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Abstract: This work addresses an efficient neural network (NN) representation for the phase-field
modeling of isotropic brittle fracture. In recent years, data-driven approaches, such as neural
networks, have become an active research field in mechanics. In this contribution, deep neural
networks—in particular, the feed-forward neural network (FFNN)—are utilized directly for the
development of the failure model. The verification and generalization of the trained models for
elasticity as well as fracture behavior are investigated by several representative numerical examples
under different loading conditions. As an outcome, promising results close to the exact solutions
are produced.
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1. Introduction

Various discretization schemes exist in the literature for solving different science and
engineering problems, e.g., the finite element method (FEM) [1], isogeometric analysis
(IGA) [2], and the virtual element method (VEM) [3]. These modern element technologies
heavily depend on the availability of a “material model” that describes the nonlinear behavior
of the material as well as the structural failure. Such analytical and physically motivated
mathematical models lead to a pronounced computational cost. Thus, a computationally
less expensive approach has always been sought after. In this regard, one of the current
possibilities introduced in the literature is the employment of unconventional approaches,
such as data-driven models, to reduce the computation costs [4-9]. Machine learning, deep
learning, and neural networks are examples of such data-driven models that help to reduce
model complexity and may surpass conventional constitutive modeling [4,7,8,10,11].

Hitherto, a great number of machine learning motivated applications for modeling
the constitutive behavior of materials has been published in the literature; see [12-19] and
the citation therein.

1.1. Motivation and State of the Art

The inspiration for implementing machine learning approaches, more specifically,
artificial neural networks (ANNSs), to a wide range of engineering disciplines comes from
human and animal neural systems. These biologically inspired simulations, performed on
the computer, carry out many tasks, e.g., clustering, classification, and pattern recognition.
Recently, ANNs were satisfyingly used in voice/image recognition and robotics. In the
field of mechanics, novel investigations have been proposed in the literature. To this end,
the so-called self-learning finite element procedure introduced by Ghaboussi et al. [20] and
developed by Shin and Pande [21] can be mentioned as a very auspicious technique for the
ANNs training process. Further interesting reviews of possible applications of ANNs in
mechanics can be seen in [22-24], and their application for constitutive modeling in [25,26].

To incorporate data-driven models for solving computational mechanics problems
by taking over classical constitutive modeling, numerous approaches have been proposed
in the literature. This contribution represents the first steps toward deep learning (DL) as
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a subset of machine learning that extracts patterns from data, using neural networks for
inelastic solids.

1.2. Deep Learning (DL) Architectures

DL has many architectures, especially in mechanics, and research is focused mainly
on using the feed-forward neural network (FFNN), recurrent neural network (RNN),
and convolutional neural network (CNN). So far, applications of these types of neural
networks devoted to the field of mechanics can be seen in the recent works of [27-43]. A
detailed description of those approaches is summarized as follows:

e  FFNN is used in [44,45] to model the material behavior at the macroscale level, using
strains (as inputs) and stresses (as outputs). One main advantage of such a model is
that the training data required for the neural network can be directly acquired from
experimental data. On this basis, and for modeling a neural network that approximates
the non-linear behavior of history-dependent material models (e.g., plasticity, where
loading history is relevant), Ref. [46] proposed the incorporation of the strain from the
previous load step as an input data or feature for the neural network. Recently, a novel
method called the proper orthogonal decomposition feed forward neural network
(PODENN) was proposed by [47] for predicting the stress sequences in the case of
plasticity, which reduces the complexity of the model significantly by transforming
the stress sequence into multiple independent coefficient sequences.

. RNN is another type of neural network that uses the previous outputs as inputs, i.e.,
path-dependent scheme. Two different approaches, direct (black box) and graph-based
(physically-informed), were applied in [37] for modeling elastoplastic materials. In the
former case (black box approach), the total stress was predicted purely considering the
total strain history, whereas in the latter case (graph-based approach), besides using
the recurrent neural network to predict the path-dependent behavior, the feed forward
neural network is used to predict the path-independent responses, which may lead to
a more accurate prediction of stresses.

* CNNiis a special type of deep neural network that has recently become a dominant
method in computer vision. A CNN architecture consists of an input and an output
layer, as well as multiple hidden layers. These hidden layers typically consist of
convolutional layers, activation layers, pooling layers, and fully connected layers.
CNNis have been used in image classification, video classification, face recognition,
scene labeling, action recognition, image segmentation, and natural language trans-
lation, among others. In the work of [48] CNNs are used to quantitatively predict
the mechanical properties (i.e., stiffness, strength, and toughness) of a 2D checker-
board composed of two different phases (brittle and ductile). Following this line,
Ref. [49] introduced a graph convolutional deep neural network, incorporating the
non-Euclidean weighted graph data to predict the elastic response of materials with
complex microstructures. For recent works on CNNs, we refer to [50-52], and the
citations therein.

Within this work, a feed-forward neural network (FFNN) is employed to perform the
regression task of predicting stresses in the case of linear elastic material and also predicting
the elasticity in the fracture phase-field modeling of brittle solids along with the prediction
of the crack phase field. The objective of this paper is to incorporate neural network
models as constitutive models within the finite element applications for elasticity and
phase-field modeling of brittle fracture by combining the available tools. The efficiency of
the trained neural network is studied within the finite element analysis. The raw numerical
data acquired by FEM simulation are used to train the neural network model under
investigation. As an advantage of this contribution, the proposed method has the potential
for providing accurate and feasible approximations for various engineering applications.
To this end, promising results close to the exact solution are achieved, provided that the
training data set contains all the possible patterns as the target problem. Note that this
paper represents an initial contribution to the use of neural networks for solving fracture
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mechanics problems. Hence, as a starting point, the model performance is evaluated
through numerical results instead of real experimental data.

The paper is organized as follows: In Section 2 a brief overview of the neural network,
in particular the feed-forward neural network, for path-independent predictions is pre-
sented. In Section 3, the trained network is applied to learn the constitutive behavior of
elastic materials within the finite element application. Then, the trained model is used to
predict the elasticity in the phase-field fracture simulation in Section 4. Thereafter, the data
collection strategy for predicting phase-field fracture using a neural network model is
developed and validated in Section 5. Section 6 presents a summary and the outlook of
this work.

2. Theory of Neural Networks

A neural network (NN) algorithm can be described using a data set, a model, a loss-
function, and an optimization procedure. A data set refers to the total samples available
for the training, validation, and testing of an algorithm. It is commonly split into three
parts: training, validation, and test sets. The algorithm learns from the training set. Then,
a validation set is used to evaluate and optimize the learning algorithm. Finally, the testing
set acts as unseen data, and is used to test the trained algorithm. A model refers to the
structure that holds all information that describes the (learned function) trained algorithm.
A loss function or objective function is a metric that must be minimized during training.
The optimization procedure is used to find the optimal parameters of the model that minimizes
the loss function. A more detailed analysis of neural networks can be found, for instance
in [53].

2.1. Artificial Neural Network (ANN)

ANN is defined as a mathematical model divided into a series of interconnected
elements classified in layers, whose geometry and functionality have been compared with
those of the human brain. ANN is made up of neurons that have one scalar output and
multiple inputs, as sketched in Figure 1.

An inventive but simple structure is composed of four parts: (i) input values, (ii) weights
and bias, (iii) weighted total (sum), and (iv) activation function (threshold unit). A schematic
diagram of an artificial neuron is illustrated in Figure 1, where, x; — x3 are inputs, w; — w3
are their corresponding weights, b is the bias, f is the activation function applied to the
weighted sum of the inputs and ¥ is the output of the neuron.

Bias
b
X1 O—— Wj
Activate
function Output
Inputs { X2 o—— W2 ,@ JF -3y

X3 O— W3
Weights

Figure 1. Schematic representation of an artificial neuron.

Mathematically, this relation can be written as follows:

N
y=f>_ xw;+b), (1)
i=1
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where N is the number of samples. Equation (1) can be rewritten in the following compact
form as follows:

7= f(xTW+b) with x=[rs,...,xxy]7 and W =[wy,...,wn]T. 2)
The activation function f (also known as the transfer function) determines the output of
neurons in the neural network model, its computational efficiency and its ability to train
and converge after multiple iterations of training. This introduces non-linear properties to
the network. Hence, its main purpose is to convert the input signal of a node in an ANN
to an output signal. The output signal is then used as an input in the next layer of the
neural network.

Specifically, in ANN, a sum of products is performed for inputs x and the correspond-
ing weights W. Next, the activation function f(x) is applied to obtain the output of that
layer and feed it as an input to the next layer. Activation functions can be linear and non-
linear. A linear activation function (e.g., Purelin activation function) contains an infinite
range and has no effect on the complexity of the data set. On the other hand, non-linear
activation functions (e.g., Sigmoid and Tanh activation functions) introduce non-linearity
in order to better learn the complex relationship between the input and output data. Here,
the most widely used classic activation functions with their first derivatives are presented
as follows:

1.  Sigmoid transfer function.

1 y e
x)= ; X)=——" 3
F) =g W= ©)
2. Hyperbolic tangent (Tan-Sigmoid transfer function).
X _ X ) (ex N efx)z o2x
X)=—— ; x)=1-— =4 4
f( ) eX 4o ¥ f( ) (€7x +ex)2 (1 +€2x)2 ( )
3. Purelin function.
fx)=x ;  fl(x)=1 ®)
Figure 2 illustrates those functions and their derivatives.
Sigmoid function Hyperbolic Tangent function Purelin
1.0F — 1.0F -
4l
0.8] o5t |
0.6F — flx)
0.0 —_— ol ,
0.4f — ')
oak i 0.5 z
0.0¢ \k—— R et ‘ . s !
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4

Figure 2. Transfer functions. Left: Sigmoid transfer function; middle: Hyperbolic-tangent transfer function; and right:

Purelin transfer function.

A key aspect of the activation function is that it should be differentiable for performing
a successful backpropagation optimization strategy. In this paper, we used the hyperbolic
tangent function, due to its flexible range and general applicability in different engineering
problems; see, for example, [53].

2.2. Feed-Forward Neural Network (FFNN)

In a FENN, the number of inputs and outputs are fixed and the knowledge of history
variables is disregarded. According to the complexity of the training data, the architecture
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of the FFNN (to be more specific, the number of hidden layers and neurons in each layer)
has to be determined. In this paper, Machine Learning Toolbox (NNTRAINTOOL) is used
to train the model under consideration (NNTRAINTOOL is a Matlab toolbox that is used
for training neural networks. It is divided into four parts, such as the neural network
architecture, algorithms, training progress, and plots. Interested readers are referred to [Neural
network training tool—MATLAB nntraintool (mathworks.com accessed on 7 July 2021)]).

The formulation of a fully-connected feed forward neural network with two hidden
layers H, shown in Figure 3, is defined as follows:

y: f(H2W3 + b3) with Hj; = f(H1W2 + bz) and H; = f(le + bl) ,  (6)

where the vector ¥ is the output, the input vector x contains the features of a sample,
W is the weight matrix, and b is the bias vector for each respective layer. In the current
study, hidden layers have the tangent hyperbolic activation function f, which is formulated
as follows:
et —e ¥
tanh(x) = ——— .
eX+e

This function is a rescaling of the logistic Sigmoid function, depicted in Figure 2, with an
output range of [—1, 1]. The hidden layers values are included in the vector H. The feed
forward neural network architecture can be simplified as follows, given that y is the
true function:

@)

~ o~ 1 N . ~
y=1y(x,W,b) and {b,W}-Arg{rg}\r/lﬁ(y,y)}, 8)

where the loss function £ is minimized to find the optimized weights W’ and biases b’ of
the trained neural network model. In this analysis, a feed forward neural network with
two hidden layers (we have tried different architectures with hidden layers of different
sizes; however, the final result was not affected. Therefore, for simplicity, we have kept the
neural network architecture with two hidden layers throughout this research) of 10 neurons
each is created such that strains € are features and stresses o are the outputs of the model.

Wl

If
Il

Il
i

f
f
Vil

[/
i

/
i\

Input Layer € R? Hidden Layer € R Hidden Layer € R™ Qutput Layer € R?

Figure 3. A fully-connected feed-forward neural network. The input layer x has three features,
each of the two hidden layers has 10 neurons and the output layer ¥ has three outputs.

Mean-squared error (MSE) is considered the loss function £ such that it is minimized
during the training process as follows:

N

1 2
MSE = N ; [(xtarget)i - (xpred)z} . )
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Since the stress and strain values are on different scales of magnitude, it is important
to scale the data set to a comparable range; therefore, the input and target data are initially
scaled to be in the range [—1, 1] by using the following formula:

2(x — Xpin)

Xmax — Xmin

%= +1, (10)

where ¥ is the scaled or normalized value of x in the range of [—1,1].

2.3. Neural Network Training

Training a neural network model is like solving an optimization problem, where the
weights within the model are optimized such that it gets constantly updated during training.
This procedure continues until their optimal values are reached. Hence, the optimization of
weights depends on the optimization algorithm or optimizer that one chooses for modeling.
In the presented contribution, Levenberg-Marquardt optimization [54] is employed, due to
its memory efficiency. Furthermore, it is the fastest backpropagation algorithm which updates
the weights and biases in the following Newton-like update:

Wl =w" — (JT1 4+ x1) 717 - e, (11)

where W1 and W" are the weight vectors at iterations “n 4+ 1” and “n”, respectively.
Furthermore, 1 is the identity matrix, x is a parameter that adaptively controls the speed
of convergence, and ] is the Jacobian matrix that contains the derivatives of the network
errors vector e with respect to the weights W. It is defined by the following:

de oe; . ~\2
]

In the training phase, the weights are initialized firstly and then get updated until some
predefined stopping criteria are satisfied as follows:

1.  The maximum number of epochs (iterations or repetitions) is reached.

2. Performance is minimized to the goal.

3. Validation performance is increased more than the last time it decreased.
4. The maximum amount of time is exceeded.

3. Neural Network (NN) Based Elasticity

In this section, a NN-based small-strain elasticity model is developed using feed-
forward neural networks (FFNNSs), which is then embedded within the finite element
formulation using the software tool ACEGEN [55].

3.1. Data Collection

Determination of the input and output variables for the neural network is the first
task for the approximation of elastic behavior by the FFNNSs for finite element applica-
tions. The strain—stress mapping can be achieved approximated by the FFNNs without
considering the loading history since, for the small strain elasticity (elastic deformation),
the loading and unloading curve coincide with each other.

3.1.1. Analytical Model

To verify the performance of the NN-based model, a comparison with an analytical
model is investigated. The training data are solely collected from the analytical solution
instead of using experimental data. To make sure that all the possible values of strains are
covered in the training data, the inputs to the analytical model are generated by taking
equally spaced points within the given range of strain space. For this purpose, Latin
hyper-cube sampling (LHS) is used to generate the data; see Figure 4. As an example of
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elasticity, the linear elastic model for isotropic material is applied as the target model;
a brief overview of this model is summarized below.

Analytical Stresses o

4000 5000 0 1000 2000 3000 4000 5000

(a) (b)

Figure 4. Analytically generated data set. (a) Input data—2D strains & and (b) output data—2D stresses ¢ [kN/mm?].

3.1.2. Isotropic Elasticity

For isotropic elastic material behavior the Hookean strain energy is assumed to be a
quadratic function as follows:

ple) = 5 w2l + pul], 13)

where A > 0 and p > 0 are the elastic Lamé constants defined in terms of Young’s modulus
E, Poisson’s ratio v and the shear modulus G as follows:
vE E
A= d =G=-—7—"—, 14
Axni=2y ™ r=6=331 (14
Following the Coleman-Noll procedure, the stress tensor is obtained from the energy
function ¢ in (13) for isotropic material behavior as follows:

o =0:(e) =Atrle]1+2pne, (15)

hereby, both the stresses ¢ and strains £ are symmetric tensors. For the 2D case, the inputs
of the model and their outputs are chosen as the strain and stress components, respectively.

Inputs: (€xx, Eyy, Exy) (16)
Outputs: (Oxx, Oyy, Oxy) 17)

The stresses as output data can be computed using (15) accordingly. The neural
network is trained until the stopping criteria is reached. After training, the model is saved.
The NN-based elasticity model reads as follows:

oNN = FEFNN(e, W, D), (18)

where oV is the predicted stress by the FFNN.

As a representative example, we choose the following material parameters for the
isotropic-elastic model in the training data collection: Young’s modulus E = 21 kN/ mm?
and Poisson’s ratio v = 0.3. The data set is split into training (70%), validation (15%),
and test (15%) subsets. A feed-forward neural network with an architecture of 3 — 10 — 10 — 3
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is applied. It consists of three neurons for the input and output layer each, and 10 neurons
for each of the two hidden layers. The Levenberg-Marquardt algorithm [54] is chosen
as the training optimizer. Figure 5 depicts the performance of the neural network model
throughout training, where the model performance reaches its optimum at epoch (iteration)
1400 over the scaled data set. This is based on the termination criteria introduced in
Section 2. The mean squared error is decreased to 2.2 x 1071¢, which costs time of 14 m
48 s; see Table 1.

e i)

Validation
%1071

- = =Test
45
4 Best

35

3
10 H . CD i

2

15

1390 1392 1394 1396 1398 1400

Mean Squared Error (MSE)

15 L .
10 a

| i | | | n
0 200 400 600 800 1000 1200 1400
Epochs

Figure 5. Mean squared error (MSE) of neural network model with two hidden layers.

Table 1. Neural network model specifications—small strain elasticity.

No. Name Value Unit
1. Number of samples 10% —
2. Training duration 888 s
3. Training performance 22x 10716 —

3.2. Representative Numerical Examples

In the following, the performance of the proposed machine learning based model is
demonstrated through two representative numerical examples. The material parameter
used for the isotropic-elastic model in the training data collection and in the finite element
analysis using software tools Acegen and AceFEM [55] are as follows: Young’s modulus
E = 21 kN /mm? and Poisson’s ratio v = 0.3. Here, also a FENN with the architecture of
3 —10 — 10 — 3 is applied, with 3 neurons for input and output layer each, and 10 neurons
for the hidden layers. Furthermore, the Levenberg—Marquardt algorithm is considered the
training optimizer. To illustrate the computational methodology, representative tests under
different loading conditions are presented.

3.2.1. Compression Test of a Plate

The first model problem is the uniaxial compression test of a rectangular plate. The geo-
metric setup and the loading conditions of the specimen are depicted in Figure 6a. The plate
is fixed at the bottom, and a prescribed displacement with an amplitude of # = —0.04 mm
is imposed at the top surface of the plate with L = 1 mm. The geometric domain of the
structure is discretized by 400 triangular T1 elements, leading to 231 nodes.

The load—deflection curve is depicted in Figure 6b. Next, the stresses computed
with the neural network based model is compared with that of Hooke’s model. It can
be observed from the contour plot that FENN predicts the stresses very accurately as
shown in Figure 7. This verifies the accuracy of the proposed neural network approach for
elasticity problems.
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L Displacement [mm]
(a) (b)

Figure 6. Compression test of a plate. (a) Geometry, boundary conditions, and FEM discretization. (b) Load-deflection
curve using finite element formulation.

-0.44e3

-0.45e3
-0.45e3
-0.46e3
-0.46e3
-0.47e3
-0.47e3

oFEMyy oNNyy

Max. Max.

-0.412e3 -0.412e3

Min. Min.

-0.967 €3 -0.967 3

AceFEM AceFEM

(a) (b)

Figure 7. Compression test of a plate. Contour plot of the stresses oy, [N/ mm?] with (a) finite
element method, and (b) neural network formulation.

3.2.2. A-Notched Bar in Tension

Next, a tensile test of the A-notched bar as depicted in Figure 8 is conducted. The bar
is clamped at the left end and a prescribed displacement with an amplitude of # = 0.02 mm
is imposed on the right end with L = 1 mm and r = 0.25 mm. The geometric domain of the

structure is discretized by unstructured meshes with a total of 306 triangular T1 elements,
leading to 189 nodes.

u
[
SV

N

o]

[ 2L |

Figure 8. A-notched bar in tension. Geometry and boundary conditions.
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Similarly, the A-notched bar stresses computed with the neural network model are
compared with those of the purely finite element method. It can be seen from the contour
plot of both FE and NN formulations that FFNN predicts the stresses very accurately,
as shown in Figure 9.

0.587 €3 0.587 €3
0.531e3 0.531e3
0.476 €3 0.476 3
0.420e3
0.365e3
0.310e3

0.254 €3
oFEMxx

0.254€3
oNNxx

Max. Max.
0.1275e4 0.1275e4

Min. Min.
-0.136e2 -0.136e2

(@) (b)

Figure 9. A-notched bar in tension. Contour plot of the stresses oy [N/ mm?] with (a) finite element method and (b) neural

network formulation.

3.2.3. Discussion

From the above-detailed studies, it can be concluded that NN-formulation works
well for predicting linear elastic material behavior under different loading conditions
and geometries. For a better understanding of the computational efficiency of the neural
network model incorporated inside the finite element formulations, a comparison is made
with that of finite element analysis based on AceGen generated c code; see Table 2.

Table 2. AceGen—FEM vs. NN formulations.

No. Name FEM NN Unit
1. Evaluation time 3 5 s
2. Number of formulae 73 92 —
3. Total size of c code 3414 5982 bytes

The evaluation time for the NN embedded model is longer due to the size of the
AceGen file (which includes the neural network formulation) and the functions necessary
for the computation and normalization of the data required by the NN-model. The positive
aspect is that this has to be done once, and after a successful execution, the generated file
can be used for finite element simulations. Similarly, Table 3 provides the simulation report
obtained using AceFEM for the 2D plate (Section 3.2.1) and A-notched bar (Section 3.2.2),
respectively. Note that the computational effort heavily depends on the machine on which
the simulations are running. Therefore, here, only the computation time is compared
between the FEM and NN simulations. It can be concluded from the representative
examples that although NN accurately predicts the stress—strain relationship, it has no
superiority when it comes to the computational effort for the problems in elasticity.

Table 3. 2D plate and A-notched bar—AceFEM simulation report.

Plate Bar
No. Name FEM NN FEM NN Unit
1. Total K and R time 0.009 0.008 0.039 0.067 s
2. CPU Mathematica time 0.11 0.14 0.546 0.407

4. Neural Network (NN) Based Elasticity for Fracture Problems

The main objective of this section is to incorporate the NN-based elasticity model (de-
veloped in Section 3) within the finite element formulation of phase-field brittle fracture
for the sole purpose of efficiently predicting the elasticity part of the phase field. For the
sake of brevity, we omit the detailed description of the phase-field modeling of brittle
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fracture and summarize next the most important equations. For more details, the interested
reader is referred to [56-78] and the citations therein.

4.1. Phase-Field Modeling of Brittle Fracture

In this section, we summarize the variational formulations for phase-field modeling
of brittle fracture in elastic solids at small strains. The constitutive work density function
consists of the following sum:

(e, d, V) = g(d) ple) + [1 — g(d)]pe + z% 19(d,Vd), (19)
of a degrading elastic bulk energy ¢ depicted in (13) and a contribution due to frac-
ture which represents the accumulated dissipative energy. Hereby, the crack phase-field
d(x,t) = 0 represents the unbroken state of the solid and d(x,t) = 1 refers to the fully
fractured state. The function ¢(d) = (1 — d)? models the degradation of the stored elas-
tic energy of the solid due to fracture. The crack surface density function is defined as
v(d,Vd) = %d? + §|Vd|? in terms of the fracture length scale ! that governs the regu-
larization. The formulation (19) depends on two additional fracture parameters, namely,
the critical fracture energy ¢ and {, which controls the post-critical range after crack
initialization, as well documented in [61]. Based on the above-introduced work density
function, we derive two governing equations for the coupled problem. The first equation is
the stress equilibrium or the quasi-static form of the balance of linear momentum defined
as follows:

Divic] =0 with ¢=09,Y=g(d)oc and oc=Atr[e]1+2pue (20)

in terms of the effective stress tensor o and by neglecting volume forces. Following [79],
the evolution of the crack phase-field in the domain () represents the second governing
equation as follows:

2 j ~ yr(eh)
[d—1°Ad)+nd+ (d—1)H =0 with H = max D(x,s) >0 and D:§< 1> (21)
+

Yc
along with its homogeneous Neumann boundary condition Vd - n = 0 on d(). Here,
n is the outward normal on dQ) and # > 0 is a material parameter that characterizes
the artificial/numerical viscosity of the crack propagation. The crack driving force H is
introduced as a local history variable that accounts for the irreversibility of the phase-field
evolution by filtering out a maximum value of what is known as the crack driving state
function D. This is achieved by introducing the Macaulay bracket (x); = (x + |x|)/2.
Note that only the tensile/positive part of the elastic energy in (13) is considered for
computing the crack driving force. It is defined in terms of the positive strain tensor

s€[0,¢]

et =3°_ (es)+ Ny® N, withé = 2,3. Here, {€,} ,—1_ are the principal elastic strains and
{N,},-1.s are the principal strain directions; for further details on energy decomposition,
see [56].

4.2. Neural Network Architecture

In this part, a feed-forward neural network with a similar architecture as that in
Section 3 is applied. As a loss function, the mean-squared error (MSE) is considered. Here,
also the Levenberg—Marquardt algorithm is chosen as the training optimizer. Since the
stress ¢ and strain e values are on different scales of magnitude, a normalization of the data
set is required before training. Thus, the data set is scaled to a comparable range, in which
the input and target data are initially scaled to be in the range [—1, 1]. The training data
are collected from the analytical model, similar to the method used in NN-based elasticity;
see Section 3. The material parameters used for the creation of the training data set are
given in Table 4.
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Table 4. Material parameters used in the numerical examples.

No. Name Parameter Value Unit
1. Young’s modulus E 21 kN/mm?
2. Poisson’s ratio v 0.3 -
3. Critical fracture energy Pe 1.35x 1073 kN/mm?
4. Fracture length scale ) 0.004 mm
5. Fracture viscosity n 1x10°° N-s/mm?
6. Post critical parameter ¢ 1.0 —

In the following, the performance of the proposed machine learning based model will
be examined for the phase-field fracture simulations. Herein, the elasticity is predicted
by the neural network. The formulation of the ML-based model substituting the above
formulations defines a function in the following format:

onn(e,d,W,b) = FFNN(e, W, b), (22)
where W is the weight matrix and b is the bias of the neural network.

4.3. Numerical Examples

To illustrate the computational methodology and verify the formulation, two bench-
mark problems are investigated.

4.3.1. Single-Edge-Notched Tension Test

The first benchmark test considers a square plate (L = 1 mm) with a horizontal notch
placed at the middle height, as plotted in Figure 10 (left). The specimen is discretized using
FEM with linear triangles.

Figure 10. Single-edge notched test (SENT). Geometry and contour plots of the fracture phase-field 4 for different loading

states up to final failure using FEM with 3-noded linear triangular elements.

A mesh refinement in the expected fracture zone is applied. Furthermore, Figure 10
shows the contour plot of the crack phase-field d for different loading states up to final rupture.

Next, Figure 11 illustrates a comparison between FEM and the Neural Network formu-
lation by calculating the stress—strain relationship using both methods. The predicted stress
thoroughly follows the FE solution, which verifies the generalization of the NN model.
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Figure 11. Single-edge notched test (SENT). Validation of stress—strain behavior with NN formulation
against FE formulation. The stress unit is [N/ mm?].

4.3.2. V-Notch Bar in a Tension Test

The second model problem is concerned with analyzing the brittle failure of a V-notch
bar under tensile loading. The geometric setup and the loading conditions of the specimen
are depicted in Figure 12a. The size of the specimen is chosen to be as follows: H = 1 mm,
L =035mm, & = 0.1 mm and V = 0.24 mm. The mesh size of the specimen is chosen to be
he = 0.004 mm in the expected fracture zone. The computation is performed by applying a
displacement with an amplitude of # = 0.02 mm at the top edge while the bottom edge
is fixed in both directions x and y. The material parameters used in this simulation are
similar to that of the single edge notched tension test as shown in Table 4. Discretization is
achieved by finite element (FEM) formulations with 3-noded linear triangular elements.

b) C) d)

Figure 12. V-notch bar in tension. (a) Geometry and boundary conditions. (b—d) FEM: Contour plots

of the fracture phase-field d evolution for different loading states up to final failure.

The evolution of the crack phase-field d is reported in Figure 12b—d. The crack initiates
at the notch tip and successively propagates horizontally from the notches inwards till the
final rupture. For visualization of crack surface, deformed regions with a phase-field d ~ 1
are plotted in Figure 12.
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Next, Figure 13 illustrates a comparison between FEM and NN formulations by
calculating the stress—strain relationship using both methods. As in previous examples,
predicted stress exactly follows the FE solution.

—— Exact
5000 (L Prediction
1000
2
b
500
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Eyy
Figure 13. V-notch bar in tension. Validation of stress—strain behavior with NN formulation against
FEM. The stress unit is [N/mm?].

4.3.3. Discussion

It has been shown that the incorporation of the NN model within FE formulation for
the fracture phase-field approach is successful. Herein, the elasticity is approximated using
the neural network model rather than the classical methods. Hence, data-driven methods,
such as neural networks, are promising in the solution of mechanical problems.

In this regard, Table 5 compares the AceGen generated c code, while Table 6 provides
a brief simulation report of numerical examples to illustrate the computational efficiency
of the proposed NN-model. From these tables, it can be observed that, due to the bigger
size of the AceGen file, in NN case the evaluation time is longer. On the other hand,
the AceFEM simulation report indicates that the total linear solver time, total K and R time,
and CPU Mathematica time are smaller when using the NN method; see Table 6. It is worth
mentioning that the computational time may vary on different machines; nevertheless,
this again verifies the applicability and efficiency of the neural network model.

Table 5. AceGen—FEM vs. NN.

No. Name FEM NN Unit
1. Evaluation time 8 13 S
2. Number of formulae 336 358 —
3. Total size of c code 15,025 31,629 bytes

Table 6. SENT and V-notch tests—AceFEM Simulation Report.

SENT V-Notch
No. Name FEM NN FEM NN Unit
1. Total K and R time 11 8 12.72 9.45 S
2. CPU Mathematica time 6 45 5 4

5. Neural Network (NN)-Based Phase-Field Brittle Fracture

In this last section, a NN-based phase-field model is developed using feed-forward
neural networks (FFNNs). The aim here is to embed a neural network-based model
inside FEM, which predicts the fracture phase-field d in such a way that this NN-model is
able to mimic the behavior of phase-field modeling of brittle fracture to its full potential.
Toward this goal, the problem at hand is gradually developed in different steps. These
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steps demonstrate the scope of applicability and feasibility of this approach. Moreover, it
represents a good strategy for confronting possible challenges throughout this study.

5.1. Data Collection

To verify the performance of the NN-based model by comparing their predictions
with FE formulations, the training data are exclusively collected from the finite element
analysis, i.e., experimental data are not considered. In this regard, both geometries in
Figures 10-12 are employed for the creation of the data set necessary for training the neural
network model. Hereby, data from a specific part of the geometry are considered since the
data of interest lie in the region where the crack is expected. For the elasticity part of the
phase-field modeling of brittle fracture, the previously trained model is utilized. A second
model is also trained solely for predicting the fracture phase-field d. It suffices to state
that the accuracy of the predictions (approximations) depends on the complexity of the
relationship between the data set for the inputs and outputs. The trained neural network
will approximate the mapping between the input and output. Unlike the elasticity model,
the relationship between the input and output data in the fracture process is highly nonlinear
and complex. To understand these relationships, a sensitivity analysis will provide a better
insight into the selection of the proper choice of inputs required to accurately predict the
target output.

5.1.1. Sensitivity Analysis

Sensitivity analysis is quite useful in specifying the effect of a particular input on an
output under a set of assumptions. Different methods exist in the literature for conducting
a thorough sensitivity analysis. However, for our scope of the study, a scatter-plot is
sufficient. Such a representation is a qualitative method, which provides no sensitivity
index or numerical value. For a full dependency analysis, plots as many as the number of
inputs are required.

As an example, Figure 14 illustrates the relationship of total stress due to the degrada-
tion of stored elastic energy and total strain. Hereby, the stresses decrease after a certain
strain value related to the critical fracture energy . introduced in (19).

2500 —

2000~ i

Total Stress

15 2 25 3 35 4 45

Total Strain

Figure 14. Scatter plots. Total stress vs. total strain throughout the finite element simulation of the
phase-field modeling of brittle fracture. The stress unit is [N/mm?].

5.1.2. Input and Output Relationship

From the sensitivity analysis, it can be observed that the input and output relationships
are highly non-linear. Hence, not much can be learned about the input—output relationship
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from the scatter-plots of outputs and their respective inputs. Therefore, the model is trained
using a different number of input features, and the architecture with better performance
was chosen to be embedded in the finite element formulations.

For the prediction of the fracture phase-field d at the current time-step, which would
be the output of the NN model, strains, stresses, driving force at the current time-step along
with the phase-field d at the previous time step are considered the input to the NN model. Note
that the stresses at the current time step have a direct dependency on the current fracture
phase-field due to the degradation of stored elastic energy. In this contribution, the stresses
are degraded with the previous value of d. This results in a small increase in the global
error, i.e., the performance of the neural network model; however, it is still in an acceptable
range and yields good results. The formulation of the NN-based phase-field model defines
a function in the following format:

din = FENN(e', oy, di, H!, W, b), (23)

where df;; is the fracture phase-field at the current time-step, H' is the current driving
force, &' is the current strain with ¢ = [exx, Eyy, sxy], and 0'§\]N is the NN-model trained
apriori to approximate the stress as follows:

onn = FFNN(g, W, b), (24)
for given strains e , weight matrix W, and the bias of neural network b.

5.2. Feed-Forward Neural Network

A feed-forward neural network with an architecture of 8-15-15-1 is applied to learn
the relationship between input and output datasets. The input layer of the neural network
contains 8 neurons (3 strains, 3 stresses, 1 old phase-field and 1 driving force), and the two
hidden layers containing 15 neurons each. The output layer contains one neuron which
predicts the fracture phase-field d. The Levenberg-Marquardt algorithm [54] is applied as
an optimizer for the training of the neural network. The rest of the NN structure follows the
same procedures and techniques described in Section 2. After this training, a performance
in the order of 1072 is achieved, as demonstrated in Table 7.

Table 7. Neural network model specifications.

No. Name Value Unit
1. Number of samples 165,880 —
2. Training duration 1200 s
3. Number of hidden layers 2 —
4. Number of nodes per hidden layer 15 —
5. Training performance 9.65 x 10~ —

5.3. Representative Numerical Examples

In the following, the performance of the proposed machine learning based approach
is further examined in the prediction of the fracture phase-field d. To this end, the finite
element computation is performed by symbolic-numeric programming MATHEMATICA
using ACEGEN and ACEFEM packages; see [55]. The trained model weight matrices and
biases are incorporated throughout separate functions inside the finite element formula-
tions. Therefore, the calculations can be done without dependency on any other programs
(e.g., Matlab machine learning toolbox). After the incorporation of the neural network
models within the finite element formulations, ACEFEM is used as a finite element en-
vironment for the solution of the multi-field problem. The neural network learns from
the data, thus the complexity of the NN model is significantly influenced by the data set.
To show the contribution of the relevant input (namely previous the NN-based phase-field
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value d;fz\l] at time f — 1) in the accuracy of the neural network model, two different cases are

investigated.

5.3.1. Single-Edge-Notched Test

The same benchmark test depicted in Section 4.3.1 is further examined to verify the com-
putational methodology by comparing the predicted results to that of finite element analysis.

Case 1: The first case considers only stress, strain and, driving force as the input to
the neural network model. The formulation of the NN-based phase-field model defines a
function in the following format:

dNN = FFNN(e,(r,H,W,b), (25)

where stresses are calculated using the finite element method. Only one NN-model is
incorporated within the FE-analysis which predicts the phase-field d. The results are
promising; however, there are some mismatches between the finite element solution and
the NN-model as shown in Figure 15.

Case 2: The second case is similar to the first case; however, there is only one more
input to the neural network. Here, the previous value of fracture phase-field d is also con-
sidered as an input to the neural network model. The formulation has the following format:

diyn = FENN(e', oy, dig, 1, W, b). (26)

In terms of accuracy, this model predicts the relationship between the input and outputs
much more accurately than the previous case, see Figure 16. Hence, for the next example,
we employ the analysis in Case 2.

7 dFEM

d,\'eural Network

0.6 08 0.000 0.003 0.010 0.015

& Displacement

(@) (b)

Figure 15. Case 1: Single-edge notched tension test. Fracture phase-field d curves versus strain ¢ in (a) and vs. displacement

u in (b).
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Figure 16. Case 2: Single-edge notched tension test. Fracture phase-field d curves versus strain ¢ in (a) and vs. time ¢ in (b).

In this example, different cases are considered to create the most efficient neural
network model for the prediction of the fracture phase-field d and compared in terms of
both accuracy and efficiency. Table 8 depicts the AceGen generated c code size, while
Table 9 compares the AceFEM solution times related to the generated code. It can be
concluded that incorporating more than one model within the finite element formulation
costs more evaluation time during generating the c code. On the other hand, in the AceFEM

simulation, there is no significant difference in the total solve time.

Table 8. AceGen—Case 1 vs. Case 2 (Phase-field).

No. Name Case 1 Case 2 Unit
1. Evaluation time 23 36 s
2. Number of formulae 444 499 -
3. Total size of c code 30,257 55,070 bytes

Table 9. AceFEM—simulation report of Case 1 vs. Case 2 (phase-field).

No. Name Case 1 Case 2 Unit
1. Number of equations 2827 2827 —
2. Number of steps 198 206 -
3. Total number of iterations 2246 2475 —
4. Average iterations/step 8.2 8.5 -
5. Total K and R time 9.6 104 s

5.3.2. V-Notch Bar in a Tension Test

Further verification of this methodology is illustrated using a V-notched bar in tension.
The geometry and boundary conditions of the specimen are similar as before, see Figure 12.
For the analysis, the formulation introduced in Case 2 above is utilized, and the
procedure of the previous example is followed. Qualitatively good results are obtained as

depicted in Figure 17.
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References

— FEM
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Figure 17. Case 2: V-notched tension test. Fracture phase-field d curves versus the strain €.

6. Conclusions

This work presented a neural network-based material modeling approach for elasticity
and phase field of brittle fracture. The approximation of stresses and fracture phase field in
an elastic domain have shown that NN-based approaches can learn the linear and highly
non-linear relationship between the input and output data. A commonly used machine
learning tool called the “feed-forward neural network” (FFNN) is proven to be efficient
for learning the complex input-output relationship, particularly when there is no history
dependency between the input and output. Therefore, using NN-based models instead
of the conventional numerical procedures to obtain the stresses and fracture phase-field
can result in an efficient approach. The automatic symbolic differentiation tool AceGen
provides a very convenient way for embedding the neural network formulations within
the finite element formulations. The verification of the neural network-based models
was conducted by representative numerical examples. We have demonstrated that the
NN-based methods, particularly FENN, can provide accurate and feasible approximations.
Accordingly, it can be incorporated in finite element formulations. As our results suggest,
the neural network predictions can be identical to the exact solution, provided that the
training data set contains all the possible patterns as the target problem. This was achieved
for the approximation of stresses in the elastic domain. The question of building a universal
NN-based model that requires a universal training data set to be used in a wide range of
boundary conditions and different geometries is still open and will be a topic of further
research. In this regard, real experimental data of concrete failure underwater (DFG Priority
Program SPP 2020 Experimental-Virtual-Lab) will be used as future trained data in the
ML approach.
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