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Abstract: In this study, a radial basis function (RBF) artificial neural network (ANN) model for
predicting the 28-day compressive strength of concrete is established. The database used in this study
is the expansion by adding data from other works to the one used in the author’s previous work.
The stochastic gradient approach presented in the textbook is employed for determining the centers
of RBFs and their shape parameters. With an extremely large number of training iterations and just
a few RBFs in the ANN, all the RBF-ANNs have converged to the solutions of global minimum
error. So, the only consideration of whether the ANN can work in practical uses is just the issue of
over-fitting. The ANN with only three RBFs is finally chosen. The results of verification imply that
the present RBF-ANN model outperforms the BP-ANN model in the author’s previous work. The
centers of the RBFs, their shape parameters, their weights, and the threshold are all listed in this
article. With these numbers and using the formulae expressed in this article, anyone can predict the
28-day compressive strength of concrete according to the concrete mix proportioning on his/her own.

Keywords: radial basis functions; artificial neural networks; prediction model; compressive strength
of concrete; mix proportioning of concrete

1. Introduction

Concrete has characteristics of durability, impermeability, fire resistance, abrasion
resistance, and high compressive strength. It can be cast into any shape and size. So,
it is the most used construction material in the modern world. Its basic ingredients are
water, cement, gravel which indicates the coarse aggregate, and sand which indicates the
fine aggregate. For some environmental and sustainable considerations, various types
of by-product materials are widely used as admixtures in concrete. The most commonly
seen are the fly ash and the blast furnace slag. Some may also add other materials such as
waste plastic, waste glass, rice husk, etc. [1–6]. Chemical and mineral admixtures might
be added to enhance its workability or to change the time interval of the hardened state.
The compressive strength is related to the proportioning of its ingredients. For economic
reasons such as reducing the construction cost or saving the trial time for the strength
requirement, the prediction of the compressive strength according to the proportioning de-
sign is a very important research topic. Studies have been implemented with mathematical
models [7–12].

In recent decades, a lot of attention has been paid to the application of artificial neural
networks (ANNs) in determining the compressive strength of concrete [13–27]. An ANN is
like a black box. No theoretical relations between the compressive strength of concrete and
the proportioning of its ingredients are needed for establishing an ANN model. The only
requirement is the sufficiency of data for training and testing processes. With a well-trained
ANN, one can input several numerical values which represent the proportioning of the
concrete ingredients such as water, cement, sand, and other admixtures, and the ANN
rapidly prompts out the predicted compressive strength of the concrete.

Typically, the database for the application of an ANN has to be divided into two sets,
one for training and the other for testing. Usually, the testing set should contain more than
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10 % of the database. Otherwise, the ANN has a tendency to over-fit the training set and
will perform poorly in practical uses. In [27], an ANN model for predicting the 28-day
compressive strength of concrete was established. They used the database of [26] in which
an ANN model for the same application was also established. It was presumed that in [26]
too little data were used for testing so that the ANN model was barely acceptable in the
final validation. In [27], the data were rearranged. Fewer data were for training while more
were used for testing. Therefore, the ANN model in [27] outperforms the one in [26], and it
only has half the number of neurons in the hidden layer.

Both the ANN models in [26,27] are the back-propagation (BP) networks. Besides
over-fitting, how to avoid over-training is another important issue when employing the BP-
ANN. The ANN usually fits the training set better and better as more and more iterations
of training are processed. However, it does not guarantee the over-trained ANN will
also perform as well in practical uses. Because the training procedure of BP-ANN is
extremely time-consuming, it is difficult to determine how many iterations of training are
too excessive. In addition, it sometimes converges to a state of local minimum error.

Apart from the BP-ANN, there are many other types of ANNs. One of them is the
Radial Basis Function (RBF) network. Unlike the BP-ANN, the solution of RBF-ANN is
obtained in a rather straightforward way. The RBF centers and their shape parameters
are usually determined in advance, then the weights are determined by the least-squares
approach for a linear algebraic system in which the solution is unique. The only concern is
how to choose the RBF centers and their shape parameters properly. Some may use the
k-means approach to set the cluster centers as the RBF centers. Recently, other advanced
algorithms have been employed in determining the RBF centers and their shape parameters
in the RBF-ANNs which are widely used in various research areas [28–34].

In this paper, an RBF-ANN model for predicting the 28-day compressive strength of
concrete is established. The database in [26] which was also used by [27] for establishing
their model is expanded by adding more data listed in [35–39]. The Stochastic Gradient
Approach presented in [40] is employed for determining the centers of RBFs and their
shape parameters. Further validations are implemented by using the data of [25,26]. The
results are compared with actual values as well as with the results of [27].

2. The Concrete Mix Proportioning

According to [26], the 28-day compressive strength of concrete is mainly related to
seven factors. They are the mass of water, cement, fine aggregate (sand), coarse aggregate
(gravel), blast furnace slag, fly ash, and superplasticizer mixed in 1 m3 concrete. Therefore,
the 28-day compressive strength of concrete can be expressed as a mathematical function
with seven arguments:

y = f (x) (1)

in which
x =

[
x1 x2 · · · x7

]T (2)

where x1 to x7 are the abovementioned proportioning factors while y is the 28-day com-
pressive strength of concrete. For the input and output of the ANN, all the data have to be
normalized into the same range. In this paper, the raw data are transformed into the range
of 0 to 1 linearly.

ξi =
xi − xi,min

xi,max − xi,min
(3)

η =
y− ymin

ymax − ymin
(4)

The database in [26] which was also used by [27] for establishing their model is
expanded by adding 89 pieces of data listed in [35–39]. Totally, there are 571 data in the
database. The testing set is the same as in [27], so 72 pieces of data are for testing while
499 pieces of data are for training. The size of the testing set is about 12.6% of the database.
Printing out all the data might make this paper redundant. Those who need the raw data
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may find them in the references [26,27,35–39]. The ranges from x1 to x7 and y are listed in
Table 1. It is worthy to note that some of the values listed in Table 1 are slightly different
from those in [27]. This is because the database has been expanded by adding data from
other literature.

Table 1. The ranges of the inputs and the output of the raw data [26,27,35–39].

Factors Symbol Maximum Minimum Unit

Inputs

water x1 295 116.5 kg/m3

cement x2 643 74 kg/m3

fine aggregate (sand) x3 1293 30 kg/m3

coarse aggregate (gravel) x4 1226 436 kg/m3

blast furnace slag x5 440 0 kg/m3

fly ash x6 330 0 kg/m3

superplasticizer x7 27.17 0 kg/m3

Output 28-day compressive strength y 95.3 5 MPa

3. The RBF Artificial Neural Network

Now we have the function φ with 7 arguments:

η = φ(ξ) (5)

in which
ξ =

[
ξ1 ξ2 · · · ξ7

]T (6)

where all the arguments are in the range of 0 to 1. The linear combination of n RBFs is
applied to approximate the input-output relation:

η ≈ η̂ = w0 +
n

∑
j=1

wjgj(ξ) (7)

in which gj is the j-th RBF and wj is its weight while w0 represents the threshold. The larger
value of n indicates the better the RBF-ANN fits the input-output relation in the training
data, but it also has a higher risk of over-fitting. With N pieces of training data, i.e., N sets
of ξ1, ξ2, . . . , ξ7 and η, a linear-algebraic system can be formed

AW = η (8)

in which

A =



1 g1(ξ1) · · · · · · · · · gn(ξ1)

1
...

. . .
...

...
... gj(ξi)

...
...

...
. . .

...
1 g1(ξN) · · · · · · · · · gn(ξN)


(9)

W =
[

w0 w1 · · · wj · · · wn
]T (10)

η =
[

η1 η2 · · · ηi · · · ηN
]T (11)

where ξi and ηi represent the input and output of the i-th piece of data. Equation (8)
is a combination of N linear equations subjected with n + 1 unknowns which are the
threshold w0 and the weights w1, w2, . . . , wn. The least-square-error solution can be
obtained promptly by using the following matrix operation.

W =
(

ATA
)−1

ATη (12)
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Among many RBFs, the Gaussian RBF is chosen in this study:

gj(ξ) = exp
(
−‖ξ− ζj‖2/σ2

j

)
(13)

in which ζj represents the center of the jth RBF

ζj =
[

ζ j1 ζ j2 · · · ζ j7
]T (14)

while σj is the shape parameter and ‖ξ− ζj‖ denotes the Euclidean distance from ξ to ζj.
Ususally, the centers of RBFs and their shape parameters are manually pre-determined.
Some may use the k-means approach to set n cluster centers as the RBF centers. Recently,
advanced algorithms like tabu and genetic are employed to determine them [30,32,34].
The structure of this RBF-ANN is similar to the one-hidden-layer BP-ANN which has just
one output. An RBF can be deemed as a neuron in the hidden layer. The RBF centers are
analogous to the synaptic weights from the input layer to the hidden layer. The shape
parameters of the RBFs are similar to the biases (or thresholds) of the hidden neurons. The
weights of the RBFs are like the connections from the hidden layer to the output while the
threshold in Equation (7) is similar to the bias (or the threshold) of the output neuron in
the BP-ANN.

4. The Algorithm for Determining the Centers of RBFs and Their Shape Parameters

Though there are some advanced algorithms for determining the centers of RBFs and
their shape parameters, the stochastic gradient approach presented in the textbook [40]
is employed in this study. It was found in [27] that a single-hidden-layer ANN which
composes just a few neurons in the hidden layer is sufficient for this application. Therefore,
using the stochastic gradient approach is presumed to be enough. Besides, in the author’s
previous work [41] which was about solving the partial differential equations with the
RBFs, the advantages of the stochastic gradient approach were clearly demonstrated.

Initially, all the values of σj and ζ jk, in which j = 1 ∼ n and k = 1 ∼ 7, are randomly
chosen. For the reason that a negative σ is meaningless and too large σ makes the Gaussian
RBF behave like a constant, σj is confined just in the range of 0 to 10. Similarly, a too far
Euclidean distance from ξ to ζj is also meaningless, so all the components of ζj are confined
in the range from −1 to 2, for the reason that all the components of ξ are just in the range
of 0 to 1. After using Equation (12) to obtain the threshold w0 and the weights w1, . . . , wn,
the error ei corresponding to the ith piece of data can be calculated

ei = η̂i − ηi (15)

in which ηi is the exact output while η̂i is the predicted output by the RBF-ANN. The total
square error is summed up as

E =
N

∑
i=1

e2
i (16)

The value of E is now dependant on values of σj and ζ jk. We can use the following
formulae to update their values:

σ
(new)
j = σ

(old)
j − µ

∂E
∂σj

(17)

ζ
(new)
jk = ζ

(old)
jk − µ

∂E
∂ζ jk

(18)

in which µ is called the stepping parameter. Smaller µ results in a steady convergence but
might make it trapped in a state of local minimum error. On the other hand, larger µ results



Appl. Sci. 2021, 11, 6382 5 of 10

in instability but may help to escape from the strap. In this study, µ is set as a relaxation
coefficient that varies according to the situation of convergence.

µ =


1000µ(p) , if µ(p) < 0.01µ(i)

10µ(p) , else if Niter/200 = Int(Niter/200)
1.03µ(p) , else if E < E(p)

0.5µ(p) , otherwise

(19)

in which the superscript (p) denotes the word “previous” and the superscript (i) denotes
the word “initial”, Niter represents the number of processed iterations, and the operator
“Int(•)” means taking the integer part of a floating number. Multiplying µ by 1000 or by
10 can help to escape from the state of local minimum error. The initial value of µ is 0.01.
The training algorithm is listed as follows.

Step 1: Randomly set initial values for σj and ζ jk. ( j = 1 ∼ n and k = 1 ∼ 7)
Step 2: Use Equation (12) to obtain the threshold w0 and the weights wj.
Step 3: Calculate the error ei for each piece of the training data ( i = 1 ∼ N), then sum up
the total square error E.
Step 4: If the total square error E is the smallest so far, save the values of w0, wj, σj and ζ jk
in a file.
Step 5: If the smallest E has not been updated for 500,000 times of training iteration, reset
σj and ζ jk with random values and go back to Step 2.
Step 6: Use Equation (19) to set the stepping parameter µ.
Step 7: Update all the values of σj and ζ jk by using Equations (17) and (18).
Step 8: Repeat Steps 2 to 7 and stop when the required number of iterations is achieved.

5. The Results of Training and Testing

The computer program is coded with Fortran 90 and compiled with the X64 compiler
of Intel®-Fortran 2016. Each run uses only one processor of the computer of Intel® Core™
i7-8700CPU @3.20GHz 3.19GHz. Artificial neural networks with 2–5 RBFs are trained and
tested. Each RBF-ANN is trained with three runs in which 2× 108 iterations are processed.
The computational time does not increase linearly with the number of RBFs. For the ANNs
with 2 RBFs, the computational time is 2.98 h. As per those with 3, 4, and 5 RBFs, the
computational times are 4.25, 5.56, and 6.81 h respectively. Though the centers of RBFs
and their shape parameters are all set up with random numbers, after 2× 108 iterations of
training, the ANNs with the same number of RBFs converge to results that are very close to
each other. That means the convergence is valid for sure. It also confirms the presumption
that using the stochastic gradient approach is enough. For the ANNs with just 2 or 3 RBFs,
converging to the final result just needs several million times of iteration, which means the
convergence is achieved within 1 hour.

The root-mean-square error is employed to examine the performance of the trained ANNs.

Er.m.s. =

√
(η − η̂)2 (20)

where the overbar represents the average in the data set. Note that the numbers of data
in the training set and testing set are 499 and 72, respectively. The results of training and
testing are plotted in Figure 1.
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Figure 1. The performance of the trained radial basis functions-artificial neural networks
(RBF-ANNs).

It is found that setting more RBFs in the ANN results in smaller Er.m.s. in the training
set. However, it does not go the same way in the testing set. This implies too many RBFs
in the ANN have a risk of over-fitting. Though the ANN with 4 RBFs fits testing data the
best, using just 3 RBFs is supposed to be safer from over-fitting. The comparisons of exact
values and the predicted values by the ANN with 3 RBFs are shown in Figure 2. Note that
the plotted values in this figure are the normalized values. The root-mean-square errors of
the training set and the testing set are 0.0822 and 0.0895, respectively. It is worthy to note
that the testing set is the same as in [27] while the RBF-ANN in this study fits the testing
set better. The root-mean-square error of the testing set in [27] was 0.0914.
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Finally, the centers of the 3 RBFs are listed here.

ζ1 =
[
−1.00000 −1.00000 0.44034 0.60326 −0.00486 0.52630 1.24615

]T (21)

ζ2 =
[
−0.84767 0.61160 0.46294 0.56556 0.67973 0.61628 0.65405

]T (22)

ζ3 =
[
−0.55917 1.05027 1.08523 0.79403 0.86121 0.77691 0.46370

]T (23)

The shape parameters of these 3 RBFs are 2.06819, 0.90677, and 0.45945, respectively.
Their weights are −4.17952, 11.2345, and −5275.82 while the threshold is 1.05900. With
these numbers, one can use Equations (7) and (13) to calculate the corresponding output of
the ANN by any input. The 28-day compressive strength of the concrete can be retrieved
by using the backward transform of Equation (4).

6. The Verification

Additional 12 mix designs listed in [26] are used for the verification of the present
RBF-ANN model. They are excluded from the database for training and testing. The
predicted values are also compared with those predicted by the BP-ANN models in [26,27].
The results are plotted in Figure 3. It should be noted that the values plotted in this figure
are the values of the 28-day compressive strength of concrete whose range in the database
is from 5 MPa to 95.3 MPa. The Er.m.s. by using the present RBF-ANN model is 7.53 MPa. It
performs a little worse than the BP-ANN model in [27] whose Er.m.s. is just 4.73 MPa. As
per the comparison with the BP-ANN model in [26] whose Er.m.s. is 10.70 MPa, the present
RBF-ANN is still better.
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Figure 3. Comparison of the predicted values with the actual 28-day compressive strength of
concrete [26] (Unit: MPa).

In [25], the genetic algorithm was employed to train the artificial neural network
which was established to predict the 28-day, 56-day, and 91-day compressive strengths of
concrete admixing with fly ash or without fly ash. Blast furnace slag and superplasticizer
are not admixed in their samples. Though the predicted results of [25] were not listed
in their paper, the actual compressive strengths were available. So, the data were used
to validate the BP-ANN model of [27] further. Here, the data in [25] are also used to
validate the present RBF-ANN model. The comparisons of the predicted and the actual
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28-day compressive strengths of the concrete admixed with and without fly ash are plotted
in Figures 4 and 5. For those admixed with fly ash, the present RBF-ANN model has a
root-mean-square error of 9.42 MPa while the BP-ANN model of [27] performs with the
root-mean-square error of 10.28 MPa. Both ANN models over-estimate the compressive
strength, but the results of the present model are generally closer to the actual values. For
those admixed without fly ash, the root-mean-square errors are 2.65 MPa and 7.19 MPa,
respectively. The present model performs much better than the model in [27].
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The result is quite reasonable because the variation of particle sizes and the chemical
composition in different fly ash may be the source of some uncertainties. Generally
speaking, the performance of the present RBF-ANN is quite acceptable.

7. Conclusions

The focus of this study is on establishing an RBF-ANN model for predicting the
28-day concrete compressive strength according to the proportioning of the ingredients.
The stochastic gradient approach present in [40] is employed for tuning the centers of RBFs
and their shape parameters. Using a similar treatment in [41], the stepping parameter in the
stochastic gradient approach is treated as a relaxation coefficient which can help to escape
from the solution of local minimum error. An RBF in the ANN is analogous to a neuron in
the BP-ANN which was employed for the same purpose in the author’s previ-ous work [27].
Artificial neural networks with 2–5 RBFs are trained and tested. Each RBF-ANN is trained
with 3 runs in which 2× 108 iterations are processed. After the iteration processes, all the
ANNs with the same number of RBFs converge to results that are very close to each other.
This implies the convergence is valid. Therefore, the only issue concerning over-fitting is
the number of RBFs. Finally, the ANN with just 3 RBFs is chosen for further verification.
Data for verification are the same as those used in the author’s previous work [27] so they
can be compared. The comparisons show that the present model performs better than
the author’s previous model [27] which was established by using the BP-ANN and has
7 neurons in the hidden layer.

The centers of the RBFs, their shape parameters, their weights, and the threshold are
all listed in this article. With these numbers and using Equations (3), (4), (7), and (13),
anyone can predict the compressive strength of concrete according to the concrete mix
proportioning on his/her own.
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