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Abstract: Recently, digital pathology is an essential application for clinical practice and medical
research. Due to the lack of large annotated datasets, the deep transfer learning technique is often
used to classify histopathology images. A softmax classifier is often used to perform classification
tasks. Besides, a Support Vector Machine (SVM) classifier is also popularly employed, especially for
binary classification problems. Accurately determining the category of the histopathology images
is vital for the diagnosis of diseases. In this paper, the conventional softmax classifier and the SVM
classifier-based transfer learning approach are evaluated to classify histopathology cancer images in
a binary breast cancer dataset and a multiclass lung and colon cancer dataset. In order to achieve
better classification accuracy, a methodology that attaches SVM classifier to the fully-connected (FC)
layer of the softmax-based transfer learning model is proposed. The proposed architecture involves a
first step training the newly added FC layer on the target dataset using the softmax-based model and
a second step training the SVM classifier with the newly trained FC layer. Cross-validation is used
to ensure no bias for the evaluation of the performance of the models. Experimental results reveal
that the conventional SVM classifier-based model is the least accurate on either binary or multiclass
cancer datasets. The conventional softmax-based model shows moderate classification accuracy,
while the proposed synthetic architecture achieves the best classification accuracy.

Keywords: image classification; support vector machine; transfer learning

1. Introduction

In medical practices, digital pathology is gaining momentum, which focuses on
management and analysis of the information generated by the digitalized specimen slides,
due to the rapid progress in scanning technologies [1]. Its applications are spreading across
diagnostic medicine and disease prediction. By incorporating AI and machine learning,
digital pathology retains great power for clinical application and biomedical research [2–5].

Accurately classifying histopathology images is an important task in clinical practice
to gain a reliable diagnosis of diseases. With the help of machine learning, in particular
transfer learning, this kind of task can be automated to replace the tedious and expensive
labor work of human experts and suit the demands for high accuracy, large data scales,
and efficient computation. Due to the lack of large publicly available, annotated digitized
slides, transfer learning is commonly used. Transfer learning addresses the cross-domain
learning problems by transferring helpful information from the source domain to the task
domain, and it is actively applied in visual categorization [6]. Different transfer learning
techniques are classified in [6] into feature representation transfer, including cross-domain
knowledge transfer and cross-view knowledge transfer, and classifier-based knowledge
transfer, including SVM-based, TrAdaboost, and generative models. The employment of
deep transfer learning is prevalent due to its superior performance and flexibility [7–11].
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Support Vector Machine (SVM) is a supervised learning model initially designed for
binary classification tasks [12,13] and has high-quality generalization ability for binary
classification problems [14,15]. SVM can be extended to solve multinomial classification
problems employing Error-Correcting Output Code (ECOC) [16–18]. The outcome is,
however, not as good compared with binary problems. SVM is also actively used as the
classifier in deep transfer learning. In [2], different deep transfer learning strategies for
digital pathology are comprehensively compared on eight classification datasets, where
SVM shows promising results when used as the classifier. However, some other researchers
claim the advantage of SVM on binary problems is not always evident. The study in [19]
tests three backend deep learning architectures, namely VGG, ResNet, and Inception, as
feature extractors and three different classifiers, namely FC multilayer, SVM, and Random
Forests, on four datasets in digital pathology, and evaluates reproducibility by examining
the issue of evaluating the accuracy of predictive models. The emerging AI-based com-
putational pathology has shown great promise in increasing the accuracy of high-quality
health care, and contributes insights to the diagnosis and treatment of diseases [20]. Deep
learning has been used for analysis of histology images, tumor detection, grading and
subtyping, prediction of mutations, survival and response from histology, and largely
automates clinical workflows [21].

In this paper, a transfer learning methodology combining the FC layer trained by
a softmax classifier on the target dataset with the SVM classifier is proposed to classify
histopathology images. Due to the shortages of the specific publicly available annotated
histopathology dataset, some previous researches use transfer learning based on off-the-
shelf deep CNN architectures, pre-trained on ImageNet as the backbone for classifying
histopathology images. A softmax classifier is commonly used in transfer learning which
is effective for binary or multinomial classification. An SVM classifier is, however, usually
confined to binary classification. The proposed methodology contains a two-step procedure.
It first uses AlexNet pre-trained on ImageNet as the backbone in the transferred layers and
softmax classifier, and trained on the target dataset, then the SVM classifier is attached
to the already trained FC layer in the first step, and the network is trained a second time.
Experiments are performed using four-fold cross-validation for the softmax-based model,
the SVM-based model and the proposed model, on a binary breast cancer image dataset
and a multiclass lung and colon cancer dataset, and the obtained results show evident
improvement from the proposed synthetic architecture in classification accuracy compared
with the softmax classifier and the SVM classifier used individually.

2. Introduction of Background Knowledge
2.1. Transfer Learning

Transfer learning is a popular machine learning method where a model developed
for one task is reused as the starting point for the model on a different task. It can transfer
already obtained knowledge to new conditions. In deep learning, transfer learning means
using the networks pre-trained on one large dataset as the starting point to construct a new
network architecture that can be used on a new dataset with fine-tuning. This significantly
reduces the effort for training and is usually much faster and easier than constructing and
training a network from scratch, given the vast resources required to train the deep CNN.

The deep learning models pre-trained for a large and challenging image classification
task, ImageNet competition, are commonly used to perform transfer learning. In this paper,
pre-trained AlexNet architecture is used. In order to transfer the richly learned features
from AlexNet to a new image classification task, the tail part of the network is cut off and
replaced with a new classifier, softmax, for example, to suit the need for the new task. The
rest of the newly formed transfer network structure is the same as the pre-trained network
except for the last couple of layers. The weights in the transferred layers are kept frozen
while training the newly constructed network. Thus, the knowledge learned from the
pre-trained dataset images can be transferred to the new task.
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2.2. AlexNet Architecture

AlexNet is a well-known fast GPU implantation of CNN developed by Alex Krizhevsky,
which won the ImageNet contest in 2012. The capability of AlexNet to achieve high accu-
racy on very challenging datasets is incredible. It has been trained to classify more than
a million images on the ImageNet dataset into a thousand different classes and learned
rich features from those images; the results on test data are 37.5% top-1 error rates and
17.0% top-5 error rates. The network has over 60 million parameters and 65,000 neurons,
and it took around a week to train on two GTX 580 GPUs. The ImageNet is a large im-
age database designed for visual object recognition research. It contains over 14 million
annotated images with more than 20,000 categories.

The architecture of AlexNet is illustrated in Figure 1. It consists of five convolutional
layers and three fully connected (FC) layers. In the first convolutional layer, there are
96 kernels of size 11 × 11 × 3. Likewise, in other convolutional layers, there are many
kernels of the same size. Max pooling layers are appended to the first, the second, and the
fifth convolutional layers. The last FC layer feeds into a final 1000-way softmax.
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Figure 1. Architecture of AlexNet.

Rectified Linear Unit (ReLU) is a critical feature of the AlexNet instead of using the
tanh function. By using ReLU nonlinearity, AlexNet could be trained much faster than
using the saturating activation functions. Besides dropout, data augmentation, including
image translation and reflection, altering the intensities of the RGB channels are employed
to prevent overfitting.

2.3. Support Vector Machine

SVM is one of the widely used supervised learning models in machine learning that
can assign new data points to different categories when given a set of training examples.
It maps data points in space and tries to separate all data points of different classes by
finding the best hyperplane in n-dimensional space with the most significant margin
between classes, where n is the number of features. The samples fall into one of the
sections separated by the hyperplane. Thus, the category to which the sample belongs can
be determined.

An illustration of SVM for binary data classification is shown in Figure 2. The two
classes of data points are labeled as circles and triangles in the figure. SVM constructs
a hyperplane that separates different classes of data points. The support vectors are the
points that are closest to the hyperplane. Typically, many possible hyperplanes can be used;
the one with the maximum distance or margin between data points of different classes is
chosen, such that the new data points can be classified with more confidence.
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3. Proposed Model of Deep Transfer Learning Based on SVM Classifier
3.1. Histopathology Image Dataset

Accurately identifying cancerous tissue and benign tissue is an essential clinical task.
The first histopathology image dataset for study in this paper is a breast cancer dataset
from [22,23], it contains 198,738 Invasive Ductal Carcinoma (IDC) images and 78,786 non-
IDC images. The images are small patches of 50 × 50 pixels extracted from 162 whole
mount slide images of breast cancer specimens. The IDC is the most common subtype
of all breast cancers, and the regions containing it are usually the focus of pathologists to
assign an aggressiveness grade to the whole mount sample. Some sample images from this
dataset are given in Figure 3.

Appl. Sci. 2021, 11, 6380 4 of 17 
 

Support 
vector

Hyperplane

Margin

 

Figure 2. SVM binary classification. 

3. Proposed Model of Deep Transfer Learning Based on SVM Classifier 

3.1. Histopathology Image Dataset 

Accurately identifying cancerous tissue and benign tissue is an essential clinical task. 

The first histopathology image dataset for study in this paper is a breast cancer dataset 

from [22, 23], it contains 198,738 Invasive Ductal Carcinoma (IDC) images and 78,786 non-

IDC images. The images are small patches of 50 × 50 pixels extracted from 162 whole 

mount slide images of breast cancer specimens. The IDC is the most common subtype of 

all breast cancers, and the regions containing it are usually the focus of pathologists to 

assign an aggressiveness grade to the whole mount sample. Some sample images from 

this dataset are given in Figure 3. 

The second studied histopathology image dataset from [24] contains 25,000 histo-

pathology images, with a size of 768 × 768 pixels, and five classes, including benign lung 

tissue, lung adenocarcinomas, and lung squamous cell carcinomas, benign colon tissue, 

and colon adenocarcinomas, each with 5000 images. The sample images are also shown 

in Figure 3. 

Non-IDC

Lung benign

Colon benign

IDC

Lung
adenocarcinoma

Colon
adenocarcinoma

breast cancer 
dataset

lung and colon cancer 
dataset

Lung squamous 
cell carcinoma

 

Figure 3. Sample images from breast cancer dataset, and lung and colon cancer dataset. 

  

Figure 3. Sample images from breast cancer dataset, and lung and colon cancer dataset.

The second studied histopathology image dataset from [24] contains 25,000 histopathol-
ogy images, with a size of 768 × 768 pixels, and five classes, including benign lung tissue,
lung adenocarcinomas, and lung squamous cell carcinomas, benign colon tissue, and colon
adenocarcinomas, each with 5000 images. The sample images are also shown in Figure 3.

3.2. Deep Learning Architectures for Histopathology Image Classification

In order to classify cancer histopathology images from the above datasets, two deep
CNN-based transfer learning networks are first constructed. The off-the-shelf AlexNet
pre-trained on the ImageNet dataset is used as the backbone of the transferred network.
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A transfer learning network architecture is built using the conventional softmax
classifier, as shown in Figure 4. The last three layers of the original AlexNet, namely a fully
connected (FC) layer, a softmax layer, and the output layer, are cut out. A new FC layer, a
new softmax layer, and a new output layer are added, of which the newly added FC layer
is connected to a dropout layer in the transferred AlexNet.
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The second architecture consists of the transferred AlexNet and an SVM classifier as
the final stage. The SVM classifier is connected to the last FC layer of AlexNet, as shown in
Figure 5.
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The above two architectures are used for transfer learning in other researches. Some
claim that the SVM-based model can lower classification error than the softmax-based
model, while others claim that the former model does not show superiority compared with
the latter one.

A combination of the above two models is proposed in this paper. After constructing
the softmax-based model, the network is trained using the target breast cancer dataset
described in the previous section. The weights in the transferred layers borrowed from
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AlexNet are frozen, and only the newly added layers in the softmax classifier are trained.
Then the features extracted by the newly added FC layer are used to feed a new SVM
classifier. The proposed architecture is shown in Figure 6. With the proposed architecture,
the target dataset is used again to train the added SVM classifier. The key of the proposed
architecture is that the SVM classifier is connected to the FC layer that has been trained by
the softmax classifier-based transfer learning network using the target dataset.
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4. Experiments and Discussion

In order to evaluate the classification performance of the softmax classifier-based
model, the SVM classifier-based model, and the proposed synthetic model, experiments are
first carried out on the breast cancer dataset. In order to have less biased or less optimistic
estimate of the models’ performance, four-fold cross-validation setup is used. To simply
ensure the balance of each class, 56,000 IDC images and 56,000 non-IDC images are used.
The selected images are equally split into four groups with the same number of images for
each group. For fold number k, the kth group is used for validation and the other three
groups combined are used for training. The process is repeated four times. During the
splitting of the dataset, stratified sampling is used in order to eliminate sampling bias, the
number of images for each class of each split group are kept the same, i.e., 14,000 IDC
images and 14,000 non-IDC images in each group. Same folds are used for all three models.
It should be noted that the patient-wise data portioning is not currently considered in this
paper, which will be improved in the future work.

The softmax classifier-based model is first trained using the above cross-validation
setup. The images are first resized to 227 × 227 pixels to fit the input size of the transferred
AlexNet. The transferred layers are assigned a minimal learning rate to make sure the
weights in these layers are frozen, and the features learned from the ImageNet database
can be successfully transferred to the target dataset. For each fold of cross-validation, the
training is carried out for 10 epochs using the Adam solver. The training set is divided into
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mini-batches with a size of 100. For each iteration, a mini-batch is used for training, and
a different mini-batch is used in the next iteration. The training is conducted throughout
the whole training set in 840 iterations or one epoch. The total number of iterations is
8400. The training progress of the four folds of cross-validation is shown in Figure 7,
including training accuracy and training loss. The classification accuracy on the validation
set for each fold are shown in Table 1, which ranges from 0.6887 to 0.8579, and the average
cross-validation accuracy is 0.7806. The confusion matrix of the softmax-based model is
shown in Figure 8.

For the cross-validation of the proposed synthetic model, after obtaining the softmax-
based model trained on the breast cancer dataset in the nth fold, the newly trained FC layer
with the transferred AlexNet in the softmax-based model is used for feature extraction
in the nth fold cross-validation of the proposed model. The dataset configuration is
exactly the same as in the previous experiments. For the SVM classifier in the proposed
approach, linear kernel is used due to its best accuracy on the target dataset compared
with other kernels, such as the Gaussian kernel and high-order polynomial kernel. The
cross-validation accuracy is also shown in Table 1 for comparison, which ranges from
0.6916 to 0.8558, and the average cross-validation accuracy is 0.7840. The corresponding
confusion matrix is shown in Figure 8.

Cross-validation is performed in SVM-based model, linear kernel is used as well.
Attached to the frozen transferred AlexNet layers, the SVM classifier is trained on the
breast cancer dataset, and the average classification accuracy on the validation set for the
four-fold is 0.6877. The confusion matrix is shown in Figure 8.

By comparing the three models for binary breast cancer histopathology image classi-
fication, the SVM-based model is less computationally intensive. However, the average
cross-validation accuracy of this model is the worst among the three models, which is 11.9%
lower than that of the softmax-based model and 12.2% lower than the proposed model.
Even though the SVM-based model and the proposed model both feature an identical
SVM classifier, the feature extraction using the FC layer trained on the target dataset in the
proposed model largely outperforms the feature extraction using only the ImageNet-based
AlexNet in the SVM-based model. The proposed model also shows a 0.4% improvement of
the average cross-validation accuracy over the softmax-based model after replacing the
softmax classifier with the SVM classifier.
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To verify the proposed approach, experiments are then conducted on the multiclass
lung and colon cancer dataset. Similar to the previous experimental setup, four-fold cross
validation is used. The dataset is split into four groups, stratification is used in splitting the
dataset, each group contains 1250 images for each class. The ratio of number of images for
training and number of images for validation in each fold is 3:1. Same folds are used for all
three models.

The softmax-based model is first trained using Adam solver for 10 epochs with a mini-
batch size of 100 in each fold, and the number of iterations is 1870. The training progress
of the four folds are shown in Figure 9. The confusion matrix is shown in Figure 10. The
cross-validation accuracy is shown in Table 2, and is above 0.99 for all four folds, and an
average accuracy 0.9929 is achieved.

Table 1. Cross-validation accuracy of the three transfer learning models on breast cancer dataset.

Softmax-Based SVM-Based Proposed

Fold 1 0.6887 0.5311 0.6916
Fold 2 0.8579 0.7525 0.8558
Fold 3 0.8036 0.7848 0.8150
Fold 4 0.7720 0.6825 0.7734

Average 0.7806 0.6877 0.7840
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Table 2. Cross-validation accuracy of the three transfer learning models on colon and lung can-
cer dataset.

Softmax-Based SVM-Based Proposed

Fold 1 0.9922 0.9642 0.9942
Fold 2 0.9962 0.9443 0.9952
Fold 3 0.9920 0.9550 0.9930
Fold 4 0.9912 0.9603 0.9952

Average 0.9929 0.9560 0.9944

Then the proposed model is trained based on the already trained softmax-based model
in the same fold. The SVM classifier is based on Error-Correcting Output Codes (ECOC)
in order to classify multi classes other than binary classification. The validation accuracy
for each fold is listed in Table 2, and also above 0.99 for all folds, the average accuracy is
0.9944. The corresponding confusion matrix is shown in Figure 10.

Similarly, ECOC is used in the SVM-based model, and the model is trained four folds,
the cross-validation accuracy ranges from 0.9443 to 0.9642 with an average of 0.9560 is
obtained. The confusion matrix is also shown in Figure 10.

By comparing the three models for multiclass lung and colon cancer classification, the
SVM-based model still has the lowest average cross-validation accuracy even though it
is already above 0.95. The proposed model is again the winner among the three models,
its average accuracy is 0.2% higher than that of the softmax-based model and 4.0% higher
than that of the SVM-based model.

No matter for binary histopathology image classification or for multiclass histopathol-
ogy image classification, it is proved from the above experimental results that the proposed
architecture with training twice on the target dataset enjoys more superior classification
accuracy. The feature extraction empowered by the FC layer trained on the target dataset
help enhance the classification performance of the proposed model.

5. Conclusions

This paper proposes a transfer learning architecture based on the trained softmax-
based model and SVM classifier to perform classification tasks on two histopathology
image datasets. The proposed synthetic architecture involves a two-step procedure. The
first step is to train a softmax classifier-based network using transfer learning on the target
dataset. The second step is to use the already trained FC layer in the first step to connect
to an SVM classifier. A pre-trained deep CNN architecture AlexNet is used for feature
extraction for transfer learning. Knowing the tissue is cancerous or benign is vital for the
doctor to diagnose the cancer of the patients. Thus, improving the classification accuracy
of the histopathology image becomes a crucial task for machine learning applications. The
softmax-based model, the SVM-based model, and the proposed synthetic model are tested
and compared on a binary breast cancer dataset and a multiclass lung and colon cancer
dataset. Four-fold cross-validation is used to ensure less bias of the evaluation of the three
transfer learning models. Experimental results obtained show that the proposed method
achieves the best histopathology cancer image classification accuracy, both in binary and
multiclass histopathology image datasets.
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