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Abstract: When fire occurs in a large multiplex building, the direction of smoke and flames is often
similar to that of the evacuation of building occupants. This causes evacuation bottlenecks in a
specific compartment, especially when the occupant density is very high, which unfortunately often
leads to many fatalities and injuries. Thus, the development of an egress model that can ensure the
safe evacuation of occupants is required to minimize the number of casualties. In this study, the
correlations between fire temperature with visibility and toxic gas concentration were investigated
through a fire simulation on a multiplex building, from which databases for training of artificial
neural networks (ANN) were created. Based on this, an ANN model that can predict the available
safe egress time was developed, and it estimated the available safe egress time (ASET) very accurately.
In addition, an egress model that can guide rapid and safe evacuation routes for occupants was
proposed, and the rationality of the proposed model was verified in detail through an application
example. The proposed model provided the optimal evacuation route with the longest margin of
safety in consideration of both ASET and the movement time of occupants under fire.

Keywords: multiplex building; fire; egress model; artificial neural network (ANN); available safe
egress time (ASET)

1. Introduction

In recent years, the number of fires in multiplex buildings used for various purposes
has increased. When a fire occurs in multiplex buildings, as shown in Figure 1, many
casualties arise since the direction of smoke and flames is similar to that of the evacuation
of occupants [1,2]. The smoke caused by fire drastically reduces the visibility required for
the occupants to escape, and this in turn leads to a decrease in the occupant walking speeds
and available safe egress time (ASET) [3]. In addition, as the occupant densities are very
high in multiplex buildings, bottlenecks may occur in a specific compartment, resulting in
a larger number of casualties. Therefore, in order to minimize the number of casualties, it is
essential to develop an egress model capable of ensuring the safe evacuation of occupants.
At present, however, a fire simulation needs to be conducted to estimate ASET, which is the
most important factor for the development of an egress model, and it poses a disadvantage
that requires a large amount of time and manpower.

Park et al. [4] proposed standardized fire scenarios to perform quantitative fire risk
assessments for high-rise buildings, and Wahyu et al. [5] conducted a fire simulation on a
20-story apartment building to derive the temperature and concentrations of toxic gases in
each compartment, and evaluated the ASET. Based on the simulation results, they reported
that as the temperatures rise, the heat can have a life-threatening effect in about 8 min
after the fire, and flashover occurs after about 9 min. Kim et al. [6] performed egress safety
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evaluations on movie theaters and provided the details about the size and location of
openings to facilitate occupants’ evacuation process, and Oh et al. [7] conducted evacuation
simulations on commercial office buildings and evaluated the ASET, which depends on
the behavior of toxic gases. Nardo et al. [8] performed quantitative fire and explosion
risk assessment based on the system dynamic (SD) simulation model. They considered a
risk due to the use of liquefied petroleum gas (LPG) cylinders and reflected the human
characteristics in their SD model. Recently, research has been actively done to develop
evacuation facilities for efficient occupant evacuation in addition to the evaluation of fire
safety [9,10].

Figure 1. Multiplex buildings in fire.

In the field of engineering, studies have been conducted to solve problems that pose
difficulties in numerical analysis due to the large uncertainty of input and output variables
and complex mechanisms with the use of an artificial neural network (ANN) model [11–13].
The ANN is a regression analysis model that can examine complex nonlinear relationships
between the input and output variables based on a database (DB), and has advantages in
that it can minimize the error of output through the training process and provide output
in a very short time when input data are given for the pre-trained model. If an ANN
algorithm is utilized in the fire and evacuation analysis, the time required to derive the
ASET can be reduced to about 1/100 s [14]. In the event of a fire in buildings, data obtained
from temperature and toxic gas detection sensors can be used to estimate ASET in real
time, and it is possible to provide the optimal evacuation route for the occupants.

In this study, a fire simulation was conducted on the assumption of various fire
scenarios for general multiplex buildings. The correlations between fire temperature and
visibility, and between fire temperature and gas concentration, were investigated based on
the simulation results, and DBs were built in those connections. In addition, an algorithm
that can calculate real-time ASET in the case of a fire was developed using DB and ANN.
The rationality of the proposed ANN model was verified by comparing the ASET derived
using the proposed model with the ASET derived from the fire simulation. In addition,
the ANN-based egress model that can provide optimal evacuation routes in the event of
a fire was proposed, as shown in Figure 2, and an example was presented to verify the
applicability of the proposed egress model.
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Figure 2. General structure of an egress model based on ANN.

2. Fire Simulation for Multiplex Building
2.1. Description of Fire Simulation

The Fire Dynamics Simulator (FDS) [15], based on large eddy simulation (LES) [16],
has been widely used for fire simulation and well verified by many researchers [1–4]. In
this study, therefore, the FDS was chosen to simulate the event of fire in multiplex buildings.
As shown in Figure 3, the multiplex building has a room height of 3.2 m with a floor area
of 3444 m2 (82 m × 42 m), and a mesh size of 0.62 m × 0.62 m × 0.72 m [15]. The mesh
sizes were determined based on the D∗ method mentioned in the FDS User Guide [15]. A
nondimensional parameter (D∗/δx) was set to 4, where D∗ is a characteristic fire diameter
(m), and δx is the nominal size of a mesh cell (m). D∗ can be calculated as follows:

D∗ =

 •
Q

ρcocpT∞
√

g

2/5

(1)

where
.

Q is the total heat release rate of fire (kW), ρ∞ is the density of air (1.204 kg/m3),
cp is the specific heat (1.005 kJ/kg-K), T∞ is the ambient temperature (293 K), and g is the
acceleration of gravity (9.8 m/s2). The type of fuels and the location of fire sources were
set as the main variables for the analysis. A total of five fuel types, which include ethanol,
kerosene, polystyrene foams, polyurethane foams and wood, were used, and the location
of fire sources were divided into 12 compartments, as indicated by the numbers in circles,
as shown in Figure 3. The values presented in the Society of Fire Protection Engineers
(SFPE) handbook [17] were used as the material properties of fuels, as shown in Table 1.
The combustibles were assumed to be chairs, tables, and sofas, which are mainly placed on
the floor in the multiplex building, and the heat release rate (HRR) of each combustible was
set by referring to the DB provided by the National Center for Forensic Science (NCFS) [18].
As shown in Figure 4, heat release rates over time were calculated using a t-squared fire
curve [19]:

t =

√
Q
α

(2)

where the fire growth rate is classified into ‘slow’, ‘medium’, ‘fast’, and ‘ultra fast’. Q is the
HRR (kW), α is the coefficient for fire growth, and t is the time (s). In the fire simulation
conducted in this study, the burning area was set as 1 m× 1 m, and the fire growth rate was
assumed to be of a medium level with reference to the Structural Design for Fire Safety [20].
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Figure 3. Plan of the multiplex building

Table 1. Material properties of fuels.

Materials
(Fuel Type) Chemical Formula CO Yield,

yco (g/g)
Soot Yield,
ysoot (g/g)

Ethanol C2H5OH 0.008 -
Kerosene C14H30 0.012 0.042

Polystyrene, GM47 CH1.1 0.06 0.18
Polyurethane foams, GM27 CH1.7 0.042 0.198

Wood (red oak) C1.7H0.72O0.001 0.004 0.015

Figure 4. Heat release rates for t2 fires.

In general, factors that directly influence the safety of the occupants in the event of a
fire include toxic gases, heat, and visibility [17], and the National Fire Protection Association
(NFPA) presents tenability criteria, as shown in Table 2. In this study, a simulation was
conducted on fire scenarios for a total of 60 cases, as shown in Table 3, and the temperature,
visibility, and concentrations of oxygen (O2), carbon dioxide (CO2), and carbon monoxide
(CO) at the fire compartment and nonfire compartment were measured for each scenario
with the use of measurement devices placed in a total of 27 locations at intervals of 1 m,
as shown in Figure 5. In order to evaluate the spread of fire and the safety of life during
evacuation of occupants, the measurement devices were installed at a height of 1.8 m
from the floor as suggested by NFPA. Ventilation systems can reduce concentrations of
toxic gases, which keeps occupants safer under fire. The ventilation systems in multiplex
buildings are in fact diverse, which makes it very difficult to conduct numerical simulations
when considering all the different cases. In the simulation conducted in this study, therefore,
it was assumed that there was no forced (or active) ventilation system in the multiplex
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building. Instead, as a worst-case scenario, the FDS analysis was performed considering
only natural ventilation conditions through openings, i.e., doors and windows. Note that
the building for training the ANN has 42 openings (windows and doors), which is 17.4%
of the opening ratio, i.e., the ratio of total opening area to outer wall perimetric area.

Table 2. Tenability criteria.

Physical Property Performance Criteria

Breath height limit 1.8 m from the bottom
Temperature limit Less than 60 ◦C

Allowable visibility More than 5 m

Allowable
toxicity limit

CO Less than 1400 ppm
O2 More than 15%

CO2 Less than 5%

Table 3. Fire scenarios.

Case No. * Fuel Type Total HRR, kW Ramp-Up Time, s
Q t

1, 13, 25, 37, 49

Ethanol
Kerosene

Polystyrene, GM47
Polyurethane foams, GM27

Wood (red oak)

16,139.1 1173.5
2, 14, 26, 38, 50 1148 313.0
3, 15, 27, 39, 51 6963.6 770.8
4, 16, 28, 40, 52 22,885 1397.4
5, 17, 29, 41, 53 22,885 1397.4
6, 18, 30, 42, 54 13,243.9 1063.0
7, 19, 31, 43, 55 9113.2 881.8
8, 20, 32, 44, 56 1570.5 366.1
9, 21, 33, 45, 57 22,940 1399.0

10, 22, 34, 46, 58 2144.5 427.8
11, 23, 35, 47, 59 3141 517.7
12, 24, 36, 48, 60 3436.2 541.5

* Each series has 5 scenarios according to the fuel type.

Figure 5. Locations of measurement devices.

2.2. Fire Simulation Results

The DBs for fire simulation results were built for the fire compartment and nonfire
compartment, respectively. Figure 6 shows the visibility and concentrations of oxygen,
carbon monoxide and carbon dioxide according to the fuel type and temperature at the fire
compartment. The red dotted lines in each graph indicate the tenability criteria given in
Table 2. As shown in Figure 6a, the visibility at the point in time when the temperature at
the fire compartment reached its limit (60 ◦C) ranged from 0.7 m to 3.8 m (ethanol: 0.8 m,
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kerosene: 2.0 m, polystyrene: 0.9 m, polyurethane: 0.7 m, wood: 3.8 m) with respect to
the fuel types. In addition, the time at which the temperature at the fire compartment
reached 60 ◦C ranged from 207 to 225 s (ethanol: 225 s, kerosene: 207 s, polystyrene:
223 s, polyurethane: 221 s, wood: 217 s). For the concentration of oxygen according to the
temperature shown in Figure 6b, when the temperature at the fire compartment reached
60 ◦C, the concentration of oxygen ranged from 20.1% to 20.7%, indicating that the fuel type
has no significant effect on oxygen concentration. In addition, as shown in Figure 6c, the
concentration of carbon monoxide ranged from 31 to 140 ppm (ethanol: 140 ppm, kerosene:
87 ppm, polystyrene: 129 ppm, polyurethane: 101 ppm, wood: 31 ppm) with respect to the
fuel types, and the concentration of carbon dioxide showed a similar increasing tendency
regardless of the fuel type, as shown in Figure 6d.

Figure 6. FDS analysis results with respect to fuel types at the fire compartment.

Figure 7 shows the visibility and concentrations of oxygen, carbon monoxide, and
carbon dioxide at the nonfire compartment, depending on the temperature and distance
from the fire source. Since the analysis results did not show a large difference according
to the type of fuel, the analysis result obtained using polyurethane for fuels was used as
a representative case. As shown in Figure 7a, the visibility according to the temperature
tended to decrease significantly regardless of the distance from the fire location because
the smoke spread rapidly after a fire occurred. In addition, the concentration of oxygen
depending on the temperature decreased rapidly as the distance from the fire location
decreased, as shown in Figure 7b. Meanwhile, in the case of the carbon monoxide and
carbon dioxide concentrations with respect to the temperature, the slope of the line on the
graph tended to increase with the increasing distance from the fire location, as shown in
Figure 7c,d.
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Figure 7. FDS analysis results with respect to distance from fire compartment for the polyurethane fuel case.

In this study, the ASET was evaluated in accordance with the tenability criteria
shown in Table 2, based on the results of the simulation on the fire compartment and
nonfire compartment, and DBs were built in this connection. Figures 8 and 9 show the
fire simulation results of fire compartment and nonfire compartment. In the NFPA, it is
stipulated that the visibility should be larger than 5 m, the temperature less than 60 ◦C,
CO concentration less than 1400 ppm, O2 greater than 15%, and CO2 less than 5%, in
order to secure egress of occupants under fire. Therefore, the values in Figures 8 and 9
were normalized in accordance with the tenability criteria of the NFPA, based on which
DB groups were classified for ANN training. Tables 4 and 5 summarize the slope values
derived through the linear regression analysis for each graph. As shown in Figure 8
and Table 4, the DB group for ANN training was not divided into groups for the fire
compartment. In case of the nonfire compartment, however, it was divided into three DB
groups: i.e., group 1 (1–15 m), group 2 (16–25 m), and group 3 (26–50 m), according to the
distance from the fire location, as shown in Figure 9 and Table 5. In addition, the maximum
and minimum values of input and output parameters used in ANN training for the fire
compartment and nonfire compartment are summarized in Tables 6 and 7.



Appl. Sci. 2021, 11, 6337 8 of 20Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 22 
 

  
(a) Visibility (b) Oxygen (O2) 

  
(c) Carbon monoxide (CO) (d) Carbon dioxide (CO2)  

Figure 8. Normalized curves with respect to fuel type at the fire compartment. 

  
(a) Visibility (b) Oxygen (O2) 

ypolystyrene = 0.0006x + 1.012
ypolyurethene = 0.0006x + 1.0119

yethanol = 0.0006x + 1.0119
ykerosene = 0.0006x + 1.0133

ywood = 0.0004x + 1.0084
0.95

0.97

0.99

0 20 40 60 80

O
xy

ge
n,

 O
2

Temperature , °C

ethanol
kerosene
polystyrene
polyurethene
wood

[Oxygen: 1.0 = 20.78%]

yethanol = 0.0171x  0.7566
ykerosene = 0.0249x  0.5186

ypolystyrene = 0.1627x  3.2557
ypolyurethene = 0.0245x  0.5026

ywood = 0.0323x  0.6467
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
ar

bo
n 

M
on

ox
id

e,
 C

O

Temperature, °C 

ethanol
kerosene
polystyrene
polyurethene
wood

[Carbon Monoxide: 1.0 = 21 ppm]

yethanol = 0.021x  0.3158
ykerosene = 0.0219x  0.3347
ypolystyrene = 0.0922x  1.4114

ypolyurethene = 0.0217x  0.3307
ywood = 0.0273x  0.391

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
ar

bo
n 

D
io

xi
de

, C
O

2

Temperature, °C 

ethanol
kerosene
polystyrene
polyurethene
wood

[Carbon Dioxide: 1.0 = 0.37%]

y = 0.1137x + 2.8915
y = 0.1377x + 3.3297

y = 0.1999x + 4.6705
y = 0.219x + 5.0751
y = 0.3317x + 7.4027

0

0.2

0.4

0.6

0.8

1

15 20 25 30

V
is

ib
ili

ty

Temperature, °C 

0 m
6 m
8 m
11 m
18 m

[Visibility: 1.0 = 50 m]

y = 0.0004x + 1.0084
y = 0.0006x + 1.0115

y = 0.0006x + 1.0126

y = 0.0007x + 1.0134
y = 0.0007x + 1.014

0.99

1

15 20 25 30

O
xy

ge
n,

 O
2

Temperature , °C

0 m
6 m
8 m
11 m
18 m

[Oxygen: 1.0 = 20.78%]

Figure 8. Normalized curves with respect to fuel type at the fire compartment.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 22 
 

  
(a) Visibility (b) Oxygen (O2) 

  
(c) Carbon monoxide (CO) (d) Carbon dioxide (CO2)  

Figure 8. Normalized curves with respect to fuel type at the fire compartment. 

  
(a) Visibility (b) Oxygen (O2) 

ypolystyrene = 0.0006x + 1.012
ypolyurethene = 0.0006x + 1.0119

yethanol = 0.0006x + 1.0119
ykerosene = 0.0006x + 1.0133

ywood = 0.0004x + 1.0084
0.95

0.97

0.99

0 20 40 60 80

O
xy

ge
n,

 O
2

Temperature , °C

ethanol
kerosene
polystyrene
polyurethene
wood

[Oxygen: 1.0 = 20.78%]

yethanol = 0.0171x  0.7566
ykerosene = 0.0249x  0.5186

ypolystyrene = 0.1627x  3.2557
ypolyurethene = 0.0245x  0.5026

ywood = 0.0323x  0.6467
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
ar

bo
n 

M
on

ox
id

e,
 C

O

Temperature, °C 

ethanol
kerosene
polystyrene
polyurethene
wood

[Carbon Monoxide: 1.0 = 21 ppm]

yethanol = 0.021x  0.3158
ykerosene = 0.0219x  0.3347
ypolystyrene = 0.0922x  1.4114

ypolyurethene = 0.0217x  0.3307
ywood = 0.0273x  0.391

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
ar

bo
n 

D
io

xi
de

, C
O

2

Temperature, °C 

ethanol
kerosene
polystyrene
polyurethene
wood

[Carbon Dioxide: 1.0 = 0.37%]

y = 0.1137x + 2.8915
y = 0.1377x + 3.3297

y = 0.1999x + 4.6705
y = 0.219x + 5.0751
y = 0.3317x + 7.4027

0

0.2

0.4

0.6

0.8

1

15 20 25 30

V
is

ib
ili

ty

Temperature, °C 

0 m
6 m
8 m
11 m
18 m

[Visibility: 1.0 = 50 m]

y = 0.0004x + 1.0084
y = 0.0006x + 1.0115

y = 0.0006x + 1.0126

y = 0.0007x + 1.0134
y = 0.0007x + 1.014

0.99

1

15 20 25 30

O
xy

ge
n,

 O
2

Temperature , °C

0 m
6 m
8 m
11 m
18 m

[Oxygen: 1.0 = 20.78%]

Figure 9. Cont.



Appl. Sci. 2021, 11, 6337 9 of 20Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 22 
 

  
(c) Carbon monoxide (CO) (d) Carbon dioxide (CO2) 

Figure 9. Normalized curves with respect to distance from the fire compartment. 

Table 5. Slope with respect to fuel type and distance from the fire compartment measured in the nonfire area. 

 
Locations 
Parameters 

Slope at the Distance from Fire Compartment 

1 m 15 m 16 m 25 m 26 m 50 m 

O2 

Polyurethane −0.0013 −0.0009 −0.0021 −0.003 −0.0024 −0.0036 
Polystyrene −0.0013 −0.0009 −0.0022 −0.0010 −0.0014 −0.0026 

Ethanol −0.0012 −0.0008 −0.0023 0.0011 −0.0005 −0.0011 
Kerosene −0.0011 −0.0009 −0.0017 −0.0009 −0.0013 −0.0033 

Wood −0.0009 −0.0006 −0.0014 −0.0008 −0.0009 −0.0012 
AVG −0.0012 −0.0008 −0.0019 −0.0009 −0.0013 −0.0024 

CO2 

Polyurethane 0.0099 0.0303 0.0898 0.0932 0.2054 0.2995 
Polystyrene 0.0120 0.0295 0.0530 0.0284 0.0985 0.1935 

Ethanol 0.0140 0.0287 0.0351 0.0518 0.0759 0.0993 
Kerosene 0.0086 0.0280 0.0427 0.0313 0.0789 0.0896 

Wood 0.0084 0.0271 0.0419 0.0940 0.0818 0.0948 
AVG 0.0106 0.0287 0.0525 0.0598 0.1081 0.1942 

Visibility 

Polyurethane −0.0223 −0.1811 −0.2979 −0.4640 −0.4251 −0.5966 
Polystyrene −0.1509 −0.2027 −0.2428 −0.1969 −0.3507 −0.4523 

Ethanol −0.1467 −0.2560 −0.3668 −0.3668 −0.9863 −0.6662 
Kerosene −0.0658 −0.1050 −0.2857 −0.1663 −0.3998 −0.5133 

Wood −0.0450 −0.8123 −0.2292 −0.1306 −0.1054 −0.2966 
AVG −0.0861 −0.3114 −0.2845 −0.2649 −0.4535 −0.505 

CO 

Polyurethane 0.0102 0.0340 0.1191 0.1353 0.3443 0.1287 
Polystyrene 0.0123 0.0327 0.0581 0.0309 0.1221 0.1942 

Ethanol 0.0976 0.0251 0.0474 0.0541 0.2433 0.2093 
Kerosene 0.0488 0.0311 0.0472 0.0352 0.0980 0.1081 

Wood 0.0386 0.0303 0.0462 0.1503 0.1058 0.1488 
AVG 0.0415 0.0306 0.0636 0.0812 0.1827 0.1578 

  

y = 0.1903x  3.8068
y = 0.2475x  4.9542
y = 0.277x  5.5501
y = 0.2839x  5.6861
y = 0.4589x  9.181

0

0.2

0.4

0.6

0.8

1

15 20 25 30

C
ar

bo
n 

M
on

ox
id

e,
 C

O

Temperature, °C 

0 m
6 m
8 m
11 m
18 m

[Carbon Monoxide: 1.0 = 14 ppm]

y = 0.0771x  0.947
y = 0.1017x  1.448

y = 0.112x  1.6474
y = 0.1171x  1.7578

y = 0.1376x  2.0514

0

0.2

0.4

0.6

0.8

1

15 20 25 30

C
ar

bo
n 

D
io

xi
de

, C
O

2

Temperature, °C 

0 m
6 m
8 m
11 m
18 m

[Carbon Dioxide: 1.0 = 0.07%]

Figure 9. Normalized curves with respect to distance from the fire compartment.

Table 4. Slope with respect to fuel type at the fire compartment measured in the fire area.

Parameters Slope at the Fire Compartment

O2

Ethanol −0.0006

Kerosene −0.0006

Polystyrene −0.0006

Polyurethane −0.0006

Wood −0.0004

AVG −0.0006

CO2

Ethanol 0.0210

Kerosene 0.0219

Polystyrene 0.0922

Polyurethane 0.0217

Wood 0.0273

AVG 0.0368

Visibility

Ethanol 0.0729

Kerosene 0.0076

Polystyrene 0.1441

Polyurethane 0.0101

Wood 0.0243

AVG 0.0518

CO

Ethanol 0.0171

Kerosene 0.0249

Polystyrene 0.1627

Polyurethane 0.0245

Wood 0.0323

AVG 0.0523
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Table 5. Slope with respect to fuel type and distance from the fire compartment measured in the nonfire area.

Parameters

Locations Slope at the Distance from Fire Compartment

1 m 15 m 16 m 25 m 26 m 50 m

O2

Polyurethane −0.0013 −0.0009 −0.0021 −0.003 −0.0024 −0.0036

Polystyrene −0.0013 −0.0009 −0.0022 −0.0010 −0.0014 −0.0026

Ethanol −0.0012 −0.0008 −0.0023 0.0011 −0.0005 −0.0011

Kerosene −0.0011 −0.0009 −0.0017 −0.0009 −0.0013 −0.0033

Wood −0.0009 −0.0006 −0.0014 −0.0008 −0.0009 −0.0012

AVG −0.0012 −0.0008 −0.0019 −0.0009 −0.0013 −0.0024

CO2

Polyurethane 0.0099 0.0303 0.0898 0.0932 0.2054 0.2995

Polystyrene 0.0120 0.0295 0.0530 0.0284 0.0985 0.1935

Ethanol 0.0140 0.0287 0.0351 0.0518 0.0759 0.0993

Kerosene 0.0086 0.0280 0.0427 0.0313 0.0789 0.0896

Wood 0.0084 0.0271 0.0419 0.0940 0.0818 0.0948

AVG 0.0106 0.0287 0.0525 0.0598 0.1081 0.1942

Visibility

Polyurethane −0.0223 −0.1811 −0.2979 −0.4640 −0.4251 −0.5966

Polystyrene −0.1509 −0.2027 −0.2428 −0.1969 −0.3507 −0.4523

Ethanol −0.1467 −0.2560 −0.3668 −0.3668 −0.9863 −0.6662

Kerosene −0.0658 −0.1050 −0.2857 −0.1663 −0.3998 −0.5133

Wood −0.0450 −0.8123 −0.2292 −0.1306 −0.1054 −0.2966

AVG −0.0861 −0.3114 −0.2845 −0.2649 −0.4535 −0.505

CO

Polyurethane 0.0102 0.0340 0.1191 0.1353 0.3443 0.1287

Polystyrene 0.0123 0.0327 0.0581 0.0309 0.1221 0.1942

Ethanol 0.0976 0.0251 0.0474 0.0541 0.2433 0.2093

Kerosene 0.0488 0.0311 0.0472 0.0352 0.0980 0.1081

Wood 0.0386 0.0303 0.0462 0.1503 0.1058 0.1488

AVG 0.0415 0.0306 0.0636 0.0812 0.1827 0.1578

Table 6. Range of input and output parameters at the fire compartment.

Temperature,
°C CO, ppm CO2, % Time after

Fire O2, % Visibility, m Safe Time

Min 20.57 1.30 0.04 15 20.73 5.41 3

Max 27.19 11.81 0.07 65 20.78 48.39 93
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Table 7. Range of input and output parameters at the nonfire compartment.

Distance from Fire Compartment: 1 m to 15 m

Distance, m Temperature, °C CO, ppm CO2, % Time after Fire O2, % Visibility, m Safe Time
Min 1 20.33 1.30 0.04 65 20.7 6.81 10
Max 15 23.47 9.34 0.06 318 20.7 48.27 217

Distance from Fire Compartment: 16 m to 25 m

Distance, m Temperature, °C CO, ppm CO2, % Time after fire O2, % Visibility, m Safe time
Min 16 20.33 1.24 0.04 128 20.7 5.30 7
Max 25 22.71 11.95 0.07 434 20.7 46.23 229

Distance from Fire Compartment: 26 m to 50 m

Distance, m Temperature, °C CO, ppm CO2, % Time after fire O2, % Visibility, m Safe time
Min 26 20.18 1.35 0.04 158 20.7 6.36 9
Max 50 21.70 9.94 0.06 493 20.7 46.53 283

3. Artificial Neural Network (ANN) Model for Estimating Available Safe Egress
Time (ASET)
3.1. ANN Training Algorithm

The ANN can be used to identify complex nonlinear relationships between input
and output variables based on a database. In the ANN model, there exists information-
processing units called neurons, and the neurons are connected to different weights indicat-
ing the strength of a relationship between the input and output variables. Training refers
to a phase in which the weights are continuously adjusted to minimize the error [21–24].
The ANN model consists of an input layer, hidden layer, and output layer, as shown in
Figure 10. In addition, the weight is applied differently for each neuron, and the bias
applies to the neurons in the hidden and output layers. In this study, a hyperbolic tangent
sigmoid transfer function was used as the activation function for the transfer from the
input layer to the output layer, and a pure linear activation function was applied in the
output layer [25–27].

Figure 10. Structure of an ANN model.

ANN training was performed for the fire compartment and nonfire compartment, and
all the influencing factors essential for the ASET evaluation were set as input variables. In
the ANN model for the fire compartment, six input variables were considered: the temper-
ature, time after fire, visibility and concentrations of oxygen (O2), carbon dioxide (CO2),
and carbon monoxide (CO). In the case of the ANN model for the nonfire compartment,
the distance from the fire compartment was additionally considered in the input layers.
As shown in Figure 11, the ANN model consists of one input layer, seven hidden layers,
and one output layer. The ratios of data used in the training, validation, and test of the
ANN model in the constructed DB were 70%, 15%, and 15%, respectively, and the data
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were randomly selected. The output derived from the ANN algorithm proposed in this
study can be represented by the following function:

tn = [1 + f2(W2 f1(W1(1− |2(pn − 1)|) + b1) + b2)]/2 (3)

where, respectively, pn and tn are the normalized input and output values, W1 and b1
represent the weight and bias between the input and hidden layer, W2 and b2 are the
weight and bias between the hidden and output layer, and f1 and f2 are the activation
function in hidden and output layer.

Figure 11. ANN model at the fire compartment.

3.2. Training Results

The weight and bias of the ASET prediction algorithm for the fire compartment and
nonfire compartment were derived through the ANN training. Table 8 represents the
weight and bias values at the fire compartment, and Figure 12 shows the training results of
the proposed ANN model. The ANN model was found to be well trained because the COV
(coefficient of variation) of the analysis results for both the fire compartment and nonfire
compartment were 0.2 or less. Later, the reliability of the ANN model was verified using
15 fire simulation data that were not used in the training process. As shown in Figure 13,
the COV for the ratio of the ANN analysis results to the FDS analysis results was 0.173,
and this result suggests that the proposed model provides ASET, which is similar to the
fire simulation.
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Table 8. Weight and bias at the fire compartment.

Hidden
Neurons‘

Bias 1 (b1)
Weight1 (W1) Weight2

(W2)

Temperature,
°C CO, ppm CO2, % Time after

Fire O2, % Visibility,
m ASET, s

1 2.827 −0.210 2.907 0.855 −3.355 −0.889 −0.169 −2.264

2 0.991 −1.009 2.153 0.676 −0.616 0.346 0.564 −0.859

3 −1.025 1.805 0.720 −2.775 1.821 2.318 0.014 −3.989

4 −0.045 1.413 −0.428 −0.124 0.842 0.643 1.850 1.098

5 −1.740 −0.940 −1.285 0.426 1.668 0.293 −0.763 −0.476

6 −1.628 −2.821 −0.480 −1.333 2.461 −0.537 −0.734 2.599

7 −2.787 0.243 1.280 1.316 −0.818 −0.657 0.640 −0.361

Bias 2 (b2) = 1.093

Figure 12. ANN training results.
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Figure 13. Comparison of ANN model and unused data on training.

3.3. Verification of ANN Model

In order to examine whether the proposed ANN model can be applied to other
multiplex buildings, a fire simulation was carried out on a new multiplex building with
a floor area of 3150 m2 (75 m × 42 m), as shown in Figure 14. The type of fuels and the
location of fire sources were set as main variables in the same way as in the simulation
conducted previously. Polystyrene foams and polyurethane foams were considered as
fuels, and the location of fire sources was divided into ten compartments. As shown in
Table 9, the fire simulation was conducted on a total of 20 scenarios. For the fire growth
curve, fire loads according to the fuel type were calculated based on the DB provided by
NCFS [18], and the maximum HRR value was applied to the t-squared fire curve, in which
the fire growth rate was set to medium. The natural ventilation condition was considered
as in the simulation conducted earlier, and the building has 26 openings (windows and
doors) which is 14.1% of the opening ratio, i.e., the ratio of total opening area to outer wall
perimetric area.
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Table 9. Verification scenarios.

Case No. * Fuel Type Total HRR, kW Ramp-Up Time, s
Q t

1, 11

Polyurethane foams,
Polystyrene foams

11404.90 986.47
2, 12 20099.10 1309.56
3, 13 7968.70 824.57
4, 14 10137.40 930.04
5, 15 8233.90 838.18
6, 16 5068.70 657.63
7, 17 2168.70 430.17
8, 18 34214.70 1708.61
9, 19 14299.10 1104.56

10, 20 8504.90 851.87
* Each series has 2 scenarios according to the fuel type.

Table 10 summarizes the FDS analysis results at a random fire point. The temperature,
visibility, and concentrations of oxygen (O2), carbon dioxide (CO2), and carbon monoxide
(CO) obtained from the FDS analysis were entered into the proposed ANN model to
estimate the ASET. Figure 15 and Table 11 show a comparison between the FDS and ANN
analysis results. The verification results showed that the average error rate of the FDS and
ANN models was only 8.3%, and the COV of the ratio of the ANN analysis results to the
FDS analysis results was 0.117, which means that the proposed model had achieved high
levels of reliability.

Table 10. FDS analysis results for verification.

No. Distance, m Time after
Fire, s

Temperature,
°C CO, ppm CO2, % O2, % Visibility, m Safe Time, s

(FDS)

1 0 22.7 22.5 5.6 0.05 20.8 11.2 13.8

2 26 305.3 21.59 5.57 0.06 20.8 11.3 60.2

3 0 29.5 24.3 9.8 0.06 20.7 6.5 7.1

4 0 32.3 24.9 11.1 0.06 20.7 5.8 4.3

5 16 128.8 20.84 2.51 0.04 20.8 25.1 77.2

6 14 114.1 21.4 5.1 0.05 20.8 12.5 38.6

7 14 124.7 21.9 6.9 0.05 20.8 9.1 27.9

8 26 305.3 21.59 5.57 0.06 20.8 11.3 60.2

9 25 196.7 21.9 8.7 0.06 20.7 7.3 15.5

10 15 119.2 20.7 2.8 0.04 20.8 22.9 39.1

11 15 199.6 20.51 1.76 0.04 20.8 35.8 97.4

12 15 137.3 21.8 6.7 0.05 20.8 9.4 21.0

13 0 21.3 22.9 6.6 0.05 20.8 9.7 8.2

14 15 236.0 21.22 4.91 0.05 20.8 12.8 61.0

15 5 79.9 20.7 2.2 0.04 20.8 28.5 55.3

16 0 22.7 23.4 7.7 0.06 20.8 8.2 8.5

17 0 24.8 24.9 10.9 0.06 20.7 5.9 2.8

18 0 18.5 22.6 5.7 0.05 20.8 11.1 9.2

19 16 128.8 20.84 2.51 0.04 20.8 25.1 77.2

20 0 20.6 23.5 7.7 0.06 20.8 8.3 7.1
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Figure 15. Comparison of FDS and ANN analysis results.

Table 11. Verification results of the proposed ANN model.

Case No. Safe Time, s
(FDS) Safe Time, s (ANN) Error, s Error, %

1 13.8 14.7 0.9 6.0
2 60.2 57.8 2.4 4.1
3 7.1 6.4 0.7 10.5
4 4.3 4.0 0.3 6.3
5 77.2 75.7 1.5 1.9
6 38.6 35.0 3.6 10.3
7 27.9 25.2 2.7 10.9
8 60.2 57.8 2.4 4.1
9 15.5 15.9 0.4 2.3
10 39.1 38.8 0.3 0.7
11 97.4 105.4 8 7.6
12 21.0 27.4 6.4 23.5
13 8.2 10.3 2.1 20.9
14 61.0 58.5 2.5 4.3
15 55.3 56.2 0.9 1.6
16 8.5 8.4 0.1 1.6
17 2.8 3.2 0.4 11.8
18 9.2 11.5 2.3 19.8
19 77.2 75.7 1.5 1.9
20 7.1 8.4 1.3 15.7

AVG 34.5 34.8 2.03 8.3

4. Egress Model for Multiplex Buildings in Fire
4.1. Egress Model Algorithm

In this study, an egress model that can provide optimal evacuation routes for occu-
pants when a fire occurs in multiplex buildings was proposed based on the ANN model
developed. Figure 16 shows the flowchart of the proposed egress model. First, the visibility
and concentrations of oxygen, carbon monoxide, and carbon dioxide are measured using
sensors installed at each compartment in the event of a fire, and the data are then entered
into the ANN model to estimate ASET for each compartment. Later, the optimum routes
that ensure safety can be provided in real time based on the ASET of each compartment
and drawings for the building.
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Figure 16. Flowchart of the egress model.

The ANN-based egress model is an algorithm in which the position of each measure-
ment sensor installed in a multiplex building is set to each node, and the ASET at each node
in the event of a fire is calculated to induce evacuation to the node with the highest level of
safety among the adjacent nodes. In this case, it is essential to compare movement time
between nodes and ASET. The movement time between the nodes (tmov) can be calculated
in consideration of occupants’ walking speeds and distance between the nodes:

tmov = D/Fw (4)

where D is the movement distance between the nodes, and Fw is the occupant’s walking
speed, which is taken to be 1.272 m/s based on the results of research conducted by
Bohannon [28]. Note that in this research, the occupant was assumed to be elderly (i.e.,
age = 70, sex = female) in a conservative manner, which certainly can always be adjusted
depending on the purpose of the analysis. If the movement time between specific nodes
is less than the ASET predicted using the ANN model, i.e., tmov ≤ ASET, the evacuation
route is determined as the path between the nodes. Even in this case, a route with a large
margin of safety (i.e., ASET− tmov) is preferentially selected over others. The repetition of
this calculation procedure can lead to the optimum evacuation route to ensure the safety of
occupants, as shown in Figure 17.
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Figure 17. Calculation of margin of safety.

4.2. Application of Proposed Egress Model

In this study, the optimal evacuation route for the simulated fire scenario was derived
using the proposed egress model. As shown in Figure 18, it was assumed that a fire
occurred at No. 1 position, and the walking speed of the occupant was set at 1.272 m/s.
The visibility and gas measurement sensors were installed at No. 2–7 nodes, and the
emergency exits were expressed as Exit 1 and Exit 2.

Figure 18. Application example of the egress model.

Table 12 shows a summary of the available safe egress time (ASET), movement time
between adjacent nodes (tmov), and margin of safety (ASET− tmov) calculated using the
proposed model. The last column of Table 12 shows whether or not the evacuation path
is safe. In other words, if the calculated margin of safety is greater than zero, the value is
‘1’, otherwise it is ‘0’. If the occupant considers only the shortest route for evacuation, the
evacuation route is 1→ 2→ 4→ 6→ Exit 1, as shown in Figure 18. On the other hand,
since the proposed model considers not only the movement time of occupants but also
ASET at the fire compartment and nonfire compartments, it can offer the evacuation route
with the highest margin of safety, which would be 1→ 2→ 3→ 5→ 7→ Exit 2. In other
words, although the evacuation time of the shortest route was 40.88 s, whereas that of the
route provided by the proposed model was 47.17 s, the margin of safety was 108.12 s for
the shortest route, but was 161.83 s for the proposed route. This suggests that the proposed
route can lead to the safe evacuation of more occupants. Therefore, it is expected that the
use of the proposed egress model can contribute to reducing the number of casualties when
a fire occurs in a multiplex building.
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Table 12. Application results.

Path
Distance (m) Available Safe Egress

Time (sec.) Movement Time (sec.) Margin of Safety (sec.) Result *
Safe = 1

Unsafe = 0D ASET tmov ASET- tmov

1→ 2 8 12 6.29 5.71 1
2→ 4 18 35 14.15 20.85 0
2→ 3 8 29 6.29 22.71 1
3→ 5 18 42 14.15 27.85 1
4→ 6 20 51 15.72 35.28 0
5→ 7 20 63 15.72 47.28 1
6→ 7 8 63 6.29 56.71 0

6→ Exit 1 6 51 4.72 46.28 0
7→ Exit 2 6 63 4.72 58.28 1

* The safest route = 1→ 2→ 3→ 5→ 7→ Exit 2.

5. Conclusions

This study developed a model capable of deriving the optimized evacuation route in
the event of fire for general multiplex buildings. The correlations between fire temperature
and visibility distance, and between fire temperature and gas concentration, were examined
through fire simulations. Based on this, an artificial neural network (ANN) model was
proposed, which can estimate the available safe egress time (ASET) for the fire compartment
and nonfire compartment in multiplex buildings under fire. The proposed ANN model
was then used to develop an egress model that considers not only ASET but also the
movement time of occupants. The rationality of the proposed model was verified through
the application to the simulated fire scenario. Based on this study, the following conclusions
can be drawn.

1. The fire simulation results showed that temperature and visibility are the most influ-
ential factors on the safety of occupants under fire and the concentrations of oxygen
(O2) and carbon dioxide (CO2) are relatively less influential.

2. The ANN model was developed based on the normalized correlations between fire
simulation variables, and it estimated the ASET derived from the simulation results
very accurately. In addition, this study examined whether the proposed ANN model
can be used to obtain the ASET of another multiplex building that was not used in
the development of the model, and it was confirmed that the proposed ANN model
also provided a good estimation of the ASET for the building.

3. Based on the ANN model, an egress model was proposed to ensure the safety of
occupants under fire, and it provided optimal evacuation routes with the highest
margin of safety in consideration of both ASET and the movement time of occupants..

4. In this study, however, the application of the proposed ANN algorithm and egress
model was limited to multiplex buildings. Therefore, there is a need to secure fire
simulation data of various types of buildings, such as apartment houses and under-
ground structures, to further expand the application ranges of the proposed model in
the future.
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