demand (PEMD) based on recent research on the
short-term price elasticity of Jordan’s residential and the analysis of the different types of electrical
appliances and their daily operational hours according to the latest surveys. First, the DNNs are
fine-tuned with a detailed feature analysis to predict the day-ahead hourly electrical demand and
achieved a mean absolute percentage error (MAPE) of 1.365% and 1.411% on the validation and test
datasets receptively. Then the predictions are used as input to a detailed model of the Jordanian
power grid market, where a day-ahead peak-time demand response policy for the residential sector
is applied to the three distribution power companies in Jordan. Based on different PEMD analyses
for the Jordanian residential sector, the results suggest a reduction potential of 5.4% in peak demand
accompanied by a cost reduction of USD 154,505 per day for the Jordanian power sector.

Keywords: deep neural networks; demand response; peak reduction; electricity market; price elasticity
matrix of demand; Jordan

1. Introduction
1.1. Background

The world energy demand grew by 2.3% in 2018, which is the fastest growth within
the last decade [1]. The rapid increase in the global economy and population has resulted in
more energy demand in certain regions, particularly in developing countries like India and
China. With energy demand being on the rise, the world is faced with high dependence on
fossil fuels, leading to increased greenhouse emissions and global climate change. With the
overall increase in fossil fuel demands, even though renewable energy is growing fast, it is
not growing fast enough to meet the rise in energy demand at 1% for developed countries
and 5% for developing ones [2].

With very limited resources, Jordan faces significant challenges in its energy sector due
to heavy reliance on importing most of its energy resources. Losing access to Iraq’s crude
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oil in 2003 and Egypt’s natural gas, the country was put under critical economic conditions
that had an adverse impact on both private and public sectors, placing the country under
massive debt. By 2015, the total accumulated commercial loans and the advances from the
Ministry of Finance (MoF) reached 4.9 Billion JDs by the national electric power company
(NEPCO), which was 18.8% of Jordan’s GDP and accounted for one-quarter of the total
consolidated public-sector debt, limiting the borrowing capacity of the government [3].
In 2018, the imported crude oil and natural gas accounted for 92% of the total energy
requirements, constituting 10% of the country’s GDP [4]. A shortage in affordable energy
supplies directly affects the public sector, increasing the budget deficit and leading to
revenue-boosting measures (hike taxes and fees). In contrast, private sectors face immense
production costs due to high energy costs and higher taxes, leading to lower productivity
and profitability. With Jordan’s annual energy demand growing at a rate of 3% [5] and the
surge of Syrian refugees estimated between 660,000 and 1.26 million [6], coupled with the
previous challenges mentioned, the government had a strong commitment to reform its
energy sector.

In 2013, the National Energy Efficiency Action Plan (NEEAP) was introduced in Jordan
to set the targets for achieving 20% energy saving and increasing the share of renewable
energy to cover 10% of the national energy consumption by the year 2025. To this aim,
a five-year electricity tariff plan adjustment was implemented between 2013 and 2017
to increase NEPCO’s revenue, and an automatic electricity tariff adjustment mechanism
(AETAM) was adopted in 2016 to reflect global oil price changes in consumer’s tariffs,
except those under 300 kWh per month, in order to protect poor households [7]. Due to the
tremendous efforts, financial incentives, and government promotion to attract overseas
investments and expertise, there has been significant progress in the renewable energy
sector, reaching a capacity of 1470 MW by late 2019, which represents 25.7% of total
generation capacity, with solar accounting for approximately 75% of renewable power [8].
Renewable energy’s contribution to the total electricity generation reached 15.1%, with solar
energy, wind power, and hydropower accounting for 10.4%, 4.4%, and 0.1%, respectively [8].
While this sheds hope for the future of the Jordanian energy sector and increases energy
resilience [9], an increase in renewable energy in both transmission and distribution levels
introduces grid-level operational challenges that must be met to achieve optimized and
efficient operation. Renewable energy sources such as solar and wind are non-dispatchable
power units characterized by uncertainty, stochasticity, and being intermittent as they
are dependent on variable weather conditions, which increase the flexibility needed to
achieve supply–demand balance [10] and the need for energy storage systems [11,12]. On
transmission levels, a fluctuation in renewable energy supply causes a sudden decrease
or increase in power flow, while on distribution and consumer levels, a sudden change in
weather conditions can lead to a reduction in renewable energy generation that causes a
sudden load increase, affecting the grid voltage and frequency levels. Hence, grid operators
need to rely on the frequent operation of high-ramping power supply units, which are
costly to operate, where a sudden decrease in renewable energy occurs. In high renewable
energy scenarios, the minimum power output of conventional power plants is an extremely
sensitive factor to avoid plant shutdown, which is economically a worst-case scenario,
causing challenges to conventional power generators’ unit commitment and operation [13].

Demand-side management (DSM) and demand response (DR) systems introduce a
form of flexibility from the consumer side [14]. In DR systems, the power distributors and
grid operator (GO) can influence consumers to shift, shed and reschedule their energy
consumption and electrical appliances usage by providing incentives or implementing
dynamic pricing methods [15]. Jordan is rapidly installing smart meters around the country,
with great potential for implementing many DSM methods such as time of use (TOU)
pricing, peak pricing, and real-time pricing schemes. Implementation of a DR scheme
targeted to the residential sector can guarantee flexibility in unit commitment planning
and hourly operation to achieve optimized demand–supply matching and avoiding the
need to use fast-starting and costly power units in times of high energy demand or low
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renewable energy generation. With the domestic and government buildings accounting
for 46.12% of the electrical energy demand in 2019, implementation of the DR and DSM
programs is highly recommended for the Jordanian power sector [8].

DR had already proven benefits in Jordan. A pilot project was implemented for
the principal consumers of NEPCO with smart meters installed, considering incentives,
compensations, and non-peak times price penalties. The pilot project resulted in 6 mil-
lion dollars indirect savings of operating costs and indirectly increased efficiency in the
transmission system with reduced bottlenecks and recommended future expansion on
commercial and residential consumers, taking into consideration the effect of renewable en-
ergy generation [16]. Figure 1 shows the power demand (MW) for a day in December-2019,
together with the wind and solar (PV) energy generated through the day.
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Figure 1. Jordan’s power demand and renewable energy generation for a day in winter at the end
of 2019.

As can be observed in this figure, the evening peak occurs after the rapid decline in
renewable energy from 3 to 5 PM, losing almost 380 MW of solar power, while gaining
612 MW in evening load peaking at 6 PM Hence, a deficit of 992 MW needs to be provided
by the GO, NEPCO, between 3 and 6 PM, which amounts to 44% of the average load
(2256 MW) of that day. It would be highly favorable for the GO to shift and reduce demand
from the evening peak to any other time of the day, especially that period with high solar
energy. It is notable that, unit commitment planning for optimized power dispatch is based
on planning which power plants to operate at what hours. Each power plant has its startup
time; combined cycle (CC) power plants need approximately 3 h to operate. Each power
plant has different minimum generation limits, depending on whether it operates in a single
cycle (SC) or a CC and the number of activated units. Hence, a DR scheme that targets the
evening peak in winter can lead to more flexibility in power dispatch operation and shifting
from peak power, which forces the GO to operate fast and expensive power plants to ensure
reliable operation in peak times. The dual challenge of minimum power and the start-up
time of power plants can be solved by using day-ahead unit commitment optimization that
relies on day-ahead hourly predictions of the load, power plant availability, energy cost,
and available power Egypt’s interconnection. Figure 2 depicts the effects of influencing
electrical demand consumption in peak demand periods [17,18]. The price axis represents
the cost liability on the GO for meeting specific power demand in the gird, where the cost of
producing energy for standard power demand is relatively low, using conventional power
generators, but grows extremely high in peak periods. The original demand represented
by Demand Curve 1 is influenced by DR at peak time, leading to a decrease in demand
(Demand Curve 2) and lower energy prices on the GO.
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1.2. Literature Review

DR systems can be mainly classified into time-based and incentive-based pricings
as well as other subcategories such as direct load control (DLC), demand bidding (DB),
emergency DR programs (EDRP), time-of-use (ToU), real-time pricing (RTP), and critical
peak pricing (CPP) [19,20]. Aalami et al. introduced a DR model considering interrupt-
ible/curtailable loads as well as capacity market programs where they combined the price
elasticity of demand model with the customer benefit. Their model applied to the Iranian
power grid peak load data can aid GOs in improving the power load curve, while consid-
ering customer well-being [21]. Moghaddam et al. introduced a mathematical model for
incentive-based and time-based DR programs to consider the correct balance of penalty
and incentive rates to achieve DR’s best performance for given demand levels [22]. Baboli
et al. discussed observations based on psychology and economy that consumers react
differently to both incentive (reward) and price (punishment) based DR systems which are
not considered in conventional DR models [18]. Qu et al. proposed an improvement to
the price elasticity matrix of demand (PEMD) to unify the modeling of rigid and flexible
loads by introducing a weighting factor and measured the effect of price policies and
load types on calculating the elasticity matrix [23]. Wang et al. implemented an optimal
strategy for both bidding and scheduling for aggregators of distributed energy resources
(DER) who manage distributed solar and wind energies and battery storage systems un-
der uncertain consumer response to real-time pricing (RTP) considering uncertainties of
renewable energy generation and consumer response [24]. Hlalele et al. presented an
optimization model that considers the combination of direct load control demand response
and economic dispatch under renewable obligation policies, where the model maintains a
predefined renewable energy share in the mix of different energy sources [25]. Zeng et al.
proposed a demand response modelling approach for increasing the efficiency of renewable
energy deployment, which considers operational improvements and a system planning
perspective. Their model captures the correlation of uncertain variables such as renewable
energy generation, customer demand and changing responsiveness to DR and utilizes
clustering methods to implement a scenario reduction that reduces the computational
complexity of the model [26]. Balasubramanian and Balachandra formulated a modeling
approach to optimally implement an incentive-based demand response to match the varia-
tions of electrical demand and supply. Their model is coupled with a focus on assessing
voluntary-based consumer-centric demand response systems that are less complex and
cost-effective to other methods [27].

The employment of DR systems depends on precise knowledge of future wholesale elec-
tricity market prices and customer demands and future renewable energy generation. Hence,
researchers have combined both machine learning algorithms and DR models to overcome
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these challenges. Lu and Hong proposed a novel real-time incentive-based DR system that
utilized both deep learning and reinforcement learning (RL) algorithms combining two deep
neural networks (DNNs) for day ahead price and demand predictions [28]. Wen et al. imple-
mented a modified deep learning (MDL) algorithm to predict 24-ahead power demand, prices,
and PV energy generation in incentive-based demand response models utilizing recurrent neu-
ral networks (RNN) architectures [29]. Pramono et al. presented an improvement in short-term
load forecasting for DR systems using an ensemble of two DL approaches; convolutional neural
networks (CNN) and long short-term memory (LSTM)-RNN, showing higher performance
over conventional models [30]. Table 1 shows recent DR studies systems on multiple scales of
the residential sector using different DR schemes.

Table 1. Recent studies on Residential DR systems.

Ref. DR Type Study Scale Methodology Achievements

[31]
Hybrid

price-based DR
(HPDR)

Residential
micro-grid

Day-ahead HPDR scheduling to a
residential micro-grid, considering

uncertainty related to generation and
dispatch.

In comparison to ToU and RTP and fixed-rate (FR)
pricing, HPDR, which is a combination of ToU and

RTP, showed a lower decrement in the
peak-to-valley index (PtV) by 12% and Coefficient

of variation percentage (CVP) by 25% and
increased social welfare by 18%.

[32] ToU Residential
household

DR strategies (rule-based and
machine-learning (ML) based) for

controlling a heat pump and thermal
storage system in a smart-grid ready

residential household.

The proposed ML prediction-based smart controller
under a ToU DR scheme showed superior

performance reducing electricity end-use usage,
utility generation cost, and carbon emission by

41.8%, 39%, and 37.9%, respectively.

[33] Dynamic
price-based

Residential local
energy market

Agent-based simulations for pricing
strategy and demand shifting strategy
under dynamic pricing DR are applied

on a local electricity market (LEM)
based on the German energy market.

The model was simulated for a LEM with 100
households, increasing its local sufficiency by 16%

through DR and local Trading, showing a 10
c€/kWh reduction in annual electricity costs as well

as 40% reduced peaks.

[34] ToU 5000 residential
households

DR strategies, using 18 months of data
in Ireland where different ToU schemes

were applied to 5000 households
coupled with information feeding

(in-home display units (IHD), monthly
billing, etc.)

The ToU DR coupled with the information feed
reduced energy demands for the given household,
especially in peak demand periods. However, after
implementation, little DR impact was observed by

changing the distance between the peak and
off-peak prices.

[35] Dynamic
price-based

Two residential
buildings

OpenStudio and EnergyPlus to assess
the effects of DR potential on HVAC

systems through changing temperature
set points in two residential buildings

in Texas, USA

In applying two different types of real-time
dynamic tariff pricing, simulation results showed
that a reduction potential of 10.8% in energy costs

could be achieved through the proposed DR
controller without significant impact on comfort

levels and savings of 24.7% peak load and 4.3% of
energy for HVAC could be achieved annually.

[36] Dynamic
price-based

Residential
household

Dynamic price-based DR by modeling
the optimal consumer response

through fuzzy reasoning (FR) and
reinforcement Learning (RL)

Simulation results showed a power consumption
smoothing by 15% and energy costs reduction by
18.5% can be achieved by considering consumer

preferences through morning and evening demand
peak periods.

[37] ToU and
incentive-based

100 residential
households

Simulation of two DR systems: (1) an
augmented ToU DR system solved

using a stochastic optimal load
aggregation model. (2) An

incentive-based DR is solved using a
two-stage stochastic unit commitment
(UC) model satisfying operational cost
reduction and consumer convenience.

Simulations for one load aggregator and 100
residential households showed that under
augmented ToU DR with 60% consumer

participation level, generation costs can be reduced
by 24% and load profiles’ standard deviation by

42%. Although with a higher 60% consumer
participation level reaching 80%, the model
becomes less efficient. Although under the

incentive-based DR, 77% standard deviation and
20% generation costs reductions can be achieved.

1.3. Research Gap and Originality Highlights

Very few studies discussed the possibilities of DR and DSM in Jordan. Tawalbeh et al.
addressed the potential of residential peak shaving to reduce peak demands [38]. They
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showed that an average of 3.5 kWh of peak load reduction per day could be achieved
through adjusting the residential tariffs in peak times from 5 to 8 pm, using TOU pricing.
Another research conducted by Jarad and Ashhab emphasized the potential for energy
saving in the Jordanian residential sector through energy efficiency measures, where they
reported a saving of 15% in energy consumption and 22% in cost could be achieved
through the use of efficient lighting and solar heaters by applying for an hourly analysis
program (HAP) software [38]. The insight gained from these studies highlights further the
potential of DR in giving more incentives for residential and commercial users to pursue
energy-efficient electrical appliances and usage. However, this potential has not yet been
exploited because there is no understanding of the factors that amplify this potential. This
is mainly due to the lack of a conceptual framework and methodological approach that can
be applied to a robust data set to quantify the main implications of using DR applications
in the Jordanian power sector. This research aims to fill the gap by presenting a detailed
day-ahead price-based demand response model for the residential sector in Jordan with
the following contributions:

1. A well-defined and optimized deep learning model for accurate day-ahead hourly
short-term load forecasting (STLF) is trained on four-years of Jordan’s hourly electrical
demand from 2016 to 2019. The model’s architecture and input features follow state-
of-the-art feature engineering based on recent research discussed in detail. Up to date,
there are very few Jordanian case studies that examined daily hourly STLF rather
than day-ahead hourly STLF, such as [39], where they used only one year of electrical
demand data. This research proposes a new set of time series features that are novel
to previous works on Jordan’s electrical demand forecasting.

2. A comprehensive demand response model for the Jordanian power sector is intro-
duced, considering the interaction between the power generators (PGs), GOs, and
service providers (SPs), which uses the estimated day-ahead hourly demand STLF,
considering the detailed data on generation capacities and costs of Jordan’s power
suppliers as well as bulk consumers’ peak load and bulk supply prices. A precise
PEMD estimation was implemented for Jordan’s residential sector based on recent
research on the short-term price elasticity of Jordan’s residential and the analysis of
the different types of electrical appliances and their daily operational hours according
to the latest surveys and studies present. To the best of our knowledge, this is the first
study in Jordan’s electricity market to estimate the DR impact on the residential sector
and find the potential implications in peak demand reduction and generation savings.

2. Jordan’s Electricity Sector

Figure 3 shows the overall architecture of the Jordanian electricity sector, which is
mainly composed of three layers: generation, transmission, distribution, and consumers [40].
NEPCO, operated by the government, manages acts as the GO of the power grid under a
single buyer model as well as the transmission sector operator. The long-term strategy of
the power grid is under the responsibility of the Ministry of Energy and Mineral Resources
(MEMR), whereas the Energy and Mineral Regulatory Commission (EMRC) is responsible
for establishing regulations and licensing on all levels of the power grid from generation to
distribution as well as setting laws and tariffs in the electricity sector [40,41]. Generation is
mainly composed of thermal power plants with the respective nominal generating power
shown in Figure 3. Generation capacities can be slightly higher or lower depending on hot or
cold seasons. Generation can be classified into: Government-owned/partially owned power
plants, independent power suppliers (IPPs), and the Egyptian interconnection. The govern-
ment holds 100% of the shares of the Samra Electricity Power Company (SEPCO), being
the largest energy producer, while having only 40% of the shares of the Central Electricity
Generation Company (CEGCO), being the second-largest energy producer. Distribution
compromising the bulk energy supply is composed of three private distribution companies:
Jordan Electric Power Company (JEPCO), Irbid District Electricity Company (IDECO, Jordan
north area), and Electricity Distribution Company (EDCO), that are distribute energy to
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consumers in the central, northern and southern parts of Jordan respectively [40]. Besides,
two categories of large energy consumers (principal consumers), PC1 and PC2, are a part
of the bulk energy supply. The consumption load types and percentages are calculated
according to the 2019 NEPCO report, without taking into account the PC1 and PC2, where
domestic and governmental consumers reach up to 49.1% of the main energy consumption,
where 6% of it accounts for the governmental buildings and 1.5% for others [8].
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The renewable energy capacity only includes the transmission level suppliers, not the
distribution and consumer level generation. Jordan is interconnected with Egypt with a
total capacity of 550 MW, utilizing a 400 kV submarine cable, where up to 250 MW can
be used according to energy availability and other factors, while the rest are reserved for
operational purposes [42]. Table 2 shows the details of each respective power supplier by
2019 [40].

Table 2. Jordanian power plants—2019.

Power Plants Unit
Available
Capacity

Fuel Type Average Cost
(JOD */MW)P S T

CEGCO
ATPS 5 * ST 130 * 5 MW NG HFO -

203.46RISHA 2 * GT 58 MW NG LFO -
Rehab CC 297 MW NG LFO -

SEPCO

Samra I CC 270 MW NG LFO -

61.06
Samra II CC 270 MW NG LFO -
Samra III CC 400 MW NG LFO -
Samra IV CC 220 MW NG LFO -

IPP

IPP1 CC 400 MW NG LFO - 59.85
IPP2 CC 373 MW NG LFO - 64.89
IPP3 DE 573 MW NG HFO LFO 231.04
IPP4 DE 241 MW NG HFO LFO 121.17
IPP5 CC 485 MW NG LFO - 60.09

Egypt - 550 MW - - - 52.79
PV - 640.5 MW - - - 72.79

WIND - 369.6 MW - - - 79.94

* Jordanian dinar.
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The average costs shown in Table 2 are based on NEPOC’s 2019—annual report,
which are calculated according to the total amount of energy purchased divided by the
total amount of money paid to the respective power plants in 2019 [8]. Generation costs
include many factors such as the base costs, capacity costs, daily unit start-up costs, fuel
price. RISHA is a special case, where its natural gas is extracted from Jordan; hence it is
always maxed out according to the available gas. IPP3 and IPP4 are the most expensive
units since they are composed of small and fast starting 15 MW generators that are used in
peak demand when sudden and rapid changes in energy demand occur. Renewable energy
is under the contract of take-or-pay, where unit commitment scheduling and operation aim
to utilize all the energy produced. All power plants operate on natural gas as a primary
fuel, where heavy and light fuel oils (HFO and LFO) are used as secondary fuels. Table 3
shows the five bulk consumers, which are the main customers of NEPCO, with JEPCO
being the largest consumer with 61.26% of peak demand, out of all the bulk consumers.
The bulk supply prices are categorized into: day energy pricing from 8:00–24:00, night
energy pricing from 00:00–7:00, and peak tariff, which depicts the demand capacity cost of
the highest hourly electrical demand within the period of peak demand tariff as announced
by MEMR in the day with the highest electrical demand as can be seen in Table 4 [43–45].
The peak periods are between 5:00 PM and 9:30 PM, representing the evening peak where
the demand is highest throughout the year. The total peak demand of the three distribution
companies accounts for almost 96% of the total peak demand in the bulk consumer, which
shows there is great potential for the DR system targeting their respective consumers. As
previously discussed, domestic and governmental buildings account for almost 49% of
their energy consumption.

Table 3. Bulk supply prices and peak demand 2019.

Bulk Consumers
Bulk Supply Price

Peak Demand (MW) Peak Demand %Day
(Fils/kWh)

Night
(Fils/kWh)

Peak
(JD/kW/Month)

JEPCO 71.90 61.88 2.98 2129.9 61.26%
EDCO 74.02 64.07 2.98 580.8 16.70%
IDECO 58.20 48.29 2.98 622.7 17.91%

PC1 237 170 2.98 71.6 2.06%
PC2 124 109 2.98 72.1 2.07%

Table 4. Peak tariff periods for 2020.

Periods Period of Peak
Demand TariffStart End

2021-01-01—00:00 2021-01-31—24:00 (17:00–20:00)
2021-02-01—00:00 Wintertime End 24:00 (17:30–20:30)

Summertime starts—00:00 2021-06-30—24:00 (18:30–21:30)
2021-07-01—00:00 2021-08-15—24:00 (18:00–21:00)
2021-08-16—00:00 2021-09-30—24:00 (17:30–20:30)
2021-10-01—00:00 Summertime End—24:00 (18:00–21:00)

Wintertime starts—00:00 2021-12-31—24:00 (17:00–20:00)

3. Problem Formulation
3.1. DR Optimization Model

A dynamic price or incentive-based hourly DR is extremely invasive to consumers
since they are less likely to have enough time to reschedule their demands well ahead
of time and be more stressful for residential consumers. Hence, a day ahead DR model
is more appropriate for residential consumers, having enough time to adjust the loads
impacting their electricity bills the most, and incentivizing them to increase their efficiency
in energy usages, such as optimizing their heating and cooling loads. The proposed DR
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model in this study is depicted in Figure 4, which is supposed to be implemented by the
GO targeting the residential consumers.
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Figure 4. Proposed day-ahead demand response model for Jordan in this study.

Precise day-ahead information on electrical demand, generation availability, genera-
tion costs, and the expected amount of renewable energy generated are highly crucial to
implementing the DR system [17]. The GO (NEPCO) aims to reduce the cost of energy
production, especially at peak periods, to reduce the expensive energy purchased from
IPP3 and IPP4, while increasing the demand in off-peak periods to maximize its net profit.
The DR system can influence consumer behavior from peak to off-peak and allow the grid
higher flexibility acting as a safety margin in cases of high expected demand. NEPCO’s
main responsibility is to implement a precise day-ahead hourly demand prediction to
estimate the demand every hour for the next day. Since the GO, as per grid regulations,
provides the fuel for the power plants, the day-ahead cost of energy purchase is correlated
to fuel prices known by the GO; therefore, the generation costs are given. Furthermore,
the GO utilizes the PEMD to predict the effects of different prices on the residential con-
sumers and decide the best price to achieve the required goals relating to peak demand
reduction and off-peak filling by increasing the prices at peak loads and reducing them at
off-peak periods. It is noted that the prices are announced to the distribution companies
at the start of each day, where they announce them to their consumers through specially
designed schemes.

In this study, it is assumed that the generation schedule is given through unit com-
mitment analysis done by the GO by communicating with the power suppliers, where the
renewable energy plants also provide the renewable generation predictions. The profit-
seeking maximization model of the GO, considering the Jordanian power grid consumers,
excluding the energy exports, can be expressed by:

Max
D

∑
d=1

H

∑
h=1

(
C

∑
c=1

Ic,h(spc,h, dsc,h)−
PS

∑
ps=1

Cps,h(bpps,h, dpps,h)

)
+

C

∑
c=1

PCIC(dpc, dppc) (1)

Subject to:

dsc,h = ds0
c,h

[
1+εh

spc,h − sp0
c,h

sp0
c,h

+
24

∑
h=1

ε′h
spc,h − sp0

c,h

sp0
c,h

]
(2)

sppc,h,Min≥ spc,h ≥ sppc,h,Max (3)



Appl. Sci. 2021, 11, 6626 10 of 31

where Ic,h is the income at hour h ∈ {1, 2 . . . 24} from the bulk consumer of type
c ∈ {1, 2, . . . 5}, which is a function of bulk supply price (spc,h)and the demand sold
(dsc,h) at hour h for consumer c. Cps,h is the cost purchasing power from power sup-
plier ps ∈ {1, 2, . . . PS} at hour h ∈ {1, 2 . . . 24}, which is a function of the buying price
(bpps,h) estimated by the average prices shown in Table 2, and the demand purchased
(dpps,h). At each hour h, all the costs of purchasing demand from each ps depict the total
hourly cost depending on which power plants were utilized, according to the unit commit-
ment by the GO. PCIC is the peak capacity income per consumer c which is a function of
the highest demand peak (dpc) for the respective consumer c and their demand peak price
(dppc). ps denotes the total power supply units utilized at the respective hour. sppc,h,Min
and sppc,h,Max are the upper and lower ranges of the bulk supply price, as determined by
the GO.

εh and ε′h represent the self and cross-price elasticities of demand, respectively, where
they capture the effect of electricity price change for customers on their electricity con-
sumption. This relationship lies at the heart of DR systems to determine the price set by
utilities to achieve economic benefits in the power market and technical benefits related to
the operation of the power system [19]. To capture the price elasticity of demand on 24 h
under the assumption that the rescheduling of the production does not go beyond a 24-h
interval, the PEDM is formulated as [19,20]:

∆dsc,1/ds0
c,1

...
∆dsc,i/ds0

c,i
...

∆dsc,24/ds0
c,24


=



ε1,1 · · · ε1,j · · · ε1,24
...

...
εi,1 · · · εi,i · · · εi,j24

...
...

ε24,1 · · · ε24,j · · · ε24,24

 ∗


∆spc,1/sp0
c,1

...
∆spc,i/sp0

c,i
...

∆spc,24/sp0
c,24


(4)

The PEMD relates the effect of the change of price in any hour of the day depicted
by i to the change in demand of the hour itself as well as other hours depicted by j. εi,i
represents the self-elasticity, which relates the change of price in the period i to the change
in demand in that period, whereas εi,j represents the cross-elasticity, relating the change of
demand in hour i to the change in price in another period j, which are shown as εh and ε′h
in Equation (2), respectively.

The proposed model was developed under the following assumptions:

1. Daily environmental and residential demand data are available with an hourly sample rate.
2. The day-ahead generation electric power prices are available as a single value for

each power plant.
3. The day-ahead selected power plants for dispatch by unit commitment are available

for each day.
4. Both self-elasticity and cross elasticities for each hour are known and available for the

grid operator each day, where they were assumed constant in this research.
5. The demand response algorithm is run and implemented at 00:00 of the new day,

when the final demand hour of the previous day is received, then the new prices are
announced up to 24 h.

6. The response to the change in prices for the residential sector is assumed at the
distributer level, where when the distributer receives the new prices, they have
their methods of implementing the DR to each different section and types of their
consumers by means of having the same effect as if the prices where directly increased
for the consumers.

3.2. Consumer Behavior Modeling

The PEMD reflects the consumer response to a DR program which is represented by
the values of self and cross elasticities, as well as their distribution in the PEMD, where
different DR policies and consumer response patterns to the price change can impact the
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estimation of the PEMD. Figure 5 represents the two types of PEMD modeling a day-head
DR policy (a) and an hour-ahead DR policy (b)&(c). In day-ahead DR polices, prices are
announced one day earlier or at the start of the day, where consumers can re-schedule their
demand for each interval i of the day, hence all elements in the PEMD can be non-zero.
Whereas in hour-ahead DR, consumers can only reschedule the price of the next hour,
where they only have information on the current price and hour ahead price, hence it is
unlikely that they can reschedule their demands ahead of time, making all cross-elasticities
above the diagonal zero [23]. Some researchers considered all off-diagonals to be zero in
this case [24].
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The PEMD estimation is also correlated to how consumers in different markets resched-
ule their demands to different hours of the day, represented by the cross elasticities’ distri-
bution in the PEMD. Figure 6 shows the different types of consumer rescheduling, which
can be assumed into five different categorical behaviors [46]:
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Figure 6. Different consumer rescheduling behaviors in DR markets.

The categories of behaviors for day-ahead demand response are (1), (2), and (5), where
the last two are the most probable, as it is unlikely that consumers are extremely optimized
to fully reschedule their demand to hours of least price. The difference between flexible and
inflexible consumers is the time horizon to where demand at a certain hour is rescheduled
to other hours of the day, depicted by the arrow lengths in Figure 6. The selection of this
horizon is based on a detailed analysis of the types of loads that exist, where water heating,
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for example, can be shifted to a larger time horizon prior to periods of high demand than
other appliances such as lighting [47].

3.3. Day-Ahead Hourly Demand Estimatio

In this study, the deep neural networks (DNNs), which have widely been established
and used in different fields, especially macroscopic short-term load forecasting (STLF)
of electrical demand, are utilized and trained to perform the demand prediction [48,49].
DNNs are neural networks with more than three layers [50], used for supervised learning,
in which the algorithm trains the computer to learn from given data and make future
predictions or classifications. As can be seen in a [28], due to their intricate connections
and nonlinear activations, DNNs can model any non-linear function [51].

Neurons are the building blocks of a neural network, as shown in Figure 7b [50],
where the output a[l]j for the jth neuron in hidden layer l with an activation g[l] is depicted
as follows:

a[l]j = g[l]
(

w[l]
j

T ∗ ai
[l−1] + b[l]j

)
= g[l]

(
z[l]j

)
(5)
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z[l]j represents the output of the neuron j prior to the activation in the hidden layer

l, where w is the weight vector of that neuron, b is the bias and ai
[l−1] is the input to the

neuron from the ith training example. The choice of g[l] greatly affects the performance of
training the network. A detailed comparison of the popular activation functions currently
in use and their comparison can be found in [52]. In this study, the exponential linear
unit (Elu), which is an improved variant of the RELU (rectified linear unit), is used as the
activation functions due to its higher speed of converging and performance [53], better
sparsity [54] and avoiding the dying neuron problem where the saturation plateau in its
negative region allows for more enhanced learning of robust representations [52].

The main objective of training a neural network is to update all the weights and biases
in the hidden and output layer to decrease the error of the neural network, where the
mean squared error (MSE) is used for regression problems. The total error is calculated
by forward propagating the input data into the network and is used to measure the
performance of the neural network at each training iteration, and the error function is used
with the backward propagation algorithm to update the parameters (θ)s of the model using
gradient descent [55]:

θt+1 = θt − η · ∇θt J(θt), (6)

In the above equation, each weight θt at training step t is updated by calculating
the partial derivative ∇θt J(θt) of the error function J(θt) relative to each parameter θt
in the network using the chain rule. η denotes the learning rate and determines the
speed of gradient descent, where choosing a very big value might cause the model not
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to converge towards the global minimum or too low a value slows down the learning
process. Currently, there are advanced versions of gradient descent, with the most popular
being momentum [56], RMSprop [57], and adaptive moment estimation (Adam) [58]. Since
Adam is a combination of both momentum and RMSprop, it has been used in this research
for its well-known high performance, with more details found in [55].

Finally, Figure 8 depicts the training and tunning process for the proposed deep
neural network model used in this study to predict the day-ahead 24-h demands. The
model predicts the day-ahead demand at a specific hour h starting from the end of the
previous day; the model is run 24 times to predict the next day’s hourly demand hour
by hour. The selection and detailed analysis of the input features is discussed in detail in
the following section. The four-year hourly demand dataset was split into 90% training
data to train the model, 5% validation data to tune the hyperparameters and select the best
architecture, and 5% testing data coupled with the last month of 2019 used as a final test of
the model’s generalization performance. Achieving high prediction accuracy is essential
for the DR model and is achieved through careful feature selection coupled with selecting
an optimal neural network architecture. In addition, since deep neural networks are prone
to overfitting, both l2 regularization [59] and the dropout [60] techniques were applied
coupled with early stopping to increase the generalization performance of the model [61].
The final model performance is compared across all the data splits mentioned using the
mean absolute percentage error (MAPE), and the root mean square error (RMSE) [62].
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Figure 8. Day-ahead deep learning model for demand prediction at hour h.

4. Results and Discussion
4.1. Day-Ahead Hourly STLF
4.1.1. Electrical Demand’s Feature Analysis Results

In this study, the four-years hourly electrical demand of NEPCO between 2016 and
2019 is used to train the deep learning model to predict the day-ahead hourly STLF for
the Jordanian power grid, which is shown in Figure 9. It can be observed that, the highest
peaks out of all the years happened in 2019, reaching 3380 MW in winter. It is due to the
increase in urbanization, growth in population, as well as the rise in penetration of different
types of electrical appliances to households, while for the same year, the lowest demand
was recorded at 1195 MW in spring.
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Figure 9. Yearly variation in Jordan’s electrical demand.

The electrical demand is a highly complex time series that is a function of human daily
and seasonal behaviors and weather conditions, making it heterogeneous and uncertain.
In Figure 10 the weekly variation of the electrical demand is represented by the probability
density distribution for different days of the week. An apparent increase in peak demand
occurs from Saturday through Wednesday, then declining towards Friday, where Friday
and Saturday represent the weekend holidays. As previously shown in Figure 1 the daily
demand is also affected by the hour of the day, where the peak demand occurred for that
specific day at 6 PM, while the lowest occurred at 4 AM. Hence, time-series features such as
an hour of the day, day of the week, as well day of the year carry essential information for
the STLF [63]. In Figure 11, and for each quarter of the year (Q1–Q4), where Q1 represents
the first three months starting from January, the variation of hourly demand with the
change of temperature is shown. Electrical demand peaks at winter (end of Q4–Q1) and
summer (end of Q2–Q3) temperatures, as consumers are more likely to use space heating
and cooling. On days characterized with thermal comfort between 20 and 30 ◦C, the
average demand is lower. The curves on top and to the right of the figure show the
probability density distribution for demand and temperatures per quarter, where it can be
observed that the third quarter depicting two thirds of the summer season, had the highest
demands on average.
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Finally, the autocorrelation analysis represents the correlation of the demand at a
certain hour to its lagged values shown in Figure 12 indicating which previous hours of
the demand hold the highest correlation to be used as predictive features in STLF [21,58].
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Lagged demands at (−1, −24, −168, −48) hours showed the highest correlation,
respectively, representing the demand at the same hour in the previous two days in the
current week and the same day in the prior week. Table 5 illustrates the exogenous features
related to demand at the hour to be predicted. The endogenous features related to the
demand at previous hours of the week are given in Table 6.
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Table 5. Exogenous related to demand at the hour to be predicted.

No. Exogenous Input Features Range

1 Morning Peak-Load Time Temperature ◦C 4–42
2 Evening Peak-Load Time Temperature ◦C 2–37
3 Minimum Load-Time Temperature ◦C −1–34
4 Hour of the Day 1–24
5 Day of the Year 1–366
6 Week of the Year 1–53
7 Normal Day [0, 1]
8 National Holiday [0, 1]
9 Ramadan [0, 1]
10 Sunday [0, 1]

[0, 1]
16 Saturday [0, 1]

Table 6. Endogenous input features related to the demand at previous hours of the week.

No. Endogenous Input Features Range

1 Lagged Demand (−24 h) 1195–3380
2 Lagged Demand (−25 h) 1195–3380
3 Lagged Demand (−26 h) 1195–3380
4 Lagged Demand (−48 h) 1195–3380
5 Lagged Demand (−49 h) 1195–3380
6 Lagged Demand (−50 h) 1195–3380
7 Lagged Demand (−168 h) 1195–3380
8 Lagged Demand (−169 h) 1195–3380
9 Lagged Demand (−170 h) 1195–3380
10 Lagged Demand (−192 h) 1195–3380
11 Lagged Demand (−193 h) 1195–3380
12 Lagged Demand (−194 h) 1195–3380

In the above tables, the first three features are assumed to be collected from day-ahead
weather predictions at the times of the expected morning, evening, and minimum peak
times of the day where the demand is to be predicted. Features 4 to 16 represent the time
series features, specifying the hour of the day, day of the week, day of the year, week of
the year, and whether the day is a national holiday, the month of Ramadan, or a typical
day [28,63]. The lagged demand features were selected according to the autocorrelation
analysis, where [28] considered the previous two days only, which can make a problem
when weekends are involved as discussed by [63], hence, the same day and its previous
day from the last week were used as inputs to the model.

4.1.2. Deep Learning Model’s Training and Optimization

The Deep Neural Network architecture has been selected based on sensitivity analysis,
where the four-year hourly demand data was split into 90% training data to train the
model, 5% validation-data to tune the hyperparameters and select the best architecture,
and 5% testing-data coupled with the last month of 2019 used as a final test the model’s
generalization performance. The data were then normalized using the Z-scoring method
relative to the training data’s mean and standard deviation. A sensitivity analysis was used
to select the final model’s hidden layers’ (referred to as HL) configuration shown in Table 7.
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Table 7. Final deep neural network architecture.

Layers HL-1 HL-2 HL-3 HL-4 Output-L

#Neurons 1024 512 256 128 1
Activation elu elu elu elu -
Dropout-

Probability 0.1 0.1 0 0 -

l2 paramater 0.18 0.18 0.18 0.18 -

The architecture starts with a high number of neurons, then descends to lower num-
bers, which aligns with recent works such as [48], and the elu activation function showed
slightly higher performance than the RELU activation function. Dropouts were only ap-
plied to the first two layers, which showed better performance in combination with l2
regularization. Table 8 shows the final performance results for the training, validation, and
testing data.

Table 8. Final deep learning model results on training, validation and testing data.

Data MAPE% RMSE R2

Training 1.205% 31.17 0.9932
Validation 1.365% 38.39 0.9897

Testing 1.411% 43.18 0.9871

The MAPE error for the test data achieved a 1.411% error, just above the validation and
training error; hence, the model achieves good generalization and high accuracy. Finally,
the predictions of the last month of 2019, which is the final test of the model as it was not
used to train the model, similar to the validation and testing data, are shown in Figure 13.
The final model prediction results achieved a MAPE error just above the testing data at
2.03% since it is the hardest to predict at the end of the training period. This shows the
importance of the continuous training of the model every day when new data is acquired
to sustain high accuracy and generalization.
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To better investigate the occurrence of high errors in the proposed prediction in
Figures 13 and 14 depicts the hourly Absolute Percentage Error for each day in December
2019, where each day has been labeled according to its weather description as observed
in NEPCO’s data. First, the relatively high errors can occur between 8:00 and 17:00, with
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the largest errors being mainly in the range of 10:00 to 13:00 around noon time. High
prediction errors can occur for many reasons that cause an abnormal change in consumer
behavior or affect the production of PV energy on distribution levels. It can be observed in
the figure that rainy days such as the 6th, 8th and 9th of December had very high errors
during noon, this can be related to more people staying in the door as well as a reduction
in distribution and consumer level PV production that the grid operator sees as a sudden
increase in electrical demand as was observed in Figure 13. Cloudy days, depending on
the area of cloud coverage in Jordan and the time of cloud coverage, can also disrupt PV
generation, as can be seen in both the 2nd and 10th of December from 11:00 to 17:00. On
the 25th, the Christmas holidays could be a critical factor for the change in morning load
between 8:00 and 10:00, causing higher errors in the period. Finally, regarding Sunday, the
22nd of December, a sudden change in demand was traced for the 4 Sundays from the 1st
to the 22nd, for example, at 11:00 going from 1876 MW, 2519 MW, 2354 MW to 2118 MW
on the 22nd. The first major increase in demand was due to both the rainy day observed
and a large decrease in temperature, dropping from a 21 ◦C morning on the temperature
on the 1st to a 12 ◦C on the 8th, then the temperature slowly rose to 13 ◦C then 18 ◦C at
the 22nd. Since the model relies on the demand from the same day at the previous week
as one of its features, these sudden changes in weather conditions can have a significant
impact on any specific day that has a large change in demand, especially at certain periods,
and especially that Sunday depicts the starting day of the working day in Jordan.
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4.2. PEMD Analysis
4.2.1. Residential PEMD Analysis

Pre-implementation of DR requires a well-established estimation of the PEMD to
analyze the impact of price ranges on demand. The short-term price elasticity is the best
estimation for self-elasticity (εh) as it shows the negative relationship between price and
demand change in short periods. Based on an analysis of residential tariffs for the periods
between 1984 to 2014, the short-term price elasticity of electrical demand for the residential
sector in Jordan was estimated at −0.0575 [47].

Although, since price responsiveness of demand varies at different hours of the day,
two scenarios are assumed: (1) εh is assumed constant for every hour, (2) εh is assumed
to be double in peak periods. Hourly cross-elasticity represents the amount of energy



Appl. Sci. 2021, 11, 6626 19 of 31

shifted from one hour to other hours of the day both backwards and forwards in time. To
estimate the amount of potential shiftable energy in peak load hours, as well as its time
horizon, a detailed analysis of the different loads impacting DR and their penetration in
the residential sector is conducted, which is represented in Table 9.

Table 9. Power consumption and penetration rates of different electrical appliances in Jordan’s residen-
tial sector.

Appliance Penetration Rate (%) 1 Watts 4 H/Day

Vacuum cleaner 68% 1200 0.5
Dishwasher 7% 1800 1

Washing machine 97% 2 1800 1.5
Water heater (Electrical/Gas) 79% * 0.5 2,3 4000 3

AC 32% 1800 12
Freezer 16% 200 12

Refrigerator 98% 200 12
Microwave 54% 1500 0.5
Laptop/PC 31% 120 3

TV 98% 200 3
Lighting 100% 420 6

1 Jordan’s department of statistics survey in 2017 [64]. 2 [65]. 3 The water heating penetration is assumed at 50%
for the electrical-based and 50% for the gas-fired. 4 JICA’s report on the electricity sector master plan [40].

The data in Table 9 was used to estimate the normalized weight of each appliance’s
energy consumption relative to other appliances, which is shown in Figure 15. The figure
depicts an estimation of the weight of each appliance’s share of the residential electrical
demand for the loads discussed in this study, where it is more probable that it holds in the
evening load period when consumers return from work and need to use both water and
space heating.
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Residential loads can be classified into different types according to their flexibility
and DR characteristics: Thermostatically controlled loads (TCLs), deferrable loads, uninter-
ruptible loads [66]. TCLs are highly correlated to temperature and environmental factors,
where due to their thermal storage properties, their demand can be more flexible with a
lower impact on consumer comfort. Deferrable loads refer to appliances that are flexible to
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use and can also be shifted with low impact on consumer comfort. Finally, uninterruptible
loads refer to the appliances that require continuous energy demand while being used and
are highly correlated to consumer comforts where they usually have little DR potential.
Both TCLs and deferrable loads are estimated to represent 82.9% of the residential sector
which amounts to a significant potential for DR in Jordan’s residential sector. Water heating
and deferrable appliances can be easily shifted in peak demand periods resulting in peak
shaving. According to the previous discussion, cross-elasticity is estimated under two
scenarios related to the amount of energy re-allocated in peak time:

1. A lossless-case scenario: Reduced energy at a certain hour is re-allocated into other
hours of the day without a loss in total energy consumption. Hence, the summation
of all cross elasticities in every column in the PEMD is equal in magnitude to the
self-elasticity at that hour.

2. A 75% re-allocation scenario: 75% of the reduced demand is re-allocated to other
hours, and 25% is not used by the consumers, such as lighting, TV, or AC usage
that users simply do not use again. Therefore, the summation of all cross elasticities
in every column in the PEMD is equal in magnitude to 75% of the self-elasticity at
every hour.

4.2.2. Peak Period DR Policy Impact on PEMD Estimation

The proposed DR policy in this study is implemented by changing the peak-period
prices only to reduce the peak-load according to operational and security goals of the GO,
which has a direct impact on the estimation of the DR behavior of the residential sector.
The period of DR is assumed to start one hour before (4–5) PM and after (8–9) PM the
announced peak periods that were discussed in Table 3 for the winter season are constant
for the whole period. The PEMD under this price policy in the winter peak-time is depicted
in Figure 16, where it incentivizes consumers to shift their energy consumption outside of
the peak demand period only due to the constant peak period price. Since the prices only
change in the peak period, the areas on the left and right of the peak period are ignored
and were considered zero based on the policy proposed.
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Figure 16. Winter peak time—PEMD under the proposed DR policy.

Consumers are inclined to shift their demand to the closest hours outside of the peak
period [67], as depicted in Figure 16. The time-horizon (Tb: backward time horizon and
Tf : forward time horizon) of the demand re-allocation depends on the type of appliances
shifted. In the case that most of the appliances shifted are deferrable loads or water heating,
it is assumed that the time-horizon of shifting is 4 h closest to the hour under peak pricing,
where the cross-elasticates have the same value as reported in Table 10. It is also assumed
that, in the last hour of the peak period, a part of their demand is shifted to the next day
after 24:00, which is not considered in the current PEMD models. If more AC usage is
shifted, the weight of the cross-elasticity of the peak hour period is doubled for the closest
2 h, as represented in Table 11.
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Table 10. Base self-elasticity, lossless PEMD with no AC shifting scenario.

Time * 16:00 17:00 18:00 19:00 20:00
12:00 +0.0144 0 0 0 0
13:00 +0.0144 +0.0144 0 0 0
14:00 +0.0144 +0.0144 +0.0144 0 0
15:00 +0.0144 +0.0144 +0.0144 +0.0144 0
16:00 −0.0575 0 0 0 0
17:00 0 −0.0575 0 0 0
18:00 0 0 −0.0575 0 0
19:00 0 0 0 −0.0575 0
20:00 0 0 0 0 −0.0575
21:00 0 +0.0144 +0.0144 +0.0144 +0.0144
22:00 0 0 +0.0144 +0.0144 +0.0144
23:00 0 0 0 +0.0144 +0.0144

* at 23:00 for example, it indicates the period of (23:00–24:00)

Table 11. Base self-elasticity, lossless PEMD with AC shifting scenario.

Time 16:00 17:00 18:00 19:00 20:00
12:00 +0.0096 0 0 0 0
13:00 +0.0096 +0.0096 0 0 0
14:00 +0.0192 +0.0192 +0.0096 0 0
15:00 +0.0192 +0.0192 +0.0192 +0.0096 0
16:00 −0.0575 0 0 0 0
17:00 0 −0.0575 0 0 0
18:00 0 0 −0.0575 0 0
19:00 0 0 0 −0.0575 0
20:00 0 0 0 0 −0.0575
21:00 0 +0.0096 +0.0192 +0.0192 +0.0192
22:00 0 0 +0.0096 +0.0192 +0.0192
23:00 0 0 0 +0.0096 +0.0096

Table 12 shows the structure of the finalized PEMD in this study. Cases 1 to 4 represent
the base self-elasticity which equals the short-term self-elasticity for the residential sector
of Jordan, while Cases 5 to 8 assume that the peak period will have double the elasticity.
Cases [1,2,5,6] represent a lossless PEMD, where the summation of the cross-elasticities
is equal to the cross elasticity in magnitude, while their counterparts take the 75% case
scenario mentioned previously. Finally, cases [3,4,7,8] consider more AC usage participated
in DR, where the second level of cross elasticity (L2) with double the weights of (L1) is
used, as was shown in Tables 10 and 11.

Table 12. Finalized PEMD.

Case Scenarios Self-Elasticity Cross Elasticity—L1 Cross Elasticity—L2

C1

−0.0575

−(−0.0575/4) -
C2 −(−0.0575/6) −2 × (−0.0575/6)
C3 −(0.75 × (−0.0575))/4 -
C4 −(0.75 × (−0.0575))/6 −2 × (0.75 × (−0.0575))/6)

C5

−0.115

−(−0.115/4) -
C6 −(−0.115/6) −2 × (−0.115/6)
C7 −(0.75 × (−0.115))/4 -
C8 −(0.75 × (−0.115))/6 −2 × (0.75 × (−0.115))/6)
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4.3. Dispatching Scenario and Prediction Performance

To simulate a real dispatch case scenario, the unit commitment and dispatched power
plants for a day in December- 2019 were acquired coupled with the expected demands for
that day as predicted by NEPCO. The detailed information of the dispatched power plants
is given in Table 13. All units for that day operated with combined cycles with their real
capacities shown. The available power from Egypt is assumed at 150 MW for the whole
day with priority above IPP4 and Risha’s power at maximum capacity with its cost not
considered, being based on natural gas extracted from Jordan. The real hourly PV and
wind energy from renewable power plants are assumed to be the predicted values and are
subtracted from the demand, then the table is used to find the cheapest combination.

Table 13. Power plant dispatched for the case-study in December 2019.

Unit Name Cost (JD/MW) Min. Demand (MW) Max. Demand (MW)

1 Risha 0 33 33
2 AES CC 59.85 210 410
3 ACWA CC 60.09 210 360
4 SAMRA 4 CC 61.06 127.5 220
5 SAMRA 3 CC 61.06 192.5 420
6 SAMRA 1 CC 61.06 210 310
7 QPC CC 64.89 210 424
8 Wind 72.79 0 -
9 PV 79.94 0 -
10 Egypt 52.79 0 150
11 IPP4 121.17 0 240
12 IPP3 231.04 0 570

Figure 17 shows the real and predicted values of electricity Sunday, 8 December
2019, as well as the PV and wind generation, where Sunday represents the start of the
working week in Jordan. The proposed model’s prediction achieved a MAPE of 3.59% and
is compared to NEPCO’s prediction, which performed worse. One reason is that NEPCO’s
prediction is usually provided before 4 PM in the previous day, while our model achieves
the prediction of the whole day at the end of the previous day. Nevertheless, the proposed
model achieved higher results throughout the period. It is to be noted that, hour 0:00
indicates the average demand from 0:00 to 1:00.
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4.4. Day-Ahead Demand Response Model for the Selected Case Study

The proposed day-ahead DR system for the residential sector’s demand is shown in
Figure 18, which was applied to a selected day in December 2019. The contribution of
JEPCO, IDECO, and EDCO in providing the total residential electricity demand is consid-
ered about 32.4%, 5.08%, and 9.98%, respectively. This is calculated by multiplying the
peak power of each distribution company by the percentage of residential and commercial
energy consumption for each company. The estimated demand is also used to calculate
the amount of power purchased from each power plant, after deducting the usage of the
renewable power. Finally, after the peak bulk prices are selected for each distribution com-
pany, the model is applied to each PEMD case scenario to estimate the potential generation
cost savings, peak demand reduction, and load factor improvements.Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 33 
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4.5. PEMD Scenarios Analysis

The day-ahead DR model was applied to all the PEMD case scenarios discussed in
Table 12, assuming the maximum peak prices sppc,h,Max for the period of each distribution
company to be set at 200%, 250%, and 300% of their initial values. The three different
price scenarios were applied to the profit maximization model presented in Equation (1) by
maximizing the daily profit from the three distribution companies without considering the
monthly capacity charge. Figure 19 shows the impact of applying the proposed DR model
on Sunday, 8 December 2019, considering all case scenarios. The profit maximization model
always selects the maximum peak price for the given price scenarios.

It can be observed that, the PEMD cases scenarios [C1–C4] show a lower peak drop in
the peak period due to having lower price elasticity in comparison to [C5–C8], indicating
the higher the peak period price, the higher the peak drops in the peak period. The periods
after and before the peak period, especially from 2–4 PM and 9–11 PM, are extremely
important. This is because the demand removed from the peak period is rescheduled
towards them. Therefore, the new peaks might form, especially in case scenarios with
high self-elasticities [C5–C8], indicating the more demand is reduced in the peak period,
the higher the new peaks’ demand is. C6 represents the worst-case scenario, especially at
higher peak prices, representing a lossless-PEMD with double the weight for the closest
two hours outside the peak period. C2 represents the highest new peak formed among
the cases [C1–C4], although since it has half the self-elasticity of C6, the new peak was not
as severe.
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There is a clear trade-off between the demand reduced from the peak period and
newly formed peaks. Figure 20 shows the peak reduction percentage for the whole day
for each case scenario. C6 shows an increase in the peak by −1.46% at 300% peak price. It
is noted that, in the case scenarios with low self-elasticity [C1–C4], a price increase leads
to a steady decrease in the day’s peak demand. In contrast, in the cases scenarios with
high self-elasticity [C5–C8], higher prices can lead to a lower day’s peak reduction due
to the newly formed peaks. More than 5%-day peak reduction can be achieved in most
cases except for C2 and C6, which are the worst cases among all case scenarios. C6 was the
only scenario to show an increase in peak demand at 300% peak price, which is due to two
main reasons: first, C6 depicts the high self-elasticity scenario where consumers are highly
responsive to the price change, leading to more demand being shifted to hours outside
of the peak period. Secondly, C6 depicts the scenario with both the lossless case where
all demand removed from any hour will be allocated to other hours and the case where
the weight of demand shifted to the closest two hours is doubled. Hence, the higher the
price increase, the more demand is re-allocated with a higher concentration on the hours
outside the peak period being 15:00 and 21:00, as seen in Figure 19. Other cases such as
C5 had a slightly less bad case at 300% peak prick as there was an even redistribution of
demand reallocated to the surrounding 4 h of the peak period, making the newly formed
peak less than C6, while in C8, there was 25% less demand shifted, making the new peaks
also less than C6. Although the peak price is low enough in high elasticity scenarios, even
with more demand shifted to closer hours, a high peak reduction can still be achieved.
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The load factor is calculated by dividing the mean demand for the whole day by the
maximum demand. Figure 21 represents the comparison between the load factor for each
scenario with the original demand. The results show that, the load factor can be improved
around 5%, by setting high prices in low self-elasticity cases and lower prices in high
self-elasticity cases.
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Figure 21. Load factor analysis.

The main objective of the DR program is to reduce energy consumption from costly
peak power suppliers. Figure 22 shows the amount of saving in electricity usage from
IPP3, which is the most expensive power plant, where both cases C8 and C7 achieved the
highest savings, especially at 250% peak pricing. It is also notable that, the worst-case
scenario (C6) at 300% peak pricing also achieved savings, which is mainly because the
new high peak formed at 9 PM has a smaller width (time horizon) than the original peak
and drops more sharply, whereas, for the peak formed at 3 PM, PV power was available.
This shows the importance of shifting demands towards periods where renewable energy
is available, where in this case, even if the peak demand increased, the overall demand
from IPP3 can still be reduced. Cases [C3, C4, C7, C8] achieved better savings in both
self-elasticity scenarios, since 25% of the demand reduced at each hour in the peak period
is removed from the grid.
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Figure 23 shows the energy cost savings in all scenarios. Energy cost-saving does not
follow the same pattern as energy saving because the decrease in electricity purchased
from IPP3 causes an increase in IPP4 power usage in hours, where the demand rises from
2 PM to 4 PM and 9 PM to 11 PM. The best- and worst-case scenarios in cost-saving are C7
at 300% peak and C2 at 250%, with the detailed results of the peak reduction, load factor,
and cost-saving for each case scenario are reported in Tables 14 and 15 and the best results
based on peak prices for each case are highlighted in green.
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Table 14. Cases [C1–C4] results.

Case C1 C2 C3 C4
Peak Price 200% 250% 300% 200% 250% 300% 200% 250% 300% 200% 250% 300%

Peak Reduction (%) 2.729 4.093 5.458 2.729 4.093 4.582 2.729 4.093 5.458 2.729 4.093 5.458
Load Factor 0.780 0.791 0.802 0.780 0.791 0.795 0.779 0.789 0.799 0.779 0.789 0.799

Cost Saving ($/day) 44,323 63,726 63,586 38,517 53,856 52,213 63,264 90,487 105,859 56,801 87,448 95,989

Table 15. Cases [C5–C8] results.

Case C5 C6 C7 C8
Peak Price 200% 250% 300% 200% 250% 300% 200% 250% 300% 200% 250% 300%

Peak Reduction (%) 5.458 2.880 0.266 4.582 1.511 −1.456 5.458 4.841 2.880 5.458 3.814 1.511
Load Factor 0.802 0.781 0.760 0.795 0.770 0.747 0.799 0.793 0.775 0.799 0.784 0.764

Cost Saving ($/day) 63,586 83,397 68,514 52,213 66,149 33,376 105,859 146,619 154,505 95,989 130,769 137,257

The results revealed that, in the case scenarios with base self-elasticity, the best im-
provement on all indicators could be achieved by increasing the prices, especially in C3
and C4, where due to the low-price elasticity in the peak time, newer high peaks after and
before the peak period were not formed, as less energy was removed from the peak period.
In these cases, peak demand reduction ranged from 4.582% to 5.458%, load factor rose to
(0.780–0.802), and cost savings ranged from 53,856 to 105,859 dollars per day. The higher
peak period price elasticity, the higher demand shifts from the peak period caused newer
peaks to form at high energy prices.

The highest energy cost reductions do not align with the other indicators, ranging
from 66,149 to 154,505 dollars. This indicates that the prices should be set based on the
priority of the GO, whether direct profit in terms of cost-saving has higher priority or
indirect profits by peak reduction and load factor improvement that increase operational
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performance. The power plant shares for the C7 having the best cost saving at 300% peak
price can be seen in Figure 24, where the share of power purchased from IPP3 was reduced
from 1.49% to 0.68%.
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5. Conclusions

This paper aimed at presenting a comprehensive demand response model for the
Jordanian power sector, based on the maximization of the profit for the service provider,
considering its interaction with the power generators and customers. To this aim, a peak
period, day-ahead DR based on the deep neural networks model, was introduced, and
applied to the residential sector, which holds a large portion of the daily demand. The
hourly day-ahead demand prediction, which is one of the main inputs to the DR model,
was achieved by training a deep neural network on four-years of demand data showed
perfect estimation with a MAPE error of 1.411% on the first test data set and 2.03% on
the second one at the end of the four years training period. Besides, a precise PEMD
estimation of Jordan’s residential sector was based on recent research on the short-term
price elasticity of Jordan’s residential and the analysis of the different electrical appliances
and daily operations. The results of the DR model applied for multiple case scenarios of the
PEMD showed that peak reductions, load factor improvements, as well as high potential
for significant cost saving could be achieved with the proposed DR model.

The proposed model at its current state faces the following limitations that should
be taken into consideration for further development. First, due to the unavailability
of a detailed electricity dispatching model for the Jordanian power sector, this part was
simplified. Therefore, only the average prices and costs of the dispatched power plants were
used in this study. By obtaining and including a more general and comprehensive dispatch
model, more accurate modeling of the profit and saving calculation can be achieved, and
a more precise optimization can be implemented. Second, in the presented model, the
hourly residential demand of each distribution company was assumed to be a constant
percentage of its share of the peak demand. Third, the hourly renewable energy power
is considered given data to the model provided by each renewable power plant. Thus,
a comprehensive prediction model should be combined with the current DR model to
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assess the impact of the climate conditions on balancing electricity supply and demand
and predicting the demand response. In the presented model, and due to the lack of full
data related to weather conditions, these features were not fully integrated aside from
the temperature.

With that said, both the Government and all key players in the power sector must
take action to hasten the development of DR response systems for the different sectors
of the Jordanian electricity sector and take into consideration policies to further increase
the deployment of residential smart meters. Furthermore, research towards viable DR
programs both price and incentive-based that attract the residential and different sectors in
Jordan’s power sector should be implemented, as well as pushing awareness campaigns to
the importance of DR systems and mature energy usage to achieving a smarter grid that can
handle the increasing challenges faced by high demands and high penetration of renewable
energies as well as achieve environmental goals. In addition, to hasten the development of
a smarter Jordanian grid, where DR systems are a part of, the government should provide
more incentive to enable researchers and related personals by implementing policies that
can facilitate easier access to available data, expertise and connect said parties further to
accelerate development and research in these promising areas.

For future work, the model will further be extended to consider periods outside of
the peak period, including forecasting models for solar and wind, using a more detailed
power dispatch model, and testing different DR models for the Jordanian power grid.
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