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Abstract: A vision sensor-based 6-DOF displacement evaluation method incorporating a genetic
algorithm was proposed to monitor the critical defects of port infrastructure, such as deflection, slope,
and slip. The 6-DOF behavior of the port structure, including subsidence, was estimated based on
the specification of the target and fixed structures nearby. The method calculates the relative position
of the target port structure and measures the movement of the structure over time. To improve the
measurement accuracy, a genetic algorithm was used to adjust the intrinsic parameters that were
previously estimated using the checkerboards. The results of measuring 6-DOF displacements based
on the tuned intrinsic parameters confirmed that it has the potential to accurately measure the 6-DOF
behavior of port facilities. The possibility of field application was examined through an artificial
movement that was induced in the image of the port facility to create an arbitrary displacement
between two points.

Keywords: port structure; displacement measurement; genetic algorithm; homography estimation

1. Introduction

The aging and deterioration of port facilities in the Republic of Korea has become an
issue that should be addressed. As of 2020, 49.4% (538 locations) of port facilities are aged
over 20 years, while 13.1% (143 locations) are aged over 40 years. According to the safety
inspection and precision safety diagnosis reports of port facilities, in the facilities of more
than 20 years age, the A-grade ratio decreased sharply, while in the case of 40 years or
more, the A- and B-grade ratios tended to decrease. Moreover, the increase in the intensity
and frequency of natural disasters related to climate change increase the variability of
the design external force and enhance the possibility of large-scale damage to aging port
facilities [1]. Figure 1 shows the critical damage cases that have occurred in port facilities.
In response, the Ministry of Oceans and Fisheries of the Republic of Korea has established
a national roadmap in 2020 for the smart sensing, monitoring, analysis, evaluation, and
repair of port facilities for proactive and timely maintenance. In the detailed guidelines for
infrastructure safety inspection and precision safety diagnosis, the critical major defects
in port facilities are defined as: foundation scour, damage and corrosion of piles, loss of
internal force due to carbonation and chloride attack in concrete, corrosion of lock gate
facilities, and the normal displacement and settlement of berthing structures [2,3].

The settlement and normal displacement of berthing structures is generally evaluated
by surface level surveying; the foundation scour should be evaluated by divers, and the
members towards the sea should be inspected by inspectors moving in a boat. These evalu-
ations and inspections are carried out every few years, and thus continuous monitoring
is difficult. Attachment of various electric sensors is one method to monitor the behavior,
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such as displacement, settlement, slip, and slope, but it is complicated to organize the
sensing system with consideration of the berth, salt attack, high-risk work on the members
towards the sea, and facility users’ route [4–7]. Thus, in this paper, we present a technique
for measuring the precise behavior of a berthing structure that could be caused by scouring,
settlement, slip, damage, material deterioration, and so forth.
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The behavior of the structures using a vision-based non-contact type displacement 
measurement system has gained rapid developments in the past decade [8]. Kohut et al. 
(2013) presented a vision-based deflection measurement method using the digital image 
correlation coefficient [9]. Jeon et al. (2014) proposed a 6-DOF translational and rotational 
displacement measurement system with a vision sensor and a uniquely designed marker 
[10]. Ye et al. (2015) proposed a multi-point displacement measurement method by use of 
a pattern-matching algorithm [11]. Feng et al. (2015) proposed a structural displacement 
measurement method with a subpixel resolution using the upsampled cross correlation 
algorithm [12]. Zhou et al. (2020) proposed a videogrammetric technique for displacement 
monitoring that eliminates the measurement error due to the image drift induced by tem-
perature variation [13]. Most of the aforementioned non-contact type vision-based dis-
placement measurement systems, however, have one of following drawbacks: only esti-
mated deflection, which is 1-DOF displacement, markers are attached on the structures 
for feature points detection, or the accuracy of the measurements highly depends on the 
camera calibration results for calculating intrinsic parameters. 

The 6-DOF displacement also can be measured using structured light composed of 
lasers and vision sensors [14–16]. The translational and rotation displacement measure-
ment system called a paired structured light system composed of two sides facing each 
other, each with one or two lasers, a screen, and a camera. The lasers on each side project 
their beams on the screen on the opposite side, and a camera near the screen captures an 
image of the screen. By calculating the positions of the laser beams, the relative displace-
ment between two sides can be estimated. In a follow-up study conducted by the same 
research group, a 2-DOF manipulator was introduced to an increased range of the dis-
placement measurement. In the case of a visually servoed paired structure light system, 
the displacement can be estimated with an error within 0.2 mm and 0.2 deg, but the in-
stallation of a relatively heavy sensing system on port structures and mobile platforms is 
required. Therefore, in this paper, a displacement measurement method using the fixed 
intrinsic parameter of the camera is applied to measure the displacement of 6-DOF be-
tween the camera and the fixed/port structure; with its use, the movement of the port 
structure based on fixed structure can be measured. In this paper, the floating port struc-
ture was assumed to be a rigid body, and it was assumed that there was no deformation 
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The behavior of the structures using a vision-based non-contact type displacement
measurement system has gained rapid developments in the past decade [8]. Kohut et al.
(2013) presented a vision-based deflection measurement method using the digital image
correlation coefficient [9]. Jeon et al. (2014) proposed a 6-DOF translational and rota-
tional displacement measurement system with a vision sensor and a uniquely designed
marker [10]. Ye et al. (2015) proposed a multi-point displacement measurement method
by use of a pattern-matching algorithm [11]. Feng et al. (2015) proposed a structural
displacement measurement method with a subpixel resolution using the upsampled cross
correlation algorithm [12]. Zhou et al. (2020) proposed a videogrammetric technique for
displacement monitoring that eliminates the measurement error due to the image drift
induced by temperature variation [13]. Most of the aforementioned non-contact type
vision-based displacement measurement systems, however, have one of following draw-
backs: only estimated deflection, which is 1-DOF displacement, markers are attached on
the structures for feature points detection, or the accuracy of the measurements highly
depends on the camera calibration results for calculating intrinsic parameters.

The 6-DOF displacement also can be measured using structured light composed of
lasers and vision sensors [14–16]. The translational and rotation displacement measurement
system called a paired structured light system composed of two sides facing each other, each
with one or two lasers, a screen, and a camera. The lasers on each side project their beams
on the screen on the opposite side, and a camera near the screen captures an image of the
screen. By calculating the positions of the laser beams, the relative displacement between
two sides can be estimated. In a follow-up study conducted by the same research group, a 2-
DOF manipulator was introduced to an increased range of the displacement measurement.
In the case of a visually servoed paired structure light system, the displacement can be
estimated with an error within 0.2 mm and 0.2 deg, but the installation of a relatively heavy
sensing system on port structures and mobile platforms is required. Therefore, in this paper,
a displacement measurement method using the fixed intrinsic parameter of the camera is
applied to measure the displacement of 6-DOF between the camera and the fixed/port
structure; with its use, the movement of the port structure based on fixed structure can
be measured. In this paper, the floating port structure was assumed to be a rigid body,
and it was assumed that there was no deformation in shape. Since the displacement
estimation of the structure is highly dependent on the camera-intrinsic parameter, in this
paper, the intrinsic parameter is tuned based on the given measured translational and
rotational displacements using a genetic algorithm. An indoor model experiment and an
outdoor field image-based experiment were performed, and the results of the experiments
confirmed that translational and rotational displacements are estimated more precisely
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after calibrating the intrinsic parameters of the vision sensor, and the proposed technique
is applicable to the field.

The remainder of the paper is organized as follows. In Section 2, the translational and
rotational displacement estimation method using a vision sensor is described. The appli-
cation of the genetic algorithm for tuning the camera-intrinsic parameters is introduced
in Section 3. To validate the performance and applicability of the proposed method, the
experimental tests using model structures and captured image with a drone are conducted
and the results are discussed in Section 4. Conclusions and further research directions are
discussed in Section 5.

2. 6-DOF Displacement Estimation Using Vision Sensor

The 6-DOF relative displacements that include translational and rotational displace-
ments in three axes can be estimated by using positions of feature points in world coordi-
nates and the intrinsic parameters of a vision sensor. The intrinsic parameters determine
the optical properties of the camera lens, including the focal lengths, principal points, and
distortion coefficients. Figure 2 represents the geometry view of the feature points in both
the world and image planes. In the figure, Qi and qi (i = 1, . . . , N) denote the corresponding
points of the world and image planes, respectively, where N is the number of feature
points. The points in the world plane, Qi, defined as Qi = [X Y Z 1]T, are represented in the
three-dimensional coordinate system. The corresponding points, qi, defined as qi = [u v 1]T,
are represented in two-dimensional space. The relationship between the two planes can be
expressed in terms of matrix multiplication, as follows: u

v
1

 =

 fu 0 cu
0 fv cv
0 0 1

 xd
yd
1

, (1)

[
xd
yd

]
=

[
x(1 + K1r2 + K2r4) + 2K3xy + K4(r2 + 2x2)

y(1 + K1r2 + K2r4) + 2K3(r2 + 2xy2) + K4xy

]
(2)

 Xc
Yc
Zc

 =

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




X
Y
Z
1

 (3)

where fu and fv are the focal length, cu and cv represent the principal point where the
focal axis of the camera intersects the image plane; K1 and K2 are the radial distortion
coefficients, K3 and K4 are the tangential distortion coefficients; r and t are parameters of the
rotation matrix and translation vector. In Equation (2), x = Xc/Zc, y = Yc/Zc, and r2 = x2+y2,
where Xc, Yc, and Zc are defined in Equation (3). The homography matrix composed of
intrinsic and extrinsic camera parameters explains how to map pixels on a 2D image to the
corresponding real-world coordinates in 3D scenes, as shown in Equations (1)–(3) [17,18].
By using the feature points on the same level, 3 × 3 sized homography matrix can be
used with the given 2D-to-2D point correspondences. Since the degree of freedom of the
homography matrix is equal to eight, at least four point-to-point correspondences are
required. In other words, the rotation matrix and the translation vector can be obtained
with the known positions of more than four feature points (N ≥ 4) [18]. By calculating
rotational and translational displacements from the vision sensor to the target and the fixed
structures, the relative 6-DOF displacement of the target structure can be estimated.
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Figure 3 shows the entire process of the relative displacement estimation between
the two structures using image processing techniques. The figure shows that the camera
captures the image of the structures, then the camera lens distortion is corrected by using
the previously calculated intrinsic parameters. From the undistorted image, the feature
points of the structures, including corners, are detected by using various image processing
techniques, such as binarization, and corner detection at the sub-pixel level. By calculating
at least four feature point positions, 6-DOF displacement between the camera and the
structures can be estimated. The relative displacement can be estimated by using the
previously calculated displacements on each structure. The relative displacement between
two structures, the fixed and target structures, can be estimated using the following
equations:

FDT(x, y, z, θ, ϕ, ψ) = T(x, y, z)Rx(θ)Ry(ϕ)Rz(ψ)

=


cϕcψ −cϕsψ sϕ x

sθsϕcψ + cθsψ −sθsϕsψ + cθsψ sθcϕ y
−cθsϕcψ + sθsψ cθsϕsψ + sθsψ cθcϕ z

0 0 0 1

 (4)

FDT =F DC ·C DT (5)
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In Equation (4), FDT is the transformation matrix composed of the 6-DOF relative
displacement between fixed coordinate relative to the target coordinate, and F and T
indicate the fixed and target structures, respectively. The matrix consists of the product
of translation matrix T(x,y,z) along X, Y, and Z axes with rotation matrices Rx(θ), Ry(ϕ),
and Rz(ψ) about X, Y, and Z axes, respectively. In the equation, Sθ and Cθ denote sinθ
and cosθ, respectively. The details of each matrix can be found in [19]. In Equation (5),
FDc and TDc are the relative displacements between fixed or target coordinates relative
to the camera coordinates, indicated as C. CDT can be estimated by inverting TDC. The
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relative displacements estimated from images taken at different time t − 1 and t are used
to estimate the structural behavior, as follows:

T,tDT,t−1 = T DF,t · FDT,t−1 (6)

where TDF,t equals the translational and rotational displacements between the fixed and
target structures at time t.

3. Application of Genetic Algorithm for Optimization of the
Camera-Intrinsic Parameters

Metaheuristic algorithms has been developing rapidly in recent years to solve real-life
complex problems in various fields [20,21]. Most of the metaheuristic algorithms are in-
spired from biological evolution, swarm behavior, and laws of physics and can be classified
into two categories such as single solution and population-based metaheuristics [22]. In
comparison with the single solution approach that improve the solution by using local
search, the population-based metaheuristics maintain the diversity in the population and
avoid sucking in local optima [23]. Among the population-based metaheuristic algorithms,
genetic algorithm (GA), which is one of the well-known algorithms, is used to find the
parameter sets in the homography equation. GA, introduced by A. S. Fraser in 1957, is
guaranteed to converge to an optimal solution in multivariable function by repeating
population generation, fitness/penalty evaluation, selection, reproduction, crossover, and
mutation [24,25]. Compared to other optimization methods, it is capable of solving any op-
timization problem based on a chromosome approach, and of handling a multiple solution
search space with less complexity, and in a more straightforward manner [26]. GA is widely
used in various research fields due to its advantage in creating models in a probabilistic
manner. It includes new information in a non-arbitrary way, despite the limitation of being
time-consuming and computationally intensive.

Algorithm 1 shows the entire procedure of optimizing the intrinsic parameters of
the homography equation by using GA. The algorithm shows that the initial population
of chromosomes, composed of parameters of the homography equation, such as Pset =
[fu,fv,cu,cv,K], where K includes the radial distortion coefficients (K1 and K2), and tangential
distortion coefficients (K3 and K4) is generated. After the generation, the penalty of
each chromosome is evaluated, and the best chromosome is obtained that minimizes
the difference between the estimated and previously given translational and rotation
displacements, which are extrinsic parameters of the vision sensor. The objective function
to optimize the translational and rotational displacements of different units is set as a
normalized vector objective function, as follows [27]:

Fpenalty = argmin
P̂set

Nmax_gen

∑
i=1

(
D̂i − Di

)
maxDi − minDi

(7)

where D̂i and Di are the true and estimated displacements. The chromosome with the
lowest penalty value has a higher probability of being selected in the next generation. The
selected best chromosome is reproduced to form a new population, and crossover and
mutation are performed to prevent GA from converging on local minima. Based on the
updated population, Steps 2–4 are looped until the stopping criteria are satisfied, or the
number of generations reaches the maximum number of generations. The parameter set
with minimum penalty value is selected, and the constituted equation is automatically
tuned. In this study, a single point crossover, proportional roulette wheel selection, and sin-
gle point mutation method are used [28,29]. The population size of 150, percent probability
of crossover of 0.6%, percent probability of mutation of 0.05%, and maximum number of
generations of 200 are used.
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Algorithm 1. Procedure of optimizing intrinsic parameters of the vision sensor with genetic
algorithm.

Input:
Population size, n
Maximum number of iterations, Nmax_gen
Initial values and the searching area of the chromosomes, P

Output:
Global best solution, Pbt

begin
Step 1: Generate the initial population of chromosomes
Pset = [ fu, fv,cu, cv,K]
while satisfaction of stopping criteria OR number of generations is less than the

maximum number of generations
Step 2: Evaluate the penalty of each chromosome, Pi (I = 1,2,· · · ,n)

Fpenalty = argmin
P̂set

Nmax_gen

∑
i=1

(D̂i−Di)
maxDi−minDi

Step 3: Select the best chromosome, and do reproduction
Step 4: Perform the crossover and mutation

end
Step 5: Achieve the best individual in all generation, Pbt

end

To set the searching range of the parameters to be tuned, intrinsic parameters calcu-
lated by using checkerboards are analyzed, and the coefficient of variation, also called
relative standard deviation, is calculated [30]. Figure 4 shows the checkerboards with
different sizes. Table 1 shows the intrinsic parameters of each case with the combinations
of one or two different sized checkerboards that are estimated. Figure 5 shows the box
plots and coefficient of variations that are calculated. In this paper, the searching range of
the parameters in the genetic algorithm is set from the calculated interquartile range in the
box plots. Since the relative standard deviations of radial distortion parameter on the Y
axis, and tangential distortion on the X and Y axes, show relatively large, the searching
range is additionally multiplied by the weights on the three distortion parameters.
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Table 1. Estimated intrinsic parameters using different sets of checkerboards. The checkerboard ‘(a)’ denotes the size and
configuration of the checkerboard presented in Figure 4a.

Checker-Boards
Focal Length Principal Points Radial Distortion Tangential Distortion

Fx Fy Cx Cy K1 K2 K3 K4

(a) 2654.95 2667.25 692.02 421.61 −0.3975 0.1285 −0.0012 0.0130
(a), (b) 2634.64 2624.02 1023.62 380.04 −0.4629 0.3087 0.0059 0.0008
(a), (c) 2578.67 2572.71 948.75 459.45 −0.4461 0.1865 0.0017 0.0037
(a), (d) 2586.03 2584.54 1001.43 424.18 −0.4436 0.2398 0.0002 0.0006
(a), (e) 2598.73 2582.47 990.96 431.47 −0.4178 0.0585 0.0050 0.0029
(a), (f) 2363.73 2370.19 1044.13 347.82 −0.4688 0.3937 −0.0005 −0.0020

(b) 2705.33 2673.96 1029.39 219.31 −0.4917 0.5865 0.0155 −0.0029
(b), (c) 2615.95 2614.07 997.06 411.56 −0.4325 0.2560 0.0014 0.0037
(b), (d) 2734.70 2649.68 930.35 253.04 −0.3618 −1.0397 0.0278 0.0034
(b), (e) 2621.91 2601.25 981.15 414.57 −0.4233 0.1851 0.0070 0.0043
(b), (f) 2645.72 2647.74 998.71 327.04 −0.4519 0.3165 0.0025 0.0003

(c) 2665.99 2665.67 887.69 365.05 −0.5030 0.9319 0.0060 0.0119
(c), (d) 2590.24 2598.32 921.28 451.59 −0.4460 0.2329 −0.0035 0.0065
(c), (e) 2611.21 2601.35 984.80 439.40 −0.4289 0.1636 0.0026 0.0034
(c), (f) 2584.71 2574.96 1007.15 351.71 −0.4498 0.0726 0.0016 −0.0016

(d) 2716.70 2700.58 938.09 197.31 −0.4994 0.4672 0.0163 0.0039
(d), (e) 2585.51 2583.79 1009.34 408.67 −0.4050 0.1307 0.0002 0.0029
(d), (f) 2658.12 2629.06 1053.09 263.17 −0.4885 0.2479 0.0145 −0.0042

(e) 2552.71 2543.47 979.48 434.32 −0.4422 0.5115 −0.0010 0.0042
(e), (f) 2621.56 2604.26 994.28 321.01 −0.4891 0.2585 0.0120 −0.0048

(f) 2770.83 2755.42 1027.54 124.33 −0.4865 0.5711 0.0137 0.0018
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of variation of the estimated intrinsic parameters of the vision sensor.

4. Experimental Tests
4.1. Verification of Displacement Estimation Using Model Structures

To verify the performance of the application of a genetic algorithm, experimental tests
with artificial structures and a motion stage were performed. The structures were produced
by simulating the shapes of actual port structures, and the relative displacement between
the target structure placed on the motion stage and the fixed structure were estimated (see
Figure 6). Figure 7 shows the graphic user interface based on visual c++, which employs
image binarization using adaptive threshold, edge detection in subpixel level, and the
camera extrinsic parameter estimation, which is developed to find the relative displacement
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in a captured image. The estimated relative displacement between the two structures in
the before and after images, the movement of the target structure according to the change
of time, is calculated.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

  
(a) (b) 

Figure 6. Experimental setup (a) port facilities for displacement measurement; (b) model structures and the motion stage. 

Table 2. Root mean square error (RMSE) of 6-DOF displacement estimation. 

Experimental Test 
Translation Rotation 

w/o GA w/ GA w/o GA w/ GA 
RMSE of Case 1 

(−10mm translational 
movement along X-axis) 

0.8485 0.6122 (−28%) 0.7703 0.3020 (−61%) 

Errors of ex-
perimental 
results with 
ten different 
GA parame-

ters 

1-1 

−1.0 0.4 1.0 

0.4 −0.1 0.5 

0.0 −1.3 0.3 

0.2 −0.6 0.0 
1-2 0.7 0.0 0.1 0.2 −0.4 0.0 
1-3 1.0 −0.4 0.7 0.3 −0.2 0.0 
1-4 0.7 −0.4 0.4 0.3 −0.3 0.0 
1-5 −0.2 −0.2 1.0 0.3 −1.0 0.0 
1-6 0.9 −0.4 0.8 0.3 −0.4 0.0 
1-7 1.1 −0.4 0.4 0.3 −0.1 0.0 
1-8 1.3 −0.5 0.4 0.4 0.0 −0.1 
1-9 0.4 −0.3 0.6 0.3 −0.5 0.0 
1-10 1.1 −0.6 0.3 0.5 −0.1 0.0 

RMSE of Case 2 
(5° rotational movement 

about Y-axis) 
2.3188 2.0538 (−11%) 0.8794 0.5255 (−40%) 

Errors of ex-
perimental 
results with 
ten different 
GA parame-

ters 

2-1 

2.7 −1.0 −2.8 

2.8 0.0 −2.5 

0.0 −1.4 0.6 

−0.8 −0.7 0.0 
2-2 3.1 0.0 −0.1 −0.6 −0.7 −0.1 
2-3 3.1 −0.2 −1.2 −0.7 −0.6 0.0 
2-4 2.3 0.1 −2.8 −0.9 −1.0 0.0 
2-5 3.0 0.4 0.5 −0.8 −0.8 −0.2 
2-6 3.4 −0.3 −1.2 −0.6 −0.4 0.0 
2-7 3.1 −0.2 −1.5 −0.6 −0.5 0.0 
2-8 3.9 −0.8 −1.7 −0.4 −0.1 0.0 
2-9 3.2 −0.4 −1.0 −0.4 −0.5 0.0 
2-10 2.7 −0.5 −2.8 −0.7 −0.9 0.0 

RMSE of Case 3 
(−30 mm translational 

movement along Z-axis) 
3.4113 2.3104 (−32%) 0.6683 0.4607 (−31%) 

Errors of ex-
perimental 
results with 
ten different 
GA parame-

ters 

3-1 

1.9 4.9 2.7 

1.7 1.8 −4.1 

1.1 0.2 −0.3 

0.7 −0.1 −0.2 
3-2 2.5 1.3 −3.7 0.6 −0.1 −0.2 
3-3 1.9 1.9 −2.2 0.8 −0.4 −0.2 
3-4 1.3 1.9 −3.4 1.0 −0.1 −0.2 
3-5 2.7 1.6 −2.8 0.4 −0.4 −0.2 
3-6 2.1 2.1 −2.8 0.8 0.0 −0.2 
3-7 1.9 2.0 −3.2 0.8 0.0 −0.2 
3-8 1.5 2.1 −2.4 0.7 −0.3 −0.2 
3-9 1.7 2.1 −2.2 0.7 −0.2 −0.2 
3-10 1.0 2.2 −2.5 0.6 −0.6 −0.2 

Figure 6. Experimental setup (a) port facilities for displacement measurement; (b) model structures and the motion stage.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 7. Graphic User Interface for estimating 6-DOF displacement. 

4.2. Verification of Field Applicability Using Port Structure Images 
To verify the applicability of the proposed method, an experimental test with an im-

age of one of the major port structures in the Incheon Republic of Korea was performed. 
An inspection drone specialized for port facilities was developed containing the follow-
ing: a module for precise three-dimensional position control using multiple GNSS and 
corrected signals, a module for mounting a multi-angle camera and a front gimbal, and a 
folding frame capable of being carried by a person for photo and videography (see Figure 
8a). The Figure 8b shows the 3D flight trajectory when capturing the images at high alti-
tude. Through the development of real-time image streaming control technology that in-
tegrates the ground control module and the LTE module, it is possible to control the drone 
in the invisible area more than 3 km away from Incheon port. 

The artificial movement of the structure was generated by moving the target struc-
ture using an integrated orthophoto, and the relative displacement of the structure be-
tween two images was calculated as shown in Figure 9. The figure shows that the main 
displacement is predicted by the X-axis displacement, which is the longitudinal directions 
of the target structure. The estimated relative displacement in the test is found to be D = 
[−43,011.9, −825.5, 439.6, −1.2, 0, 2.6] with all units in mm or degrees. The intrinsic param-
eters were tuned by using GA with the specifications of the structures, which are the co-
ordinates of feature points in the fixed and the target structures. By using the proposed 
method, it will be possible to determine whether to continue using the port structures by 
estimating the displacement before and after a disaster. 

  

Figure 7. Graphic User Interface for estimating 6-DOF displacement.

By using different patterns and size of the checkerboards and experimental data sets
with the X-axis translational displacement and Y-axis rotational displacement, intrinsic
parameters are calculated (see Table 1). The median, minimum, and maximum values
are used to generate populations of the chromosomes in GA. Since the relative standard
deviations of radial distortion parameter on the Y axis, and tangential distortion on the X
and Y axes show relatively large, as shown in Figure 5, the weights on the three distortion
parameters are set to be 2.5 to enlarge the searching range. Table 2 shows the translational
and rotational displacement results using the camera-intrinsic parameter adjusted by
applying GA in the calculation of the 6-DOF displacement. The experimental test without
GA has been performed with intrinsic parameters calculated by 40 captured images, using
a checkerboard shown in Figure 4f. The table includes error of 6-DOF displacements
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calculated based on ten different GA parameters and actual movement. The results show
that the estimated displacements with the compensated camera-intrinsic parameters show
better performance in both the translational and rotational displacements estimation. In the
design standard for port and harbor structures [31–33], the maximum allowable horizontal
displacement at the functional performance level is 100 mm. Considering the acceptable
measurement tolerance, the proposed method with the RMSE of less than 3 mm and 1◦ for
translational and rotation displacements, respectively, can be applied to the port structures
to monitor the structural condition.

Table 2. Root mean square error (RMSE) of 6-DOF displacement estimation.

Experimental Test
Translation Rotation

w/o GA w/ GA w/o GA w/ GA

RMSE of Case 1
(−10mm translational movement

along X-axis)
0.8485 0.6122 (−28%) 0.7703 0.3020 (−61%)

Errors of experimental
results with ten different GA

parameters

1-1

−1.0 0.4 1.0

0.4 −0.1 0.5

0.0 −1.3 0.3

0.2 −0.6 0.0
1-2 0.7 0.0 0.1 0.2 −0.4 0.0
1-3 1.0 −0.4 0.7 0.3 −0.2 0.0
1-4 0.7 −0.4 0.4 0.3 −0.3 0.0
1-5 −0.2 −0.2 1.0 0.3 −1.0 0.0
1-6 0.9 −0.4 0.8 0.3 −0.4 0.0
1-7 1.1 −0.4 0.4 0.3 −0.1 0.0
1-8 1.3 −0.5 0.4 0.4 0.0 −0.1
1-9 0.4 −0.3 0.6 0.3 −0.5 0.0

1-10 1.1 −0.6 0.3 0.5 −0.1 0.0

RMSE of Case 2
(5◦ rotational movement about Y-axis) 2.3188 2.0538 (−11%) 0.8794 0.5255 (−40%)

Errors of experimental
results with ten different GA

parameters

2-1

2.7 −1.0 −2.8

2.8 0.0 −2.5

0.0 −1.4 0.6

−0.8 −0.7 0.0
2-2 3.1 0.0 −0.1 −0.6 −0.7 −0.1
2-3 3.1 −0.2 −1.2 −0.7 −0.6 0.0
2-4 2.3 0.1 −2.8 −0.9 −1.0 0.0
2-5 3.0 0.4 0.5 −0.8 −0.8 −0.2
2-6 3.4 −0.3 −1.2 −0.6 −0.4 0.0
2-7 3.1 −0.2 −1.5 −0.6 −0.5 0.0
2-8 3.9 −0.8 −1.7 −0.4 −0.1 0.0
2-9 3.2 −0.4 −1.0 −0.4 −0.5 0.0

2-10 2.7 −0.5 −2.8 −0.7 −0.9 0.0

RMSE of Case 3
(−30 mm translational movement

along Z-axis)
3.4113 2.3104 (−32%) 0.6683 0.4607 (−31%)

Errors of experimental
results with ten different GA

parameters

3-1

1.9 4.9 2.7

1.7 1.8 −4.1

1.1 0.2 −0.3

0.7 −0.1 −0.2
3-2 2.5 1.3 −3.7 0.6 −0.1 −0.2
3-3 1.9 1.9 −2.2 0.8 −0.4 −0.2
3-4 1.3 1.9 −3.4 1.0 −0.1 −0.2
3-5 2.7 1.6 −2.8 0.4 −0.4 −0.2
3-6 2.1 2.1 −2.8 0.8 0.0 −0.2
3-7 1.9 2.0 −3.2 0.8 0.0 −0.2
3-8 1.5 2.1 −2.4 0.7 −0.3 −0.2
3-9 1.7 2.1 −2.2 0.7 −0.2 −0.2

3-10 1.0 2.2 −2.5 0.6 −0.6 −0.2

4.2. Verification of Field Applicability Using Port Structure Images

To verify the applicability of the proposed method, an experimental test with an image
of one of the major port structures in the Incheon Republic of Korea was performed. An
inspection drone specialized for port facilities was developed containing the following: a
module for precise three-dimensional position control using multiple GNSS and corrected



Appl. Sci. 2021, 11, 6470 10 of 12

signals, a module for mounting a multi-angle camera and a front gimbal, and a folding
frame capable of being carried by a person for photo and videography (see Figure 8a).
The Figure 8b shows the 3D flight trajectory when capturing the images at high altitude.
Through the development of real-time image streaming control technology that integrates
the ground control module and the LTE module, it is possible to control the drone in the
invisible area more than 3 km away from Incheon port.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 13 
 

 

  

 
  

(a) (b) 

Figure 8. Experimental setup with (a) a drone with a front gimbal and its (b) flight trajectories at Incheon port. 

 
Figure 9. Estimation of the relative displacement using port structure images. 

5. Conclusions 
The translational and rotational displacements of port structures can be estimated by 

capturing images that include both a fixed and a target structure. The movement of the 
target structure relative to the fixed structure can be calculated by estimating the displace-
ments from the camera to the fixed and target structures, respectively. The movement of 
the structure can be measured by the vision sensor mounted on mobile platforms such as 
drones without attaching a special sensing system to the structure. Genetic algorithm was 
introduced to improve the accuracy of the displacements, and the results confirmed that 
the root mean square errors of translational and rotational displacement were greatly re-
duced. The applicability of the proposed method to port infrastructure was verified using 
high-latitude orthogonal images, and the specifications of the structures with a mobile 
platform. In the future, deep learning techniques will be applied to enable robust detec-
tion of the structures against changes in external environmental conditions and ensure 
usability and safety of constantly monitored major port facilities. 

Author Contributions: H.J. conceived the presented idea and supervised the project. J.M., H.B. and 
Y.B. developed the detection and quantification method and performed the experimental tests. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research was a part of the project titled ‘Development of smart maintenance moni-
toring techniques to prepare for disaster and deterioration of port infra structures (No. 20210659)’ 
funded by the Ministry of Oceans and Fisheries, Korea. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data available on request due to restrictions e.g., privacy or ethical. 

Figure 8. Experimental setup with (a) a drone with a front gimbal and its (b) flight trajectories at Incheon port.

The artificial movement of the structure was generated by moving the target structure
using an integrated orthophoto, and the relative displacement of the structure between two
images was calculated as shown in Figure 9. The figure shows that the main displacement
is predicted by the X-axis displacement, which is the longitudinal directions of the target
structure. The estimated relative displacement in the test is found to be D = [−43,011.9,
−825.5, 439.6, −1.2, 0, 2.6] with all units in mm or degrees. The intrinsic parameters were
tuned by using GA with the specifications of the structures, which are the coordinates of
feature points in the fixed and the target structures. By using the proposed method, it will
be possible to determine whether to continue using the port structures by estimating the
displacement before and after a disaster.
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Figure 9. Estimation of the relative displacement using port structure images.

5. Conclusions

The translational and rotational displacements of port structures can be estimated by
capturing images that include both a fixed and a target structure. The movement of the
target structure relative to the fixed structure can be calculated by estimating the displace-
ments from the camera to the fixed and target structures, respectively. The movement of
the structure can be measured by the vision sensor mounted on mobile platforms such
as drones without attaching a special sensing system to the structure. Genetic algorithm
was introduced to improve the accuracy of the displacements, and the results confirmed
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that the root mean square errors of translational and rotational displacement were greatly
reduced. The applicability of the proposed method to port infrastructure was verified using
high-latitude orthogonal images, and the specifications of the structures with a mobile
platform. In the future, deep learning techniques will be applied to enable robust detection
of the structures against changes in external environmental conditions and ensure usability
and safety of constantly monitored major port facilities.
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