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Abstract: Cross-lingual embeddings are vector space representations where word translations tend to
be co-located. These representations enable learning transfer across languages, thus bridging the gap
between data-rich languages such as English and others. In this paper, we present and evaluate a suite
of cross-lingual embeddings for the English–Welsh language pair. To train the bilingual embeddings,
a Welsh corpus of approximately 145 M words was combined with an English Wikipedia corpus. We
used a bilingual dictionary to frame the problem of learning bilingual mappings as a supervised
machine learning task, where a word vector space is first learned independently on a monolingual
corpus, after which a linear alignment strategy is applied to map the monolingual embeddings to
a common bilingual vector space. Two approaches were used to learn monolingual embeddings,
including word2vec and fastText. Three cross-language alignment strategies were explored, including
cosine similarity, inverted softmax and cross-domain similarity local scaling (CSLS). We evaluated
different combinations of these approaches using two tasks, bilingual dictionary induction, and cross-
lingual sentiment analysis. The best results were achieved using monolingual fastText embeddings
and the CSLS metric. We also demonstrated that by including a few automatically translated training
documents, the performance of a cross-lingual text classifier for Welsh can increase by approximately
20 percent points.

Keywords: natural language processing; distributional semantics; machine learning; language model;
word embeddings; machine translation; sentiment analysis

1. Introduction

A popular research direction in current natural language processing (NLP) research
consists of learning vector space representations of words for two or more languages,
and then applying some kind of transformation to one of the spaces such that “cross-lingual
synonyms”, i.e., words with the same meaning across languages, are assigned similar vector
space representations. The applications of these cross-lingual embeddings into downstream
tasks is indisputable today, ranging from information retrieval [1], entity linking [2], text
classification [3,4], as well as natural language inference or lexical semantics [5]. These
cross-lingual embeddings are often learned and evaluated for language pairs, for which
there is either a good availability of parallel or comparable text corpora, supervision
signal, or, at the least, large enough raw but non-aligned corpora for each language (see,
e.g., Mikolov et al. [6], Conneau et al. [7], Artetxe et al. [8,9]).

However, the availability of cross-lingual mappings between resource-rich and resource-
poor languages still constitutes a challenge [10]. In this paper, we are particularly concerned
with learning cross-lingual embeddings between the languages of English and Welsh.
The last census indicated that there are currently 526,016 speakers of Welsh (https://gov.
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wales/welsh-language-data-annual-population-survey-2019, accessed on 15 July 2021).
Welsh is statistically a ‘minority’ language as there are more speakers of English than Welsh
in Wales and the UK, but it is a healthy one, and Wales represents the largest bilingual com-
munity in the UK. As a minoritized language in the UK context (albeit with official status,
alongside English, in the devolved nation of Wales), Welsh does not enjoy the same lan-
guage technology resources as English or other major state languages, although there is an
increasing interest in widening the availability of resources in this context. Welsh-language
technologies that are currently available include POS (part of speech) taggers (including Cy-
Tag, [11]), WordNet Cymru (https://users.cs.cf.ac.uk/I.Spasic/wncy/index.html, accessed
on 15 July 2021), and an extensive range of tools developed for the purposes of, for exam-
ple, text-to-speech, speech recognition, machine translation, and terminology recognition,
developed by Canolfan Bedwyr at Bangor University (see their online Welsh National Lan-
guage Technologies Portal (http://techiaith.cymru/?lang=en, accessed on 15 July 2021).
However, to the best of our knowledge, there has been no work on learning high-quality
bilingual mappings between English and Welsh, which would drastically accelerate the
current landscape for Welsh NLP technologies. In this paper, we thus propose to explore
current state-of-the-art cross-lingual embeddings techniques for the Welsh language. We
first train several monolingual models based on Skip-gram [12] and fastText [13], consider-
ing several configurations in terms of context window size, minimum frequency threshold,
and vector dimensionality. Then, we apply VecMap [14], a method for learning cross-
lingual mappings via orthogonality constraints to our monolingual embeddings. We also
report results on a post-processing step based on applying an additional transformation
obtained via a linear model trained on top of the bilingual synonym’s mean vectors [5].
These cross-lingual representations are evaluated on the standard task of dictionary induc-
tion. Finally, as a further downstream task, we report the results of a sentiment analysis
system for Welsh in zero-shot and few-shot settings, i.e., training it only with English data,
or with limited instances of (automatically translated) task-specific Welsh data. Our results,
while promising, also point to the challenges posed by under-represented, resource-poor
languages in NLP development, and suggest that further research is needed to strengthen
the landscape for Welsh language technologies. The contributions of this paper are as
follows:

• Cross-lingual embeddings: we train, evaluate, and release a wealth of cross-lingual
English–Welsh word embeddings.

• Train and test dictionary data: we release to the community a bilingual English–Welsh
dictionary with a fixed train/test split, to foster reproducible research in Welsh NLP
development.

• Sentiment analysis: we train, evaluate, and release a Welsh sentiment analysis system,
fine-tuned on the domain of movie reviews.

• Qualitative analysis: we analyze some of the properties (in terms of nearest neighbors)
of the cross-lingual spaces, and discuss them in the context of avenues for future work.

Our results suggest that gains in training English–Welsh bilingual embeddings can be
obtained by carefully tuning the hyperparameters of the monolingual models, and that
the distance metric chosen matters, with differences of up to 5% in accuracy. Overall,
the best configuration across the board seems to always involve the fastText model (as
opposed to skip-gram), and the CSLS distance metric (as opposed to cosine similarity
and inverted softmax). Conversely, the cutoff threshold for minimum frequency and the
context window seem to be less important for the final results, as there is not a clear pattern
involving a consistent setting among the top-ranked results. In our external evaluation
experiment, namely, zero and few-shot sentiment analysis, we verified that it is indeed
possible to develop a competitive sentiment analysis system for Welsh only using cross-
lingual embeddings and English training data, and that by adding synthetic Welsh training
data (e.g., from a machine-translation engine), the performance of the model increases
as well.

The remainder of this paper is organized as follows: Section 2 gives an account of
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research works in different areas relevant to the scope of this paper; Section 3 introduces
resources we used for generating cross-lingual embeddings. Section 4 introduces the
algorithm used for mapping monolingual embeddings into a shared space. Section 5
presents the results in two (intrinsic and extrinsic) experimental settings. Finally, Section 6
summarizes the main contributions of this work, and outline potential avenues for future
work. Data, models, and software are publicly available at (https://github.com/cardiffnlp/
en-cy-bilingual-embeddings, accessed on 15 July 2021).

2. Background

In this section, we present a review of related works with respect to NLP for the Welsh
language and cross-lingual word embeddings.

2.1. Welsh Language NLP

Recently there has been much research in the space of applying NLP to non-English
minority languages such as Welsh. The defining characteristic of a minority language
is that the amount of corresponding data available for that language is significantly less
than that available for the English language. Most state-of-the-art NLP models use deep
learning where performance scales with the amount of available data. Given this, achiev-
ing performance on NLP tasks for minority languages is on par with that achieved for
the same tasks for the English language represents a significant challenge. The Welsh
Natural Language Toolkit (WNLT) is a Welsh-Government-funded project which fo-
cuses on the development of NLP tools for the Welsh language (https://hypermedia.
research.southwales.ac.uk/kos/wnlt/, accessed on 15 July 2021). The tools in question
are distributed under GNU Lesser General Public License (LGPL) and include tools
for tokenization, lemmatization, POS tagging, and Named Entity Recognition (NER)
(https://sourceforge.net/projects/wnlt-project/, accessed on 15 July 2021). Neale et al. [11]
developed a rule-based part-of-speech (POS) tagger for the Welsh language entitled Cy-
Tag. Although state-of-the-art POS taggers for the English language use deep learning,
the authors argue there is insufficient Welsh language data to use such an approach for the
Welsh language. The same authors later developed a rule-based semantic tagger, entitled
CySemTagger [15]. Both of these tools are available under a free software (GPL version 3)
licence (https://github.com/CorCenCC, accessed on 15 July 2021). Jones et al. [16] de-
veloped a statistical machine translation model for the English and Welsh language pair.
Spasić et al. [17] developed a statistical method for multiple word term recognition in
Welsh. This method builds on a previously proposed term-recognition method known as
FlexiTerm [18].

2.2. Cross-Lingual Embeddings

Earlier attempts to train cross-lingual word embeddings required access to parallel
(or, at least, comparable) corpora [19–25]. Finding such corpus especially for a minoritized
language can prove challenging. Therefore, the research in this space gravitated towards
using bilingual dictionaries instead of aligning the words in respective languages [6,26].
It was later shown that such cross-lingual supervision is not necessary to align word
embedding [7]. Instead, adversarial training can be used to initialize a linear mapping
between two vector spaces and produce a synthetic parallel dictionary. The success of this
approach was based on the use of two metrices: one for unsupervised validation and the
other one for similarity measure. Such combination reduces the hubness problem while
improving the translation accuracy.

Hubness is a phenomenon that occurs in high-dimensional spaces, where some ob-
jects tend to concentrate around a centroid while others have few nearest neighbors [27].
Specifically, hubness associated with cross-lingual embeddings was explored in [28], who
proposed incorporating a nearest-neighbor reciprocity as a way of managing hubness.
Different measures were used to down-weigh similarities associated with hub words,
including cross-domain similarity local scaling (CSLS) [7] and inverted softmax [29]. In ad-

https://github.com/cardiffnlp/en-cy-bilingual-embeddings
https://github.com/cardiffnlp/en-cy-bilingual-embeddings
https://hypermedia.research.southwales.ac.uk/kos/wnlt/
https://hypermedia.research.southwales.ac.uk/kos/wnlt/
https://sourceforge.net/projects/wnlt-project/
https://github.com/CorCenCC


Appl. Sci. 2021, 11, 6541 4 of 15

dition, adding an orthogonality constraint, which conveniently has a closed-form solution,
can improve performance further [30].

Alternatively, to align monolingual embedding spaces with no supervision, Zhang et al. [31]
used adversarial training to exploit sudden drops in accuracy for model selection followed by
minimizing the earth-mover distance [32]. Conversely, Conneau et al. [7] do not base model
selection on its performance, which allows for hyper-parameters to be tuned specifically for
a given language pair as they tend to vary significantly across languages. Similar approaches
used to induce bilingual dictionaries from data [5,10,14,33] yielded state-of-the-art performance
in many language pairs, although the experimental setup followed in the literature has also
been closely scrutinized, and there exist studies that argue for experiments that account for
different genres in source and target corpora, studying (dis)similarities between languages,
etc. [34,35].

Although the advent of language models in the current NLP landscape (BERT, GPT,
or RoBERTa) [36–38] has transformed the field, it is also true that even for languages where
the availability of raw data is small, having access to pre-trained static word embeddings
can make the difference between developing a language technology or not at all. Recent
work has, for example, focused on dialectal Arabic, by combining BERT-based encodings
with Arabic word embeddings for underrepresented domains and dialects [39].

3. Materials

This section describes the materials required for generating cross-lingual embeddings.

3.1. Corpora

While a number of Welsh corpora exist, there generally lacks extensive data sets of
Welsh language that are freely/widely available. To undertake this study, we combined
a number of existing Welsh corpora, sourced from different language contexts, including
proceedings from the Welsh assembly (http://cymraeg.org.uk/kynulliad3/, accessed on
15 July 2021), scraped websites and blogs [40] and the National Corpus for Contempo-
rary Welsh (CorCenCC, [41]), amongst others. The full list of corpora used are given in
Table 1. We ensured that the collected corpus includes a diverse range of formats, genres
and registers, including a balanced mix of formal and casual language, and general and
specialized topics. For example, there are texts from the highly formal academic writing of
academic journal papers and textbooks; the archaic writing of the bible; technical writing
in the form of administrative documents and software documentation; journalistic writing
from news and magazine articles; pieces of creative writing in prose, poetry and song;
and everyday casual language including emails, tweets, text messages, and transcripts of
spoken language.

In terms of the English corpus, we used a Wikipedia data dump for June 2018, which
is a standard corpus in distributional semantics for learning word embeddings.

3.2. Text Corpus Creation

We developed Welsh and English corpora to train our bilingual embeddings, draw-
ing on a range of pre-existing data sets. The full Welsh-language data set extended to
144,976,542 words after tokenization. The names and corresponding number of words in
each individual text corpus are displayed in Table 1. We now provide a brief description of
each individual text corpus.

http://cymraeg.org.uk/kynulliad3/
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Table 1. Names and corresponding number of words in each individual Welsh-language text corpus.

Corpus Numb. Words

Welsh Wikipedia 21,233,177
Proceedings of the Welsh Assembly 1999–2006 11,527,963
Proceedings of the Welsh Assembly 2007–2011 8,883,870
The Bible 749,573
OPUS translated texts 1,224,956
Welsh Government translation memories 1,857,267
Proceedings of the Welsh Assembly 2016–2020 17,117,715
Cronfa Electroneg o Gymraeg 1,046,800
An Crúbadán 22,572,066
DECHE 2,126,153
BBC Cymru Fyw 14,791,835
Gwerddon 732,175
Welsh-medium websites 7,388,917
CorCenCC 10,630,657
S4C subtitles 26,931,013

Welsh Wikipedia—Wikipedia is a multilingual crowd-sourced online encyclopedia and
one of the world’s most popular websites. English Wikipedia was the first edition of
Wikipedia and was founded in January 2001. As of 29 September 2019 (when these data
were collected), there were 5,938,555 articles contained in this project. Given the large
number of articles, English Wikipedia is a text corpus commonly used to train English
language word embeddings. Welsh Wikipedia is the Welsh language edition of Wikipedia
and was founded in July 2003. It is significantly smaller than English Wikipedia and as
of 29 September 2019 it contains 106,128 articles. Web crawling of this was undertaken,
specifically, using the Python library urllib and the Python library Beautiful Soup to
extract all text within paragraph tags <p>. We subsequently removed all citations and
mathematical equations.
National Assembly for Wales 1999–2006—The National Assembly for Wales is the de-
volved parliament of Wales, which has many powers, including those to make legis-
lation and set taxes. By performing a web crawling of the Assembly website (http:
//xixona.dlsi.ua.es/corpora/UAGT-PNAW/, accessed on 15 July 2021), Jones et al. [16]
created a bilingual aligned corpus of Welsh and English from the online version of the
Proceedings of the Plenary Meetings of the Assembly between the years 1999 and 2006
inclusive. This is freely available as a plain text file. Only the Welsh part of this corpus was
used for the purposed of the current project.
National Assembly for Wales 2007–2011—Donnelly [42] created the Kynulliad3 corpus,
which is similar to the previous bilingual aligned corpus except that it covers the period
between the years 2007 and 2011 inclusive. This corpus, which contains 350,000 aligned
Welsh and English sentences, was extracted by querying an SQL database. Only the Welsh
half of this corpus was used in the current project.
The Bible—Beibl.net (http://www.beibl.net, accessed on 15 July 2021) includes all books
of the Bible in modern Welsh. Texts were scraped using urllib and Beautiful Soup in Python.
OPUS—OPUS is a collection of technical texts on the web, mainly including software
documentation, in a number of languages. We extracted a range of en-cy (English–Welsh)
texts from this resource in plain text format.
Welsh Government translations memories—The collection of translation memory files
contains published bilingual documents and other materials from the Welsh Government
(from August 2019 to May 2020). The data set comprises .tmx files, which were extracted
using Python’s translate toolkit package.
National Assembly for Wales 2016–2020—Records of the proceedings of the Welsh As-
sembly, including plenary information from the start of the Fifth Assembly (May 2016) and

http://xixona.dlsi.ua.es/corpora/UAGT-PNAW/
http://xixona.dlsi.ua.es/corpora/UAGT-PNAW/
http://www.beibl.net
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Committee information from November 2017 to May 2020. The data set was downloaded
as .xml, with text extracted using the Python library Beautiful Soup.
Cronfa Electroneg o Gymraeg—This corpus contains 500 articles of approximately 2000
words each, selected from a representative range of text types to illustrate modern (mainly
post-1970) Welsh prose writing [43]. It includes articles from the fields of novels and
short stories, religious writing, children’s literature, non-fiction materials in the fields
of education, science, business and leisure activities, public lectures, newspapers and
magazines, reminiscences, academic writing, and general administrative materials (letters,
reports, minutes of meetings).
An Crúbadán—This corpus was created by Scannell [40] by performing web crawling. It
consists of a collection of Welsh Wikipedia articles, Welsh Tweets, Welsh Blogs, the Uni-
versal Declaration of Human Rights, and articles from a Jehovah’s Witnesses website
(JW.org) (https://www.jw.org/cy/, accessed on 15 July 2021). To prevent duplication of
the previous Welsh Wikipedia corpus, we removed all Wikipedia articles.
DECHE—The Digitization, E-publishing, and Electronic Corpus (DECHE) project produces
e-books out of Welsh language scholarly, academic books which are out of print and
unlikely to be reprinted in traditional paper format [44]. Candidates for producing as
e-books are nominated by lecturers working through the medium of Welsh and prioritized
by the Coleg Cymraeg Cenedlaethol, who fund the project. We constructed a corpus from
this project by manually downloading all books in epub format and extracting the plain
text using the Python libraries epub_conversion and Beautiful Soup.
BBC Cymru Fyw—BBC Cymru Fyw is an online Welsh language service provided by
BBC Wales containing news and magazine-style articles. Using the Corpus Crawler tool
(https://github.com/google/corpuscrawler, accessed on 15 July 2021), we constructed a
corpus containing all articles published on BBC Cymru Fyw between 1 January 2011 and
17 October 2019 inclusive.
Gwerddon—Gwerddon is a Welsh-medium academic e-journal which publishes research
in the Arts, the Humanities, and the Sciences (http://www.gwerddon.cymru/, accessed on
15 July 2021). This corpus contains all text in articles contained in 29 editions of this journal.
It was constructed by manually downloading the articles in question and extracting the
corresponding text using the R programming language package pdftools. Some manual
post-formatting was carried out to correct footnotes, etc.
Welsh-medium websites—Golwg360 (https://golwg360.cymru, accessed on 15 July 2021)
and O’r Pedwar Gwynt (https://pedwargwynt.cymru, accessed on 15 July 2021) are Welsh-
medium news websites. PoblCaerdydd (https://poblcaerdydd.com/, accessed on 15 July
2021) and Cylchgrawn Barn (https://barn.cymru/, accessed on 15 July 2021) are Welsh-
medium online magazines. This corpus contains all text extracted from articles on these
four websites. It was construed by performing web crawling using wget and extracting all
relevant text using the Python library Beautiful Soup.
CorCenCC—CorCenCC (https://www.corcencc.org, accessed on 15 July 2021) [41] is the
National Corpus of Contemporary Welsh (Corpws Cenedlaethol Cymraeg Cyfoes). This
corpus contains over 11 million words of spoken, written, and electronic language data
sampled from a range of genres, styles, registers, and dialect regions. The pre-processed
version of the corpus was made available for use in this project.
S4C subtitles—Subtitles kindly received privately (i.e., not publicly available) from the
Welsh-language TV channel S4C (https://www.s4c.cymru, accessed on 15 July 2021). Text
manipulation was used to strip away the formatting and compile this corpus.

English corpora include the UMBC (https://ebiquity.umbc.edu/blogger/2013/05/01
/umbc-webbase-corpus-of-3b-english-words/, accessed on 15 July 2021) web-based corpus
and Wikipedia (www.wikipedia.org, accessed on 15 July 2021) corpus. UMBC contains over
3 billion words, including blog posts, news stories etc., that have been stripped from the
web, cleaned, tokenized and pre-processed. The Wikipedia corpus includes all texts from
the English Wikipedia site, with one sentence per line, tokenized, lemmatized, chunked,
lower-cased and POS-tagged.

https://www.jw.org/cy/
https://github.com/google/corpuscrawler
http://www.gwerddon.cymru/
https://golwg360.cymru
https://pedwargwynt.cymru
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https://barn.cymru/
https://www.corcencc.org
https://www.s4c.cymru
https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
www.wikipedia.org
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3.3. Word Embeddings

In our experiments, we compare two different word embeddings methods, namely,
Skip–Gram with Negative Sampling (which we denote as word2vec) [12], and fastText [13],
which is an improved word2vec architecture that accounts for subword information in order
to capture morphological and subword information. For each of these two models, we
experiment with different hyperparameters, namely, vector size (DIM), a word’s minimum
frequency threshold (MF), and context window (CW).

3.4. Bilingual Dictionary

Our initial bilingual dictionary was provided by Bangor University [45]. It contains
over 100,000 bilingual entries, including named entities (e.g., “Alfred the Great”), multi-
word terms (e.g., “acquired immunity”), or domain-specific terminology (e.g., for the
chemical domain, “2,4-diisocyanato-1-methylbenzene”). For our purposes, we prepro-
cessed this initial dictionary by removing all multi-word and ambiguous (i.e., words
for which there was more than one entry—or sense— recorded in the dictionary) terms,
and split it into training and test. The final size of this dictionary, which we used for
mapping English to Welsh embeddings, and for evaluating these mappings, consisted of
9067 training pairs and 2268 test pairs.

4. Methods

Having a bilingual dictionary available makes it viable to cast the problem of learning
bilingual mappings as a supervised machine learning task, where given two monolingual
corpora, a word vector space is first learned independently for each language. This can
be achieved with standard word embedding models such as Word2vec [6], GloVe [46],
or fastText [13]. Second, a linear alignment strategy is used to map the monolingual
embeddings to a common bilingual vector space. It is worth mentioning that we do
not require parallel or comparable corpora to build these multilingual models [47,48],
although it has also been shown that the higher the overlap in terms of domain, topic,
genre, or linguistic typology, the better the alignments [35,49].

The learning model for these mappings is often a simple linear transformation trained
on a bilingual dictionary. In the original paper by Mikolov et al. [6], a matrix W is trained,
which minimizes the following objective:

n

∑
i=1
‖xiW− zi‖2 (1)

with xi and zi being the vector representations of cross-lingual synonyms (i.e., trans-
lations) of two words wi and zi, in two different languages, respectively. After train-
ing, the translation z′ of any source word x′ in the source language can be defined as
z′ = argmaxz′d(Wx, z′), with d(·) being a vector distance metric. In this paper, we consider
as options for d(·) the following: (1) the well-known cosine similarity (NN); (2) inverted
softmax (invsoftmax) [29]; and (3) cross-domain similarity local scaling (CSLS) [7]. This task,
i.e., the retrieval of cross-lingual synonyms (or word translations) is known as dictionary in-
duction, and is considered a good intrinsic testbed for assessing the quality of cross-lingual
mappings. In this paper, we report experiments on the test split of the dictionary described
in Section 3.4.

5. Results

We report results on the test set of our English–Welsh bilingual dictionary. We report
these results in terms of accuracy (ACC.), i.e., we record a true positive only if the nearest
neighbor in the mapped space is a translation of the source word. This is a strict measure
(as we could have considered, for instance, P@k; k ∈ {1, 5, 10}), which serves as a strong
baseline for upcoming research in English–Welsh crosslingual language technologies.
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5.1. Quantitative Evaluation

The task of bilingual dictionary induction, a natural byproduct of learning bilingual
mappings, and which we have introduced in Section 4, is a good proxy for evaluating the
quality of cross-lingual mappings.

We thus report results of appplying the VecMap method. However, we also experi-
mented with Meemi, but since the results were slightly lower across most configurations,
we only report VecMap performance. Table 2 shows the top 20 configurations in terms of
accuracy. As we can see, fastText consistently performs best when compared to word2vec,
and CSLS clearly outperforms inverted softmax and cosine similarity in terms of retrieval
metrics. On the other hand, the threshold for minimum frequency and context windows
seem to be less relevant, as there is high variability among the best configurations. Regard-
ing the overall scores, note that these are in line with what previous work has found when
dealing with language pairs involving English and a low-resource language. For example,
Doval et al. [49] report P@1 scores for their best models of 24.8 for English–Finnish, 21.5
for English–Farsi, or 19.3 for English–Russian, and Xu et al. [50] report roughly similar or
worse results for dictionary induction experiments involving, e.g., Turkish (9.96) or Latvian
(13.53). Note that theirs is an unsupervised approach.

Table 2. Top 20 configurations (ranked in descending order) in terms of accuracy (ACC.) for the
bilingual dictionary induction task when using VecMap. We compare different monolingual embedding
models (MODEL), vector size (DIM.), minimum frequency threshold (MF), context window (CW),
and neighbor retrieval method (RETRIEVAL, cf. Section 3).

MODEL DIM. MF CW RETRIEVAL ACC.

fastText 500 6 6 CSLS 22.92

fastText 500 6 4 CSLS 21.85

fastText 500 6 8 CSLS 21.75

word2vec 300 6 4 CSLS 21.75

word2vec 500 6 8 CSLS 21.46

word2vec 300 6 6 CSLS 21.46

word2vec 500 6 4 CSLS 21.46

word2vec 300 6 8 CSLS 21.36

word2vec 500 6 6 CSLS 21.36

fastText 500 3 4 CSLS 20.46

fastText 500 3 8 CSLS 19.75

fastText 500 3 6 CSLS 19.36

word2vec 300 3 8 CSLS 19.22

word2vec 500 3 6 CSLS 19.22

word2vec 500 3 8 CSLS 19.18

word2vec 300 3 6 CSLS 18.83

fastText 300 6 4 CSLS 18.57

word2vec 300 6 4 invsoftmax 18.48

word2vec 300 6 8 invsoftmax 18.48

word2vec 300 6 8 NN 18.43
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5.2. Qualitative Evaluation

The cross-lingual vector space can be manually explored in order to evaluate how
well both the monolingual embeddings capture semantic relationships within a language,
and also how well the cross-lingual embeddings align. We start this by selecting a small set
of prototype words in the first language, and inspect their nearest neighbors in the second
language. We then compare this to the reverse procedure: selecting the same translated,
words in the second language, and inspect their nearest neighbors in the first.

Table 3 lists a selection of ten words, and their translations, with their 10 nearest
neighbors in their opposite languages. In general, the cross-lingual embeddings align well,
with the common nouns, adjectives, and verbs mapping to very similar and very related
words in both directions. We also attempted to find closely related words to hiraeth, a word
often claimed to be untranslatable into English, which still gave accurate nearest neighbors,
referring to feelings of longing and yearning for home.

More specialized vocabulary, such as foreign loadwords (croissant), and proper nouns
(French, and place names such as Cardiff and Tonypandy) show some asymmetry in the
alignment of the embeddings. Here, the Welsh nearest neighbors to English words are
much more relevant and semantically related than the English nearest neighbors of Welsh
words. For example, the Welsh nearest neighbors to croissant gives breakfast foods and
pastries, while the English nearest neighbors are generic foodstuffs. Similarly, the Welsh
nearest neighbors to French gives Euro-centric languages and adjectives, while the English
nearest neighbors to ffrangeg (the French language) gives languages from further afield. It is
also interesting to note that in Welsh, the words ffrangeg (the French language) is different
to ffrengig (the French nationality), and all the English nearest neighbors to ffrangeg are
languages or language-related terms, rather than words related to nationalities, while a
mix of the two is seen in the Welsh nearest neighbors of French.

Geographic place names are also interesting, with the Welsh nearest neighbors of
English place names giving more local and geographically closer place names than the
English nearest neighbors of Welsh place names. This may be an effect of the English
training corpus having a much more international and broader scope than the Welsh
training corpus. For example, Cardiff /caerdydd, the capital of Wales and thus an important
word in the Welsh language: its Welsh nearest neighbors are other major Welsh towns and
cities, while it’s English nearest neighbors are populated with Australian places, maybe
referencing the much smaller Australian town of Cardiff.
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Table 3. Table of a selected sample of cross-lingual nearest neighbors examples.

word_cy Closest English Words to word_cy word_en Closest Welsh Words to word_en

nofio (swim) swim, swimming, kayak, paddling, rowing, waterski, swam,
watersport, iceskating, canoe

swim nofio (swim), deifio (diving), cerdded (walking), blymio (diving), padlo (paddling),
arnofio (floating), sblasio (splashing), troelli (spinning), neidio (jumping)

glaw (rain) rain, snow, fog, heavyrain, downpour, rainstorm, heavyrains,
snowfall, rainy, mist

rain glaw (rain), eira (snow), cenllysg (hail), wlith (dew), cawodydd (showers), rhew
(frost), taranau (thunder), barrug (frost), genllysg (hail), dafnau (drops)

hapus
(happy)

happy, pleased, glad, grateful, delighted, thankful, anxious,
eager, fortunate, confident

happy hapus (happy), bodlon (satisfied), ffeind (kind), llawen (joyful), rhyfedd (strange),
trist (sad), llon (cheerful), cysurus (comfortable), hoenus (cheerful), nerfus (nervous)

meddalwedd
(software)

software, application, computer, system, tool, ibm, hardware,
technology, database, device

software meddalwedd (software), feddalwedd (software), caledwedd (hardware), dyfeisiau
(devices), amgryptio (encryption), dyfeisiadau (inventions), cymwysiadau (applica-
tions), algorithm (algorithm), dyfais (device), ategyn (plugin)

ffrangeg
(French
language)

Arabic, Hebrew, Hindi, Arabiclanguage, language, urdu,
sanskrit, haitiancreole, English

French ffrengig (french), sbaenaidd (Spanish), almaeneg (German language), archentaidd
(Argentinian), gwyddelig (Irish), twrcaidd (Turkish), llydewig (Breton), almaenaidd
(German), danaidd (Danish), imperialaidd (imperial)

croissant
(croissant)

frenchfries, yogurt, applesauce, currysauce, mulledwine,
mozzarellacheese, noodlesoup, buñuelo, chilisauce, mis-
osoup

croissant bisgedi (biscuits), twmplenni (dumplings), byns (buns), teisennau (cakes), bacwn
(bacon), caramel (caramel), melysfwyd (confectionery), cwstard (custard), marmaled
(marmalade)

gwario
(spend
money)

expend, invest, reinvest, pay, allot, allocate, disburse, econo-
mize, retrench, accrue

spend treulio (spend time), dreulio (spend time), gwario (spend money), aros (wait), threulio
(spend time), gwastraffu (wasting), dychwelyd (returning), nychu (languishing), hala
(spend money), byw (live)

hiraeth
(longing)

longing, sadness, yearning, sorrow, anguish, loneliness, grief,
feeling, ennui, heartache

longing hiraeth (longing), galar (grief ), anwyldeb (dearness), tristwch (sadness), nwyd (pas-
sion), gorfoledd (exultation), tosturi (compassion), tynerwch (tenderness), nwyf (vi-
vacity), hyfrydwch (loveliness)

caerdydd
(Cardiff )

Docklands, Southbank, Brisbane, Frankston, downtown,
Thessaloniki, Coquitlam, Melbourne, Bayside, Glasgow

Cardiff Abertawe (Awansea), nantporth (Nantporth), aberystwyth (Aberystwyth), llanelli
(Llanelli), glynebwy (Ebbw Vale), caerdydd (Cardiff ), porthcawl (Porthcawl), llan-
dudno (Llandudno), awyr (sky), wrecsam (Wrexham)

Tonypandy
(Tonypandy)

Edgewareroad, Blakelaw, Upperdicker, Ainleytop, Bil-
sthorpe, Romanby, Killay, Llanwonno, Penllergaer, Green-
rigg

Tonypandy aberdâr (Aberdare), Senghennydd (Senghennydd), aberpennar (Mountain Ash), bry-
naman (Brynamman), aberdar (Aberdare), coedpoeth (Coedpoeth), llanidloes (Llanid-
loes), brynbuga (Usk), penycae (Penycae), tymbl (Tumble)
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5.3. Extrinsic Evaluation

The extrinsic evaluation assesses the performance of a language model in the context
of a predefined task. In this study, this task was chosen to be that of sentiment analysis (SA),
as it has been shown that cross-lingual systems can achieve high accuracy even in zero or
few-shot settings [4]. Specifically, given the shortage of annotated Welsh corpora that can
be used to train a Welsh SA model, we wanted to investigate to what extent cross-lingual
embeddings can improve the performance of such a model by re-using a readily available
annotated English data set.

To implement SA, we re-purposed an existing sentence classifier [51] based on a
convolutional neural network for text classification [52], which has been extended by a bi-
directional long–short-term memory (Bi-LSTM) [53] layer. This classification model is well
equipped to capture both short- and long-range dependencies and extract general features
of online reviews that would be useful for SA. The most important hyperparameters of the
base model include 100 convolutional filters, a kernel of size 4 and strides of size 1, with a
ReLu activation function. Further, the Bi-LSTM layer consisted of two 100-unit (forward
and backward) LSTM layers. The model was trained using categorical cross-entropy with
an Adam optimizer. In this model, each training instance is represented as a matrix, where
each word is represented by the corresponding embedding. Such representation is suitable
for cross-lingual training, as cross-lingual synonyms are expected to be represented by
similar vectors in the joint vector space. Therefore, any abstractions learned by the model
are also expected to be similar in the two languages.

All SA experiments were performed using a set of 50 K IMDB reviews, which represent
a community standard for evaluating SA [54]. This data set is divided into two subsets of
25 K reviews, each to be used for training and testing, respectively. The original reviews
were automatically translated from English to Welsh using Google Translate, a neural
machine translation system [55] that proved mature enough to produce reliable data for
training SA in languages other than English [56]. We used the best-performing bilingual
English–Welsh embeddings as per their performance in the dictionary induction task
(Section 5.1).

To perform cross-lingual training, we started by training an SA model using English
data only and evaluated the results using Welsh data. We call this zero-short learning as no
labeled data in Welsh were used at all. We then gradually added Welsh translations using
increments of n reviews, where n = 100, 500, 1000, 2500, 5000, 7500, 10,000, 12,500, and
150,00. Given a fixed size n, a random subset was selected five times to check whether the
evaluation results were reproducible. All experiments were evaluated against the Welsh
test data.

Figure 1 shows the evaluation results in terms of accuracy (y axis) against exposure
to labeled data in Welsh (x axis refers to the total number of reviews of Welsh that were
combined with a total of 25 K reviews in English). The zero-shot model achieves an accuracy
of 65%. The accuracy increased substantially by adding as little as a thousand reviews
automatically translated to Welsh. Naturally, with increased exposure to Welsh during
the training; the accuracy increased as well. Already at 5000 Welsh reviews, the average
accuracy surged beyond 75%. In addition, the model stabilized as less variance was
observed across the experiments using different subsets of a fixed size. The highest
accuracy achieved fell just short of 80%. Further performance gains are expected to
be obtained by tuning the hyperparameters or the neural network architecture itself to
optimize its performance with Welsh. However, this is well beyond the scope of the current
study. Nonetheless, our experiments confirmed that cross-lingual embeddings make zero-
shot English-to-Welsh SA possible with few-shot settings contributing to considerable
performance improvements. These results provide the evidence that existing NLP tools
based on word embeddings can indeed be re-used to support NLP in Welsh.
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Figure 1. Accuracy results for the cross-lingual sentiment analysis experiment.

6. Conclusions

We have described the process of training bilingual English–Welsh embeddings. We
start by discussing the corpora we used to train monolingual embeddings in both languages
using both word2vec and fastText, and continue by explaining the curation of the supervision
signal (the training bilingual dictionary), as well as the linear transformation method we
use for mapping both monolingual spaces into a shared bilingual space.

We have evaluated this shared space both intrinsically and extrinsically. The intrinsic
evaluation was based on dictionary induction, which was used to measure the alignment of
two monolingual spaces directly by translating between the two languages and measuring
the distance within a monolingual space. The best alignment was achieved by training the
monolingual spaces using fastText and aligning them using the the CSLS metric. The true
value of aligning two vector spaces lies in the ability to facilitate NLP applications in
minoritized languages by taking advantage of readily available resources in a language such
as English. To evaluate the cross-lingual embeddings extrinsically, we measured the effects
of supplementing Welsh-language data with data in English on the accuracy of sentiment
analysis in Welsh. We were able to use an existing neural network architecture based on
CNNs and LSTMs originally developed for sentiment analysis in English. By training this
neural network on cross-lingual embeddings and data from both languages, we managed
to obtain highly competitive results in Welsh without having to modify the original method
in any way. In particular, we demonstrated that a relatively small data set of 2 K documents
in the target language seems to suffice. This opens exciting avenues for future work,
where cross-lingual embeddings can be combined with neural architectures and data
augmentation techniques to develop Welsh language technology at a negligible cost.

The Welsh language can be categorized, within the language resource landscape,
as being a low-resource language, i.e., the availability of (raw and annotated) corpora,
glossaries, thesauri, encyclopedias, etc. is limited when compared to other languages
such as English, Chinese, Spanish, or Indo-Aryan languages. This study allows one
to automatically compare the meaning of words not only within the Welsh language
but also across the two languages, thus facilitating applications such as the creation of
bilingual language resources, as well as the development of NLP systems for Welsh with
limited Welsh training data, as we successfully demonstrated with sentiment analysis.
Cross-lingual embedding we generated therefore unlocks access to a plethora of open-
source NLP solutions developed originally for English. This in turn opens a possibility
of supporting a wide range of applications, such as computer–assisted translation, cross-
lingual information retrieval, and conversational artificial intelligence. These applications
encourage the use of Welsh in activities of daily life, which contributes to maintaining and
improving Welsh language skills.
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1. Vulić, I.; Moens, M.F. Bilingual word embeddings from non-parallel document-aligned data applied to bilingual lexicon induction.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Short Papers; Volume 2, pp. 719–725.

2. Tsai, C.T.; Roth, D. Cross-lingual wikification using multilingual embeddings. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA,
12–17 June 2016; pp. 589–598.

3. Mogadala, A.; Rettinger, A. Bilingual word embeddings from parallel and non-parallel corpora for cross-language text classifica-
tion. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 692–702.

4. Camacho-Collados, J.; Doval, Y.; Martínez-Cámara, E.; Espinosa-Anke, L.; Barbieri, F.; Schockaert, S. Learning Cross-Lingual
Word Embeddings from Twitter via Distant Supervision. In Proceedings of the International AAAI Conference on Web and Social
Media, Atlanta, GA, USA, 8–11 June 2020; Volume 14, pp. 72–82.

5. Doval, Y.; Camacho-Collados, J.; Anke, L.E.; Schockaert, S. Improving Cross-Lingual Word Embeddings by Meeting in the Middle.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October –4
November 2018; pp. 294–304.

6. Mikolov, T.; Le, Q.V.; Sutskever, I. Exploiting similarities among languages for machine translation. arXiv 2013, arXiv:1309.4168.
7. Conneau, A.; Lample, G.; Ranzato, M.; Denoyer, L.; Jégou, H. Word Translation Without Parallel Data. In Proceedings of the

ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.
8. Artetxe, M.; Labaka, G.; Agirre, E. Learning principled bilingual mappings of word embeddings while preserving monolingual

invariance. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5
November 2016; pp. 2289–2294.

9. Artetxe, M.; Labaka, G.; Agirre, E. Generalizing and improving bilingual word embedding mappings with a multi-step framework
of linear transformations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New
Orleans, LA, USA, 2–7 February 2018.

10. Adams, O.; Makarucha, A.; Neubig, G.; Bird, S.; Cohn, T. Cross-lingual word embeddings for low-resource language modeling.
In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain,
3–7 April 2017; Long Papers; Volume 1, pp. 937–947.

11. Neale, S.; Donnelly, K.; Watkins, G.; Knight, D. Leveraging lexical resources and constraint grammar for rule-based part-of-speech
tagging in Welsh. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, Miyazaki,
Japan, 7–12 May 2018.

12. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10
December 2013; pp. 3111–3119.

13. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

https://github.com/cardiffnlp/en-cy-bilingual-embeddings
https://github.com/cardiffnlp/en-cy-bilingual-embeddings
http://doi.org/10.1162/tacl_a_00051


Appl. Sci. 2021, 11, 6541 14 of 15

14. Artetxe, M.; Labaka, G.; Agirre, E. A robust self-learning method for fully unsupervised cross-lingual mappings of word
embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia,
15–20 July 2018; Volume 1, pp. 789–798. [CrossRef]

15. Piao, S.; Rayson, P.; Knight, D.; Watkins, G. Towards a Welsh Semantic Annotation System. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation, Miyazaki, Japan, 7–12 May 2018.

16. Jones, D.; Eisele, A. Phrase-based statistical machine translation between English and Welsh. In Proceedings of the 5th SALTMIL
Workshop on Minority Languages at the 5th International Conference on Language Resources and Evaluation, Genoa, Italy, 24–26
May 2006.
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