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Abstract: The motion of nonholonomic mobile manipulators (NMMs) is inherently constrained by
joint limits, joint velocity limits, self-collisions and singularities. Most motion planning algorithms
consider some of the aforementioned constraints, however, a unified framework to deal with all
of them is lacking. This paper proposes a motion planning solution for the kinematic trajectory
tracking of redundant NMMs that include all the constraints needed for practical implementation,
which improves the manipulability of both the entire system and the manipulator to prevent sin-
gularities. Experiments using a 10-DOF NMM demonstrate the good performance of the proposed
method for executing 6-DOF trajectories while satisfying all the constraints and simultaneously
maximizing manipulability.

Keywords: motion planning; trajectory tracking; mobile manipulator; joint constraints; self-collision
avoidance; manipulability

1. Introduction

A mobile manipulator is a robotic system that consists of a standard robot manipula-
tor mounted on a mobile platform. This system integrates the dexterity provided by the
manipulator with the extended workspace provided by the platform. Additionally, the com-
bination of both subsystems usually introduces kinematic redundancy, which increases
flexibility and dexterity. Therefore, mobile manipulators are suitable to perform delicate
tasks over a large space, such as welding large parts or painting large, curvy surfaces.

The practical applications of robotic systems commonly define tasks by either a point-
to-point movement or a continuous path of the end-effector in task space (also known as
operational space). This paper aims to solve the latter, and in particular, focuses on the
task space trajectory tracking problem. A trajectory is a path on which a timing law is
specified, for instance in terms of velocities and/or accelerations [1]. In other words, not
only is the end-effector’s pose profile defined, but so is its velocity profile. To accomplish
this, a motion planning algorithm that exploits the capabilities of both the manipulator and
the mobile platform and that coordinates their movements is required. The redundancy
of mobile manipulators can be used to perform additional subtasks or satisfy system con-
straints. These constraints include joint limits, joint velocity limits, joint velocity boundary
constraints (i.e., the constraints on the initial and final joint velocities), and self-collision
avoidance. Furthermore, for task space trajectory tracking to be achievable, it is important
that the system is kept away from singularities. All these requirements make the motion
planning for trajectory tracking a challenging problem.

There exist recent efforts in solving the motion planning of mobile manipulators [2,3].
Liao et al. [2] presented an optimization-based solution that not only handles constraints
at the position level, but can also set a target joint configuration for the manipulator at
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the end of the trajectory. A heuristic approach was proposed by Santos et al. [3] that is
simple to implement and can accomplish additional constraints such as joint limits and
manipulability improvement. Nonetheless, these methods do not deal with constraints at
the velocity level and are only applicable to mobile manipulators with omnidirectional
platforms. The present work focuses on the motion planning of mobile manipulators with
nonholonomic mobile platforms. The movement of this type of platform is constrained by
the rolling without slipping condition, which inhibits the platform from instantly moving
in any arbitrary direction [4].

The motion planning of NMMs has also been studied in the literature using different
approaches [5–10]. De Luca et al. [7] implemented the reduced gradient method for
NMMs. This method finds a permutation matrix that helps reduce the velocity input to
the subspace of commands that satisfy the given task. The remaining velocity inputs are
used to maximize an objective function. Even though this method is computationally more
efficient than the projected gradient approach, it is difficult to find such a permutation
matrix for highly redundant robots since the Jacobian must be pre-analyzed by hand.
Jia et al. [9] studied an adaptive motion distribution and coordinated control between the
manipulator and the mobile platform to minimize the end-effector’s positioning error.

In task space trajectory tracking, it is important that the motion planning algorithm
moves the system away from singularities. This is because the system is in kinematic
singularity, and the dexterity of the structure is reduced because the robot’s end-effector
cannot be moved in a certain direction. In addition, when the system is in the neigh-
borhood of a singularity, small velocities in the task space may cause large velocities in
the joint space [1], which is unacceptable because this would result in the failure of the
trajectory tracking task, and even damage the mobile manipulator. For these reasons,
the manipulability maximization was been included in multiple motion planning methods
for NMMs [5,6,8–10]. Bayle et al. [5,6] maximized the system’s manipulability using the
projected gradient method. Huang et al. [8] studied the coordination of the platform and
the manipulator, simultaneously considering the mobile platform stability and the manipu-
lator’s manipulability. Although these techniques can successfully follow the end-effector
path while considering additional criteria, none of these consider joint constraints.

Furthermore, the solution of the task space trajectory tracking problem must not
only consider joint limits but also joint velocity limits. This is because if a joint reaches
its velocity limit, the end-effector might not be able to comply with the desired velocity
profile. To the authors’ knowledge, the literature of motion planning for trajectory tracking
in task space with NMMs that includes joint constraints is limited. Zhang et al. [10]
proposed formulating the motion planning problem as an optimization problem where
the manipulability is maximized and the joint limits and joint velocity limits are included
as constraints. This optimization problem is reformulated as a quadratic programming
problem and converted into a linear variational inequality problem, that can be solved by
different numerical methods. This approach is effective but does not consider boundary
constraints for joint velocities. These constraints are also relevant because, for a given task,
zero joint velocities are expected at the start and end of the trajectory. Additionally, NMMs
are not only subject to physical limits but also to self-collisions, especially between the
manipulator and the mobile platform, which are not included in their work.

An important remark is that maximizing the manipulability of the whole system
might result in poor manipulability for the arm alone, even though the manipulability
for the whole system is preserved or improved [6,10]. Additionally, it is important that
both the robot arm subsystem and the whole mobile manipulator system maintain a
certain level of manipulability once a coordinated task is completed. After completing
an arbitrary path, a subsequent task might only require the arm to manipulate an object.
If the arm is in a configuration with low manipulability, executing such a task might not
be feasible. For these reasons, in this work, we propose a new manipulability measure
for mobile manipulators that, when maximized, and as demonstrated in our experiments,
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intrinsically improves the manipulability of the robot arm as well as the manipulability of
the whole system.

The solution to the motion planning of NMMs for trajectory tracking presented in this
work includes joint constraints (range and maximum velocities), self-collision avoidance
and manipulation capability preservation. Figure 1 summarizes how all these constraints
are included in our solution. Both the particular and homogeneous solutions of our
proposed scheme are weighted to avoid joint limits and self-collisions while the trajectory
is tracked. The homogeneous solution is used to maximize the manipulability by exploiting
the redundancy of the system. To satisfy joint velocity boundary constraints, the step size
for searching the maximum manipulability is varied. The joint velocity limits are satisfied
by restraining the maximum step size based on the allowable self-motion.

Figure 1. Summary of the proposed motion planning approach.

Experimental results demonstrate that our method can successfully solve the motion
planning problem of NMMs under all the mentioned constraints. This work focuses
on task space trajectory tracking at kinematic level. In other words, the outputs of the
motion planning algorithm are the joint positions and velocities that will be fed to a joint
space dynamic controller for motion control. Then, the motion controller is responsible
for suppressing the model uncertainties and external disturbances to guarantee that the
actual joint positions follow the ones output by the motion planning algorithm. In the
experiments shown in this paper, we use the built-in motion controller of the commercial
manipulator and leave the design of our own motion controller for future research.

The contributions of this work are detailed as follows:

• A motion planning solution for NMMs that allows to include joint physical constraints
and the execution of a secondary task is presented.

• Multiple constraints required for the practical implementation of task space trajectory
tracking are included in a unified solution. These constraints include joint limits, joint
velocity limits, joint velocity boundary constraints and self-collision avoidance.

• A new manipulability measure for mobile manipulators is presented. It is demon-
strated that the maximization of this measure simultaneously improves the manipula-
bilities of the whole system and the robot arm.

This paper is organized as follows. Section 2 describes the kinematic modeling of
NMMs. Section 3 describes the motion planning problem for trajectory tracking and
presents the proposed solution. In Section 4, the concepts that are employed to satisfy each
of the mentioned constraints are described and included in the motion planning algorithm.
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Experimental results using 6-DOF tasks are presented in Section 5 to validate the efficacy
of our approach. Finally, Section 6 concludes the paper.

2. Kinematic Modeling

The kinematic modeling described here follows the procedure of De Luca et al. [7]
and Bayle et al. [6]. For a general procedure of kinematic modeling of wheeled mobile
manipulators, please refer to Bayle et al. [5].

Let r ∈ Rm be the end-effector’s position and/or pose in the task space. The configura-
tion vector q, also known as the generalized coordinates of the mobile manipulator, is given
by the combination of the platform configuration vector qp and the robot arm configuration
vector qa. Figure 2 illustrates these configuration vectors. A frame x′y′ is attached to
the mobile platform at the center of the wheels’ axle (xp, yp), with respect to the world
reference frame xy, with its x′ axis pointing in the forward direction and the y′ axis pointing
in the direction parallel to the wheels’ axle. The angle between the x axis of the world
reference frame and x′ attached to the platform is denoted as θp. Then, the platform config-

uration is given by qp =
[
xp yp θp

]T ∈ R3. The robot arm configuration is given by the

position of its joints as qa =
[
qa1 qa2 . . . qna

]T ∈ Rna . Finally, the configuration vector

of the mobile manipulator is q =
[
qp

T qa
T]T ∈ Rn with n = 3 + na. The end-effector’s

position/pose is a function of the configuration vector defined by the kinematic map:

r = f (qp, qa), (1)

x

y

O

x′
y′

(xp, yp)
θp

ωp

vp

qa1

qa2

qan

Figure 2. Nonholonomic mobile manipulator schematic.

The wheeled platform movement is constrained under the rolling without a slipping
assumption on both wheels, which can be expressed as the following nonholonomic
constraint:

q̇p = G(qp)up, (2)

where up =
[
vp ωp

]T ∈ R2 is the velocity input of the platform, consisting of the linear
and angular velocities of the platform, which are known as pseudo velocities or quasi-
velocities. The columns of matrix G(qp) span the admissible velocity space for a given
platform configuration. The matrix G(qp) for a differential-drive platform is defined as

G(qp) =

cos θp 0
sin θp 0

0 1

,

On the other hand, the robotic arm kinematics at the velocity level is not constrained
for any configuration, and therefore, the generalized velocities of the arm are equal to the
velocity inputs of the arm:

q̇a = ua. (3)
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The velocity input vector for the entire NMM can be constructed as u =
[
up

T ua
T]T ∈

Rδm , with δm = 2 + na. The dimension δm is called the mobility degree of the mobile ma-
nipulator and indicates the space dimension of the admissible generalized velocities [6].
Using (2) and (3), the map from the velocity input vector u to the generalized velocities
q̇ =

[
q̇p

T q̇a
T]T can be written as

q̇ = S(q)u, (4)

with:

S(q) =
[

G(qp) 0
0 Ina

]
,

where G(qp) maps the platform’s velocity input vector up =
[
vp ωp

]T to the platform’s

generalized velocities q̇p =
[
ẋp ẏp θ̇p

]T , and matrix Ina is an identity matrix of size na
that sets the arm’s generalized velocities equal to its input velocities q̇a = ua.

The differential kinematics of the NMM is obtained by differentiating the relation (1)
with respect to time:

ṙ =
[

Jp(qp) Ja(qa)
][q̇p

q̇a

]
=
[

Jp(qp) Ja(qa)
]
S(q)u

= J(q)S(q)u = J̄u,

(5)

where the matrices Jp ∈ Rm×3 and Ja ∈ Rm×na are the Jacobians of the platform and the arm,
respectively. The matrix J ∈ Rm×n is the Jacobian of the mobile manipulator, and J̄ ∈ Rm×δm

is a reduced version of the Jacobian in which the admissible velocities of the platform
under the nonholonomic constraint have been included. Equation (5) follows the same
form as the differential kinematics of standard manipulators; therefore, the well-known
methodologies for the motion planning of redundant manipulators can be extended to
NMMs in terms of J̄, including concepts for joint limits avoidance, self-collisions avoidance
and manipulability maximization.

3. Motion Planning Method

The motion planning problem for task space trajectory tracking consists of finding the
input velocities u, given the desired end-effector’s position/pose rd(t) ∈ Rm for t ∈ [t0, t f ],
such that r(t) follows rd(t). If the task space velocity of the end-effector is set as

ṙ = ṙd + K(rd − r), (6)

where K ∈ Rm×m is a positive definite matrix, then the convergence of r(t) to rd(t) is
guaranteed. Consequently, the motion planning problem is turned into solving the input
velocities u from the underdetermined linear equations (5) where ṙ is set according to (6).

During the execution of the trajectory, the movement of the joints that get closer to
a position constraint (joint limit or self-collision) must be penalized (slowed down). This
can be achieved by using a weighting matrix. In this work, we define the weighted input
velocity and the reduced weighted Jacobian as follows:

J̄W = J̄W
1
2 (q) and u = W

1
2 (q)uW , (7)

where W(q) ∈ Rδm×δm is a configuration-dependent positive semidefinite matrix. It is
constructed so that its elements penalize the motion of the joints based upon the system
constraints. We choose W(q) as a diagonal matrix in this paper; furthermore, we drop the
notational dependency of W on q to simplify the expression in the subsequent derivation.

Using (7), the system (5) can be rewritten as

ṙ = J̄WuW . (8)
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Because of the kinematic redundancy, i.e., m < δm, infinite solutions to uW exist.
The solution to (8) can be decomposed as a sum of a particular solution and a non-zero
homogeneous solution. The particular solution satisfies the end-effector’s task, while
the homogeneous solution changes the manipulator configuration without changing the
end-effector’s position/pose.

One way to solve the redundant system (8) is to formulate the problem as a constrained
optimization problem [1], where the goal is to minimize a cost function and satisfy the
constraint (8). We propose the minimization of the quadratic cost function:

g(uW ) =
1
2
(uW −W

1
2 u0)

T(uW −W
1
2 u0);

this choice is aimed to find a vector of velocities uW that is as close as possible to W
1
2 u0,

where u0 ∈ Rδm is a velocity vector that is used to satisfy an additional task such as
maximizing the manipulability. The choice of u0 will be presented shortly. Notice that the
physical constraints are also imposed to u0 by weighting it similarly to how J̄W is obtained
in (7). By using the method of Lagrange multipliers to minimize g(uW ) with the equality
constraint (8), the following solution is obtained:

uW
∗ = J̄†

W ṙ + (I − J̄†
W J̄W)W

1
2 u0, (9)

where J̄†
W is the Moore–Penrose pseudoinverse of the matrix J̄W such that J̄W J̄†

W = I,
I − J̄†

W J̄W is the orthogonal projection into the null space of J̄W . The first term of (9) is the
particular solution, and the second term is the homogeneous solution. It is trivial to show
that I − J̄†

W J̄W projects u0 onto the null space of J̄W by multiplying both sides of (9) by J̄W .
The velocity input vector is then recovered using the second part of (7):

u = W
1
2 J̄†

W ṙ + W
1
2 (I − J̄†

W J̄W)W
1
2 u0. (10)

The degree of kinematic redundancy at the velocity level is relevant for this solution to
be feasible, since it defines the number of simultaneous constraints that can be satisfied in
the differential kinematics inversion without J̄W losing its rank. The degree of redundancy
for NMMs is calculated as R = δm −m. Whilst analyzing the matrix W

1
2 for three different

cases, it is possible to understand the expected behavior of solution (10). Let z represent
the number of elements that are zero in the diagonal of W

1
2 , i.e., the number of joints that

are forced to stop due to z simultaneously activated constraints. When z < R, both the
particular and homogeneous solutions exist, and therefore, the secondary task will still be
considered. When z = R, the system is not redundant anymore and only the particular
solution exists. Finally, when z > R, the system (8) has no solution. Therefore, for the
solution (10) to exist, the condition z ≤ R is necessary.

Our proposed solution (10) has an advantage over the projected gradient solution
used in [5,6], because it includes the physical constraints and penalizes both the particular
and homogeneous solutions. Furthermore, in contrast with the weighted least-norm
method [11], this solution takes advantage of the redundant joints that have not been
penalized, due to physical constraints, in attempt to satisfy the task defined by u0.

In this paper, the matrix W is constructed to satisfy joint position constraints (joint
limits and self-collision avoidance), which is discussed in Section 4.2. The vector u0 is
designated to locally maximize a proposed new manipulability measure for mobile manip-
ulators, as discussed in Section 4.1. To satisfy the joint velocity constraints, the particular
and homogeneous solutions are analyzed. Because the particular solution is in charge
of following the end-effector’s task, it cannot be modified. On the other hand, the ho-
mogeneous solution can be varied to satisfy the joint velocity constraints. Furthermore,
the homogeneous solution must also consider the admissible velocity commands with
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respect to the nonholonomic constraints [7]. Taking these two points into account, we
define vector u0 as

u0 = ±α(t)β(t)ST(q)∇qF(q), (11)

where α(t) is a scalar coefficient that is adjusted online to satisfy joint velocity limits
(Section 4.3.2), β(t) is a positive variation factor used to satisfy joint velocity boundary
constraints (Section 4.3.1), S(q) is defined in (4), and ∇qF(q) is the gradient of the objective
function F(q) : R3+na → R, which is set to a manipulability measure. The product α(t)β(t)
is the step size of the gradient step ascent/descent, and the sign of u0 defines whether the
objective function F(q) will be maximized (+) or minimized (−).

Replacing (11) in (10), the final form of the proposed solution for u is:

u = up + α(t)β(t)uh,

with

up = W
1
2 J̄†

W ṙ,

uh = W
1
2 (I − J̄†

W J̄W)W
1
2 ST(q)∇qF(q),

(12)

where the positive sign for the gradient step descent has been used because we are inter-
ested in maximizing the manipulability. Notice that when the sign of α(t) is positive, the
objective function F(q) is maximized. However, for some cases, α(t) could be negative for
short periods of time to respect joint velocity limits, as explained in Section 4.3.

4. Manipulability Maximization and Constraints Satisfaction

In this section, the details for manipulability maximization are described, the weight-
ing matrix W is defined so that it penalizes the joint movement to avoid both joint limits
and self-collisions, and a scheme to satisfy joint velocity limits as well as joint velocity
boundary constraints is presented.

4.1. Manipulability Maximization

The term manipulability, introduced by Yoshikawa [12], describes the ability of a
robotic system to provide end-effector’s velocities in any direction for a given configuration.
The manipulability of wheeled mobile manipulators was studied in detail in [5]. There exist
different algebraic measures to characterize the manipulability of a robotic system [5,12–14].
The most widely used measure, known as the manipulability measure and noted here
as Ω, is given by Ω = σ1σ2 . . . σm, where σ1, σ2, . . . , σm are the singular values of the
system Jacobian J(q). Therefore, Ω is the manipulability measure for system configuration
q. The measure Ω is proportional to the volume of the manipulability ellipsoid [12].
Furthermore, it can be shown that Ω has the following property:

Ω =
√

det(J(q)JT(q)) (13)

By definition, Ω ≥ 0, and Ω = 0 if and only if rank(J(q)) < m. The elements of ∇qΩ

are given mathematically by

∂Ω
∂qi

= −1
2

Ω · trace

((
J JT)−1

(
∂J
∂qi

JT + J
(

∂J
∂qi

)T))
,

with i = 1, 2, . . . , n.

(14)

As mentioned before, we are not only concerned with improving the manipulability of
the whole system but also that of the arm alone. In this work, we present a new manipulabil-
ity measure that better expresses the manipulability of a mobile manipulator, because both
the manipulability of the arm and the whole system are intrinsically considered.
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Let us define the manipulability of the whole system, denoted as Ωp+a, and the manip-
ulability of the robot arm, denoted as Ωa, to be the measures obtained using Equation (13)
with the Jacobians J̄ and Ja from Equation (5), respectively. Notice that by using the reduced
Jacobian J̄, the platform’s nonholonomic constraints are included in the manipulability mea-
sure of the whole system. Our proposed manipulability measure for mobile manipulators
is defined as

ΩMM = Ω̂p+aΩ̂a, (15)

where Ω̂p+a and Ω̂a are the normalized manipulabilities computed by dividing them by
their respective maximum values over all the possible configurations of the system:

Ω̂p+a =
Ωp+a

Ωp+amax

and Ω̂a =
Ωa

Ωamax

.

The normalized values are used in our proposed measure to make sure that all its
components are in the same scale. This normalization also makes the measures invariant
to units and chosen reference frame [14,15].

Notice that J̄ =
[

Jp Ja
]
S(q) ∈ Rm×δm in (5) indicates the relation between J̄ and Ja.

Hence, the singular values of J̄ are not necessarily the same as the singular values of Ja.
There are cases where Ja is rank-deficient while J̄ is not. For these cases, the whole system
manipulability Ωp+a 6= 0 even though the arm is in a singular configuration. Therefore,
the measure Ωp+a fails to express the ability of the arm alone to provide end-effector’s
velocities in any direction. As a result, maximizing the measure Ωp+a might result in the
poor manipulability of the arm, even though the manipulability of the whole system is
preserved or improved. This is an issue that has been discussed in the literature [6,10].

On the other hand, our proposed measure ΩMM is defined by the product of the
singular values of J̄ and Ja, i.e., the product of the manipulability ellipsoids of J̄ and
Ja. Therefore, it encapsulates the abilities of the whole system and the arm to provide
end-effector’s velocities in any direction. If any of the singular values of Ja or J̄ is zero,
e.g., the arm is in a singularity, the measure ΩMM = 0. Hence, the measure ΩMM is a
better representation of the manipulability of mobile manipulators because it intrinsically
considers the manipulability of the arm and the whole system.

Using the product rule, the gradient of ΩMM is calculated as

∇qΩMM =
1

Ωp+amax
Ωamax

(Ωa∇qΩp+a + Ωp+a∇qΩa). (16)

Analyzing the right hand side of (16), it is clear that the manipulability of the arm
subsystem affects the gradient of the whole system. Likewise, the manipulability of the
whole system affects the gradient of the arm subsystem. Therefore, maximizing ΩMM,
i.e., setting ∇qF(q) = ∇qΩMM in our solution (12) will simultaneously improve the
manipulabilities of the arm and the whole system. In the experiments section (Section 5),
a comparison is performed among the different objective functions for manipulability
maximization to demonstrate the advantages of the proposed manipulability measure.

The reader may have noticed that because our proposed motion planning solution
(12) multiplies W

1
2 with the gradient ∇qF(q), the direction of the original gradient that

maximizes the manipulability is changed. However, as our goal is to push the system
away from singularities by gradually improving the manipulability rather than finding the
shortest path towards its maximum value, it is sufficient to prove that the weighted vector
W

1
2 u0 also points in a direction that increases the manipulability as the unweighted gradient

u0 does. Since W
1
2 is positive semidefinite, we have uT

0 W
1
2 u0 ≥ 0 for all u0. This implies

that the weighted gradient also points in a direction that increases the manipulability.
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4.2. Joint Position Constraints

Joint position constraints are common requirements in the motion planning of robotic
systems. In this work, joint limits and self-collision avoidance are considered. These
constraints are included in the proposed solution (12) using matrix W, which we define as
the product of three terms as follows:

W = WJlimWColT−1
q ,

where WJlim is the weighting matrix for joint limits constraints, WCol is the weighting
matrix for self-collision avoidance, and the matrix Tq (known as the Jacobian normalization
matrix), is used to normalize the velocity commands u as follows [12]:

Tq = diag
(

1
u1max

,
1

u2max

, . . . ,
1

uδmmax

)
,

where uimax is the ith maximum velocity command. The weighting of this matrix handles
the differences in units and scales among all the joints.

For mobile manipulators, matrices WJlim and WCol should be constructed only consid-
ering the arm. This is because there is no limit to the movement of the mobile platform
along each degree of freedom. Likewise, the movement of the mobile platform cannot be
used to avoid self-collisions because the platform moves the base of the arm. Therefore,
in this work, the structure of both weighting matrices was designed to take this into account.
To simplify the presentation, let Wg represent either WJlim or WCol . Wg is a diagonal δm× δm
matrix with the following form:

Wg =

[
I2 0
0 Wa

]
,

where I2 is an identity matrix of size 2 (for the case of the differential drive) and Wa is a
diagonal na × na matrix given by

Wa =


w1 0 0 . . . 0
0 w2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . wna

,

where each element of the diagonal matrix Wa is defined using a performance criterion H(q).
In the next two subsections, two separate criterion functions for joint limits and self-

collision avoidance are defined. These two criterion functions have common properties.
The values of H(q) and |∂H(q)/∂qi| become very large as the constraints are violated.
When constructing matrix Wa using these criterion functions, the joint movement towards
or away from a constraint must be contemplated [11,16]. Under this consideration, the ele-
ments of Wa are given by

wi =


1

1+
∣∣∣∂H(q)

∂qi

∣∣∣ , if ∆
∣∣∣∂H(q)

∂qi

∣∣∣ > 0

1, if ∆
∣∣∣∂H(q)

∂qi

∣∣∣ ≤ 0,

with i = 1, 2, . . . , na,

(17)

where ∆|∂H(q)/∂qi| is the change rate of |∂H(q)/∂qi| with respect to time, and is numer-
ically calculated during implementation. With this choice, a value of one is assigned to
wi, indicating that no penalty is imposed on the ith joint, if the ith joint is not moving
(∆|∂H(q)/∂qi| = 0), or it moves away from a constraint (∆|∂H(q)/∂qi| < 0). On the other
hand, wi tends towards zero if the movement of the ith joint gets closer to a constraint.
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Hence, the element wi penalizes the movement of the ith joint by means of (12) if it moves
towards a constraint and stops the joint if it is too close to it.

4.2.1. Joint Limits Avoidance

To construct the weighting matrix for joint limits avoidance WJlim, a well-known
criterion function [17] is used:

HJlim(q) =
na

∑
i=1

1
4γ

(q+i − q−i )
2

(q+i − qi)(qi − q−i )
,

where qi is the ith joint angle, q−i and q+i are its lower and upper limits, respectively, and γ is
a scalar constant that adjusts the rate of change of HJlim(q). This criterion function increases
as the joint gets closer to its limits and goes to infinity at the joint bounds. The elements of
the gradient of this function are given by

∂HJlim(q)
∂qi

=
1

4γ

(q+i − q−i )
2(2qi − q+i − q−i )

(q+i − qi)2(qi − q−i )
2

. (18)

Each element ∂HJlim(q)/∂qi is equal to zero if qi is at the middle of its joint range and
goes to infinity at either limit.

4.2.2. Self-Collision Avoidance

To construct the weighting matrix for self-collision avoidance WCol , an exponential
function of the distance between two collision points is used as the criterion function [16]:

HCol(q) = ρe−c1d(q)d(q)−c2 ,

where ρ > 0 controls the amplitude of HCol(q), and c1, c2 > 0 control the rate of decay. This
function has a maximum value when the distance d between two links is zero, and expo-
nentially decreases as this distance increases. The distance between two collision points is
defined as d(q) = ‖pl1 − pl2‖2, where pl1 and pl2 represent the position vectors, referred
to a common frame, of the collision points on two nonadjacent links. pl1 and pl2 can be
calculated from the configuration vector q through forward kinematics.

The elements of the gradient of HCol(q) are given by

∂HCol(q)
∂q

=
∂HCol(q)

∂d
∂d
∂q

, (19)

where each of the partial derivatives is given by

∂HCol(q)
∂d

= −ρe−c1dd−c2(c2d−1 + c1), (20)

∂d
∂q

=
1
d
[JT

1 (pl1 − pl2) + JT
2 (pl2 − pl1)], (21)

where J1 and J2 are the associated Jacobian matrices of pl1 and pl2, respectively. The col-
lision points are chosen from the surface of the links for which the collision distance is
computed. For the case of potential collisions between the arm and the mobile platform,
pl2 is picked as a point fixed on the surface of the mobile platform (pl2 does not move with
respect to the arm). By using a frame attached to the mobile platform as the common frame,
and selecting pl2 as a fixed point, (21) reduces to:

∂d
∂q

=
1
d
[JT

1 (pl1 − pl2)]. (22)

When constructing matrix Wa, the partial derivative ∂d/∂q in (19) was calculated using
(21) or (22) depending on whether the collision is evaluated between two moving links or
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a moving link and a fixed one, respectively. Each element ∂H(q)/∂qi tends toward zero as
the distance between two evaluated collision points increases, and tends towards infinity
as the distance gets closer to zero. Because d = 0 is not admissible, i.e., the two links are in
contact, the chosen points must contemplate a threshold.

Multiple pairs of potential collision points might exist in a robotic system. Let Nc be
the number of potential collision point pairs that are evaluated. A self-collision matrix
WColj

is constructed for each distance dj, with j = 1, 2, . . . , Nc. The weighting matrix that
includes the contribution of each evaluated pair is finally obtained by

WCol =
Nc

∏
j=1

WColj
. (23)

With this combination, the ith diagonal element of the matrix WCol penalizes the
movement of the ith joint. In contrast with the combination of collision weighting matrices
proposed in [16], the combination (23) guarantees that the joints are stopped if they attempt
to decrease any of the collision distances dj to a value of zero. Since some potential
collisions are taken care of by the joint limits, the number of points considered in (23) is
small, and therefore the computation cost can be relieved.

4.3. Joint Velocity Constraints

In a task space trajectory tracking problem, joint constraints at the velocity level are
as important as joint limits and self-collision avoidance. These constraints include joint
velocity boundary constraints and joint velocity limits. Satisfying joint velocity boundary
constraints is a requirement for the end-effector to stop at the beginning and end of the
task, i.e., the initial and final joint velocities must be zero. Joint velocity limits must be
considered because the motion planning algorithm might generate joint velocity commands
that are out of bounds in order to follow the task space velocity profile. These unfeasible
velocities cannot be achieved by the real joints. Therefore, the trajectory tracking will fail if
the joint velocity limits are not respected.

4.3.1. Joint Velocity Boundary Constraints

To satisfy joint velocity boundary constraints, the initial and final joint velocities
must be zero. up in (12) is directly associated with the end-effector’s task; therefore, it
implicitly satisfies the boundary constraints. However, uh in (12) does not necessarily
satisfy them, because the manipulability maximization task is dependent on the mobile
manipulator configuration at the initial and final poses. In this work, we propose using a
time-varying self-motion magnitude to handle these constraints. The objective is to avoid
non-zero values of uh only at the beginning and end of the trajectory. With this in mind, it
is proposed to set the variation factor β(t) to increase from zero to one at the beginning of
the trajectory, maintain a value of one for most of the trajectory, and then decrease from
one to zero at the end of the trajectory.

Let tb be the blending time for β(t) to increase from zero to one, and t f be the trajectory
execution time. To achieve a smooth transition, a 5th order polynomial β1(t) = a0 +
a1t + a2t2 + a3t3 + a4t4 + a5t5 is used when t < tb. The decrement in β(t) at the end
of the trajectory, when t > t f − tb, is the complement of the polynomial β1(t) and is
defined by β2(t) = 1− β1(t− t f + tb). By imposing the conditions β1(0) = 0, β1(tb) = 1,
β̇1(0) = 0, β̇1(tb) = 0, β̈1(0) = 0, β̈1(tb) = 0, the values of the coefficient of β1(t) are found.
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After finding the polynomial coefficients, the self-motion magnitude variation factor is
given by

β(t) =



a3t3 + a4t4 + a5t5, if t < tb

1, if tb ≤ t ≤ t f − tb
1− (a3(t− t f + tb)

3+

a4(t− t f + tb)
4+

a5(t− t f + tb)
5)

if t > t f − tb,
(24)

with:
a0 = 0, a1 = 0, a2 = 0,

a3 =
10
t3
b

, a4 = −15
t4
b

, a5 =
6
t5
b

,

The blending time tb is chosen by the user. Figure 3 shows the shape of β(t) for
t f = 15(s), tb = 2.5(s).

Figure 3. Example shape of self-motion variation factor β.

4.3.2. Joint Velocity Limits

To satisfy joint velocity limits, the maximum magnitude of self-motion is determined
such that the velocity limit for each joint is not violated [18], namely:

|uip(t) + αβuih(t)| ≤ u+
i , (25)

where u+
i is the ith joint velocity limit with i ∈ 1, 2, . . . , δm. Therefore, to avoid exceeding

the joint velocity limits, α(t) must be selected such that it satisfies (25). The upper and
lower limits of α(t) can be found using this equation. For each joint, it can be shown that
the maximum and minimum values of α(t), denoted by αimax (t) and αimin(t), respectively,
are given by

αimax (t) = max
(u+

i − uip(t)
β(t)uih(t)

,
−u+

i − uip(t)
β(t)uih(t)

)
, (26)

αimin(t) = min
(u+

i − uip(t)
β(t)uih(t)

,
−u+

i − uip(t)
β(t)uih(t)

)
. (27)

Then, αmax(t) and αmin(t) for all the joints are:

αmax(t) = min
(
α1max (t), α2max (t), . . . , αδmmax (t)

)
, (28)

αmin(t) = max
(
α1min(t), α2min(t), . . . , αδmmin(t)

)
, (29)

where αmax(t) is the self-motion magnitude limit. In [18], the maximum value of αmax(t)
and minimum value of αmin(t) are calculated for the whole trajectory, and the upper bound
of αmax(t) or lower bound of αmin(t) is used as the step size to take advantage of the
maximum admissible velocities. In our approach, a suitable initial value αs is selected
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through experimentation and the upper and lower limits of α are calculated for each time t.
The value of α at time t is then given by

α(t) =


αmax(t), if αs > αmax(t),
αmin(t), if αs < αmin(t),
αs, otherwise.

(30)

This technique, in contrast with using the maximum/minimum self-motion for the
entire trajectory, prevents sudden joint accelerations due to the use of maximum velocities
in every step. Note that for some cases α(t) may be negative if αmax(t) is negative, which
means that the joint velocity limits cannot be satisfied without decreasing the manipulability
of the system. The task can be executed as long as the system is still away from any
singularity. The reader may have noticed that β(t) is in the denominator of (26) and (27),
and as shown in Section 4.3.1, β(t) is zero at the beginning and the end of the trajectory.
For these two cases, αmin = −∞ and αmax = ∞, but this does not cause instability in the
system because by following (30), the value of α(t) is set to αs.

It is also possible to detect whether a task can be accomplished or not by using the
limits of α(t). If the inequality αmax(t) < αmin(t) is true, then a suitable value of α(t) which
avoids the joint velocity limits does not exist, because even the particular solution will
violate them. In other words, the given task space trajectory cannot be accomplished
without violating at least one of the joint velocity limits. For these situations, the task space
trajectory must be replanned with a longer execution time t f or with lower end-effector’s
maximum velocities.

5. Experiments

Experiments were carried out to verify the efficacy of our scheme to solve the motion
planning problem for trajectory tracking at the kinematic level. In this section, the results
for the tracking of two trajectories, a Lissajous trajectory (see Section 5.4), and an elliptic
trajectory (see Section 5.5), are analyzed. These trajectories were picked to demonstrate
the ability of our approach to comply with the different constraints introduced in this
manuscript while improving the manipulabilities of the whole system and the robot arm.
For the Lissajous trajectory, a comparison of different objective functions for manipulability
maximization is made to highlight the advantages of the proposed manipulability measure
for mobile manipulators.

The experiments were performed using a 10-DOF NMM developed by the Industrial
Technology Research Institute (ITRI), as shown in Figure 4. This NMM is composed of
a differential-drive wheeled mobile platform, a prismatic joint mounted on top of the
platform, and a Universal Robots UR5 6-DOF robotic arm attached to the prismatic joint.
From this point forward, the UR5 arm’s joints are denoted as qai with i = 1, 2, . . . , 6 and the
prismatic joint as zpj. The respective Denavit–Hartenberg (DH) parameters are shown in
Table 1. The joint limits and joint velocity limits are shown in Table 2.

Figure 4. Nonholonomic mobile manipulator used for the experiments.
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Table 1. D-H parameters.

Joint a (m) α (rad) d (m) θ (rad)

mob. plat. 0 0 0 θp
zpj −0.049 0 zpj+0.5562 0
qa1 0 π/2 0.08916 qa1 + π
qa2 −0.425 0 0 qa2
qa3 −0.39225 0 0 qa3
qa4 0 π/2 0.1093 qa4
qa5 0 −π/2 0.09465 qa5
qa6 0 0 0.0823 qa6

Table 2. Joints physical constraints.

Joint qmin qmax umax

vp −∞ ∞ 0.3 (m/s)
ωp −∞ ∞ π/2 (rad/s)
zpj 0 (m) 0.25 (m) 0.025 (m/s)
qa1 −1.7453 (rad) 0.0175 (rad) π (rad/s)
qa2 −π/2 (rad) 0.4363 (rad) π (rad/s)
qa3 0 (rad) π (rad) π (rad/s)
qa4 −2π (rad) 2π (rad) π (rad/s)
qa5 −2π (rad) 2π (rad) π (rad/s)
qa6 −2π (rad) 2π (rad) π (rad/s)

The Jacobian of the arm Ja used for calculation of Ω̂a in (15) was constructed only
using the UR5 arm without the prismatic joint. If the prismatic joint were included, the arm
would be allowed to stretch for most tasks since it would always be able to move the
end-effector vertically using the prismatic joint, i.e., the manipulability is not affected when
the arm is horizontally stretched. Stretching the arm for most tasks is an undesirable
behavior, and therefore, the manipulability maximization of the UR5 arm without the
prismatic joint is a suitable selection. The Jacobian Ja is calculated with respect to the frame
XaYaZa shown in Figure 4.

Due to the lack of a reliable positioning system, the odometry of the wheels was
used in the experiments to compute the position and orientation of the mobile platform,
and the forward kinematics were used to compute the end-effector’s pose, which in turn
was fed back to the motion planning algorithm. Therefore, the errors presented in the
experiments are not the real-world errors, but the errors in the trajectory in which it
is assumed that a reliable positioning system exists. Furthermore, as mentioned in the
introduction section, the scope of this work is the motion planning of NMM for trajectory
tracking at the kinematic level; therefore, the objective of the presented experiments is to
validate the proposed algorithm at the kinematic level. Problems inherent to the dynamic
behavior of the system, including vibrations of the mechanical structure, friction from the
ground, etc., have an impact on the real end-effector tracking error, but they are out of
scope of this paper and not considered in the algorithm. For these reasons, the simulation
results of the position and orientation errors along the trajectory are also shown in this
manuscript to highlight the performance of our motion planning algorithm.

An important remark is that the system vibrations due to the NMM mechanical
structure greatly affected the performance of the motion planning algorithm when the
system was close to its joint limits or self-collision constraints. This behavior was not
observed when performing the simulations. To address this issue, a moving average filter
with a window size of five was used to filter the gradients of the criterion functions for
joint limits avoidance and self-collision avoidance. This filter diminished the impact of
such vibrations on the motion planning algorithm.
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5.1. Orientation Error for 6-DOF Tasks

In all the experiments, 6-DOF tasks were performed. For a 6-DOF task (m = 6),
where the position and orientation of the end-effector are considered, the expression
rd − r (mentioned in Section 3) has a specific definition that depends on the orientation
representation, i.e., r̃ = rd − r does not hold for all orientation representations [1]. In this
work, unit quaternions are used to describe the end-effector’s orientation because of their
efficiency and nonsingular representation for all orientations [1,19–21].

A unit quaternion Q = [w + xi + yj + zk] is represented in scalar-vector form by
Q = {s, v} with s ∈ R and v ∈ R3, where s and v are called the scalar and vector elements
of Q, respectively. The desired and current pose are defined using unit quaternions for
orientation as rd =

[
Pd Qd

]T and rc =
[
Pc Qc

]T , where Pd =
[
xd, yd, zd

]
and

Pc =
[
xc, yc, zc

]
are the desired position and current position, respectively, and Qd =

{sd, vd} and Qc = {sc, vc} are the desired orientation and current orientation, respectively.
The position error eP is defined as eP = Pd − Pc. The orientation error can be described in
terms of the quaternion ∆Q = {∆s, ∆v}, where [1]:

∆s = scsd − vT
d vc,

∆v = scvd − sdvc − vd × vc.
(31)

If the desired orientation and current orientation are aligned, i.e., with zero orientation
error, then ∆Q = {1, 0}. Consequently, it would be sufficient to define the orientation error
to be ∆v. It is also important to follow a convention for the sign of the quaternion because
Q = {s, v} and −Q = {−s,−v} represent the same orientation. A common convention is
to keep the scalar quaternion element positive. Take this into account and the orientation
error is defined as follows:

eO =

{
∆v, if ∆s ≥ 0
−∆v, if ∆s < 0.

(32)

Separating the position and orientation errors, the motion planning control law (6) is
rewritten as

ṙ = ṙd +

[
KP 0
0 KO

][
eP
eO

]
, (33)

where KP and KO are positive definite diagonal 3 × 3 matrices. Note that eO in (32) is not
an angle difference but its size represents the size of the orientation error that, as shown
in [1,22], can achieve the convergence of the orientation error.

5.2. Evaluated Self-Collision Pairs

The types of self-collision can be significantly reduced by setting the joint limits
properly. In addition, collisions among the first three links and the last three links can
be taken care of by maximizing the arm manipulability, because the 6-DOF manipulator
has poor manipulability if the arm is retracted to the point where the wrist is close to
the base of the arm. Therefore, only the self-collision between the arm and the mobile
platform needs consideration. Such a type of collision takes place when the elbow of the
manipulator collides with the top of the platform, or when the wrist collides with the front
of the platform. The distances associated with these potential self-collisions are depicted in
Figure 5. Given that the platform is fixed with respect to the arm, setting frame XpYpZp
(located on the center of the wheels’ axle, as shown in Figure 4) as the reference frame
allows to use (22), where pl1 is a point in the arm’s elbow or wrist, correspondingly, and pl2
is a fixed point with respect to XpYpZp:
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Figure 5. NMM’s self-collision distances.

As illustrated in Figure 5, to prevent the elbow collision, a collision pair between the
z component of pelbow with respect to frame XpYpZp and a point located at 0.5 (m) from
the origin of frame XpYpZp in the Zp direction is selected. The distance for this pair is
named delbow. To prevent wrist collision, a collision pair between the x component of pwrist
with respect to frame XpYpZp and a point located at 0.37 (m) from the origin of frame
XpYpZp in the Xp direction is selected. The distance for this pair is named dwrist. The wrist
collision is only evaluated if the wrist height hwrist, the z component of pwrist with respect
to frame XpYpZp, is lower than 0.5 (m), otherwise, its associated weighting collision matrix
is assigned to identity. This was done to avoid restricting the movement of the joints that
reduce dwrist when the wrist is above the top of the mobile platform. All these parameters
were chosen based on the physical dimensions of the NMM, and the second point in each
of the collision pairs was selected so that when delbow and dwrist are zero, a gap still exists
between the potentially colliding links.

5.3. Common Parameters of the Simulations and Experiments

For all the experiments, the selected feedback gain matrices in (33) are KP = 10I3×3
and KO = 20I3×3, where I is an identity matrix. The initial value of α(t) in (30) is set
to αs = 3, and the blending time is set to tb = 0.2t f for the variation factor β(t) in (24).
The parameters for self-collision avoidance in (20) are ρ = 1× 10−3, c1 = 50 and c2 = 1.
The starting configuration of the robot arm is qa =

[
0 −80 110 −120 −90 0

]
(◦).

Furthermore, a sampling time ts = 0.02(s) was used for the simulations and experiments.

5.4. Lissajous Trajectory

The Lissajous trajectory was picked to demonstrate the ability of the proposed ap-
proach to track a trajectory for which the nonholonomic constraints greatly affect the
movement of the system. The proposed Lissajous trajectory is defined by

rd(t) =
[

Pd(t)
Qd(t)

]
=


x0
y0
z0
Q0

+


A cos(s(t) + π/2)

B cos(2(s(t) + π/2) + π/2)
C cos(2s(t))− C

0

,

where [x0, y0, z0]
T is the end-effector’s starting position, s(t) is the trajectory timing variable,

and A, B and C define the size of the path. The orientation is set to be the same for the entire
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trajectory, i.e., Q(t) = Q0. Notice that this is a 6-DOF trajectory because the orientation is
constrained for the entire trajectory.

The starting configurations of the mobile platform and prismatic joint for this trajectory
were set to xp = −0.1 (m), yp = −0.13 (m), θp = −90(◦) and zpj = 0.2 (m). With this con-
figuration, the end-effector’s initial pose is given by P0 =

[
−0.009 −0.6491 0.9884

]
(m)

and Q0 = {0, 0i + 1j + 0k}. A trapezoidal velocity profile [1] was used for the derivative
of the timing variable ṡ(t). The parameters for the path size were set to A = 1.3 (m),
B = 1.3 (m) and C = 0.27 (m), and an execution time t f = 64(s) was chosen. Figure 6a,b
show snapshots of the NMM’s movement along the Lissajous trajectory, in simulations and
experiments, respectively.

Figure 7 compares the trajectory tracking results between the simulation and the
experiment. In the simulation, the position and orientation errors are kept small during the
whole trajectory, as shown in Figure 7b,c. This demonstrates the good tracking performance
at the kinematic level of our proposed motion planning algorithm. The observed larger
errors in the experiments, as exhibited in Figure 7e,f, are due to the vibrations of the system
during the experiments. Furthermore, as mentioned before, the control of the dynamic
behavior of the system is beyond the scope of this work. Nevertheless, the position errors
in the experiments are kept below 2× 10−3 (m) and the orientation errors below 1.5× 10−3.
Likewise, we observe that the obtained trajectories in the simulation (Figure 7a) and the
experiment (Figure 7d) are fairly similar.

Figure 8 illustrates the experiment results. Note that the negative joint velocity limit
−u+

i is denoted as u−i in the pertinent figures. The manipulabilities of both the arm and
the complete system are kept high during the execution of the trajectory, and their final
values are higher than at the start of the trajectory, as shown in Figure 8b. It is important
to remark that there are no potential self-collisions during the execution of this trajectory.
Even though dwrist is negative at the beginning of the trajectory, as shown in Figure 8c,
the wrist is above the top of the mobile platform and therefore the joint movements were
not restricted, as explained in Section 5.2.

(a)

(b)

Figure 6. Snapshots of the NMM’s motion for the Lissajous trajectory tracking: (a) simulations; and (b) experiments.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Tracking performance comparison between simulations and experiments for the Lissajous trajectory. End-effector’s
trajectory in simulations (a) and experiments (d). Position errors in simulations (b) and experiments (e). Orientation errors
in simulations (c) and experiments (f). Notice that the position and orientation errors, panels (b,c), respectively, are small in
the simulations. In addition, notice that the trajectories in simulations (a) and experiments (b) are quite similar. The reason
for the larger errors obtained in the experiments (panel (e,f)) are discussed in Section 5.4.

Figure 8d–i demonstrate the fulfillment of the joint limits and joint velocity boundary
constraints. All the joints are kept within their corresponding limits. Notice that the
movement of qa1, Figure 8f, is restricted in the time interval t = (29, 32)(s) to respect its
lower limit. This time interval corresponds to the trajectory section between snapshots
number three and four in both Figure 6a,b. For this section of the trajectory, the movement
of the end-effector in the XY plane is taken care of by the platform due to the restriction
imposed to qa1. We observe in Figure 8e that the velocity limits of the prismatic joint are
respected. The remaining joints do not reach their respective limits as shown in Figure 8f–h.
Furthermore, as seen in Figure 8d,e,i, the velocity profiles for all the joints are smooth and
satisfy the boundary constraints, i.e., the initial and final joint velocities are equal to zero.

To demonstrate the advantages of the proposed manipulability measure ΩMM, a com-
parison of the manipulability maximization results using different objective functions
in simulations of the Lissajous trajectory tracking is shown in Figure 9. Here, a task is
considered as failed when none of the constraints are satisfied, and thus the simulation is
stopped. These results were obtained by using the same parameters shown in Section 5.3
with the only change being the objective function.

The Lissajous trajectory tracking fails when the objective function is set to maximize
the manipulability of the arm, i.e., F(q) = Ω̂a, as shown in Figure 9a. The manipulabilities
of both the arm and the whole system start a fast decay after t = 44s. This decrement in
the manipulabilities is the result of restricting the homogeneous solution to respect the
joint velocity limits. Consequently, the arm manipulability is not maximized anymore and
the system moves towards singularity, ultimately failing the task. The results of setting
the objective function to the manipulability of the whole system, i.e., F(q) = Ω̂p+a, are
shown in Figure 9b. In this case, the task succeeds, however, the manipulability of the arm
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deteriorates, and at the end of the trajectory has a value close to zero. This is the behavior
discussed in previous studies [6,10].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Experiment results for the Lissajous trajectory tracking: (a) mobile platform’s trajectory; (b) normalized manipu-
lability measures; (c) self-collision distances; (d) mobile platform’s velocity commands; (e) prismatic joint’s position and
velocity; (f–h) arm’s joint positions; and (i) arm’s joint velocities. Notice that all the joint limits and velocity limits are
respected (panels (d–i)). Furthermore, the manipulabilities of both the arm and the whole system are improved (panel (b)).
See Section 5.4 for a detailed discussion of this figure.

Figure 9c shows the results of maximizing a linear combination of the manipulabilities
of the arm and the whole system, i.e., F(q) = 0.5Ω̂p+a + 0.5Ω̂a. Figure 9d shows the
results of maximizing the proposed manipulability measure for mobile manipulators,
i.e., F(q) = ΩMM from Equation (15). Both objective functions preserve the manipulability
of the arm. However, it is clear that maximizing the proposed measure has better results
overall. First, the manipulability of the arm is higher along the trajectory in Figure 9d
compared to the arm manipulability obtained with the linear combination in Figure 9c.
Secondly, the obtained final manipulabilities have improved with respect to the initial ones
in Figure 9d. On the other hand, the linear combination improves the manipulability of the
whole system, but not that of the arm with respect to the values at the start of the trajectory,
as shown in Figure 9c.
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(a) (b)

(c) (d)

Figure 9. Lissajous trajectory’s comparison of objective functions for manipulability maximization in simulations: (a) maxi-
mization of the manipulability of the arm; (b) maximization of the manipulability of the whole system; (c) maximization of
a linear combination of the manipulability of the arm and the whole system; and (d) maximization of the proposed mobile
manipulator manipulability measure. This figure demonstrates the advantages of the manipulability measure for mobile
manipulators (panel (d)) presented in Section 4.1. See Section 5.4 for a detailed discussion of this figure.

5.5. Elliptic Trajectory

The elliptic trajectory was picked to demonstrate the ability of the proposed approach
to comply with joint velocity limits and to prevent self-collisions. This trajectory consists
of moving the end-effector from an initial pose r0 =

[
P0 Q0

]T to a desired final pose

rd =
[
Pd Qd

]T using an elliptic path. The trajectory position is defined by

Pd(t) =

 A cos(s(t)) + cx
B sin(s(t)) + cy

m(s(t)− s0) + z0

,

where A, B, cx, cy and s0 are calculated using the XY coordinates of P0 and Pd, such that the
elliptic path is centered at the closest point to the origin, while it covers a 90◦ angle between
the start and end points. The trajectory’s Z coordinate follows a straight line between the
points (z0, s0) and (zd, sd), where z0 and zd are the Z coordinates of P0 and Pd, respectively;
s0 and sd are the starting and ending angles of the elliptic path, respectively; and m in the
equation above is the slope of this line. A fifth-order polynomial profile [1] was used for
the timing variable s(t). The orientations and rotational velocities along the trajectory were
computed using quaternion polynomials [23]. This technique has two main advantages: a
smooth velocity profile is obtained, and the rotational velocities and accelerations in the
task space are included as boundary constraints.
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The starting configuration of the mobile platform and prismatic joint for this trajectory
was set to xp = −1.3 (m), yp = 0.56 (m), θp = 0(◦), and zpj = 0.24 (m). With this
configuration, the end-effector’s initial pose is given by P0 =

[
−0.781 0.669 1.028

]
(m)

and Q0 = {0, 0.7071i− 0.7071j + 0k}. The final pose was selected to have position Pd =[
1.55 −1.0 0.26

]
(m) and orientation Qd = {0.2706, 0.6533i + 0.6533j− 0.2706k}, and an

execution time t f = 20(s) was chosen. Figure 10a,b show snapshots of the NMM’s
movement along the elliptic trajectory, in simulations and experiments, respectively.

Figure 11 compares the trajectory tracking results between the simulation and the ex-
periment. The small position and orientation errors obtained in the simulation (Figure 11b,c)
again demonstrate the good tracking performance of the proposed approach. In the experi-
ment, the position errors are kept below 1.5× 10−3 (m) and the orientation errors are kept
below 1× 10−3 as depicted in Figure 11e,f. Once again, the vibrations of the system played
a role in the larger errors seen in the experiment.

(a)

(b)

Figure 10. Snapshots of the NMM’s motion for the elliptic trajectory tracking: (a) simulations; and (b) experiments.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Tracking performance comparison between simulations and experiments for elliptic trajectory. End-effector’s
trajectory in simulations (a) and experiments (d). Position errors in simulations (b) and experiments (e). Orientation errors
in simulations (c) and experiments (f). Notice that the position and orientation errors, panels (b,c), respectively, are small in
the simulations. In addition, notice that the trajectories in simulations (a) and experiments (b) are quite similar. The reason
for the larger errors obtained in the experiments (panel (e,f)) are discussed in Section 5.5.

Figure 12 illustrates the experiment results. The manipulabilities of both the arm and
the complete system are again improved at the end of the trajectory compared to the initial
configuration, as shown in Figure 12b. However, we notice how both manipulabilities
decreased during the time interval t = (8, 15)(s). This behavior is due to the value of α(t)
(manipulability maximization step size) being negative for this span of time in order to
respect the joint velocity limits, as discussed in Section 4.3.2. Notice that vp (Figure 12d)
and żpj (Figure 12e) are kept at their maximum values during this span of time. It would
not be possible to track this particular trajectory while respecting the joint velocity limits
without stretching the arm; hence, the manipulabilities of the complete system and the
arm decreased.

We observe in Figure 12c how the self-collision distance of the elbow gets close to zero.
In this trajectory, the elbow needs to get close to the platform in order for the end-effector
to track the desired trajectory. The motion planning algorithm gradually stopped the
elbow to prevent the collision with the platform, as shown by the slow decay of delbow.
To achieve this, the movement of the prismatic joint was restricted, as shown in Figure 12e.
The wrist also moves towards the front of the platform, as shown by the decrement in dwrist
in Figure 12c. This potential self-collision is also prevented by limiting the movement of
qa2 and qa3, as shown in Figure 12f,g.

Figure 12d–i show that the joint limits, joint velocity limits and joint velocity boundary
constraints are also satisfied. All the joints were kept within their respective limits, as
shown in Figure 12e–h. As depicted in Figure 12d,e, the platform’s linear velocity and the
prismatic joint’s velocity are kept within their limits. Once more, the velocity profiles are
smooth and the initial and final velocities for all the joints are zero.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Experiment results for the elliptic trajectory tracking: (a) mobile platform’s trajectory; (b) normalized manipulabil-
ity measures; (c) self-collision distance; (d) mobile platform’s velocity commands; (e) prismatic joint’s position and velocity;
(f–h) arm’s joint positions; (i) arm’s joint velocities. Notice that all the joint limits and velocity limits are respected (panels
(d–i)). The potential self-collisions described in Section 5.2 are prevented (panel (c)). Furthermore, the manipulabilities of
both the arm and the whole system are improved (panel (b)). See Section 5.5 for a detailed discussion of this figure.

6. Discussion

A scheme was proposed to solve the motion planning of NMMs considering joint
limits, joint velocity limits, joint velocity boundary constraints, and self-collision avoidance
while maximizing the manipulabilities of both the robot arm and the whole system.

The proposed solution uses a weighted input velocity vector and a weighted Jacobian
to penalize the movement of joints that get close to a position constraint. A proposed
quadratic cost function is minimized when solving the motion planning problem for
redundant NMMs. This cost function includes a secondary task to be satisfied that is also
weighted to comply with the position constraints. The maximization of an introduced
manipulability measure for mobile manipulators is used as the secondary task to push
the system away from singularities. In the experiments section, it is demonstrated that
maximizing this new measure simultaneously improves the manipulability of the whole
system and that of the manipulator alone.

This work focuses on the motion planning for trajectory tracking at the kinematic
level, which must not only comply with joint position constraints, but must also respect
joint velocity constraints and joint velocity boundary constraints. Joint velocity boundary
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constraints are satisfied by varying the magnitude of the homogeneous solution at the start
and end of the trajectory. The manipulability maximization at these points is not necessarily
zero; hence, using an adequate variation in the magnitude of self-motion is needed. Joint
velocity limits are satisfied by evaluating the maximum allowable self-motion for each
joint. Using this information, the step size of the gradient ascent/descent is limited when
required, and consequently, the joint velocity limits are not exceeded.

The experiments for 6-DOF trajectories were conducted to verify the efficacy of the
proposed scheme. The results demonstrate that the proposed approach can solve the
motion planning problem for NMMs to perform trajectory tracking at the kinematic level
while considering the constraints required for real implementation including manipulation
capability preservation or improvement.

The experiments designed in Section 5 consider an open environment without ob-
stacles, because this is the scope of our manuscript. However, the proposed solution can
be extended to prevent collisions with obstacles by including collision pairs between the
robot arm and these obstacles, using the same definitions as in Section 4.2.2. This will
penalize the movement of the arm’s joints that get closer to an obstacle in the environment.
Nevertheless, in the case of the platform, stopping it is not an efficient approach. In this
case, an additional task can be added to the solution to push the platform away from
the obstacles. One way to achieve this is by using a task priority scheme [24] using the
nullspace of the motion planning algorithm.

Even though our work focuses on NMMs, our approach can be effortlessly adapted
for use with holonomic mobile manipulators. Future work will focus on dynamic modeling
and controller design to deal with system vibrations and tire slip such that the tracking
errors of the system can be reduced.
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