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Abstract: The inversion of potential field data has widely utilized the generalized cross-validation
(GCV) and the unbiased predictive risk estimator (UPRE) methods to determine the regularization
parameter. However, these two methods are time-consuming and it is difficult for them to determine
the optimal linear search range including the optimal regularization. To solve these problems, this
article improves the GCV and UPRE methods using the RGSVD (randomized generalized singular
value decomposition) algorithm. The improved methods first use the randomized algorithm to
compute an approximate generalized singular value decomposition (GSVD) with less computational
time. Then, the optimal linear search range is determined based on the generalized singular values.
Finally, the GCV and the UPRE functions are efficiently computed on the basis of the results from the
RGSVD algorithm. In this way, the GCV and UPRE methods using the RGSVD algorithm are able to
determine the optimal regularization parameter fast and effectively. One comparative test shows the
effectiveness and efficiency of the GCV and the UPRE methods using the RGSVD algorithm.

Keywords: generalized cross-validation; randomized generalized singular value decomposition;
regularization parameter; unbiased predictive risk estimator

1. Introduction

Various geological and geophysical problems can be solved by the inversion of potential
field data [1,2]. Generally, the inversion of potential field data is an ill-posed problem, which
means that this inversion is usually non-unique and unstable [3]. Tikhonov regularization [4]
can solve ill-posed problems. Estimating an optimal regularization parameter is very
significant for the Tikhonov regularization, e.g., [5]. In the literature, many methods have
been introduced to determine an optimal regularization parameter, such as the Morozov
discrepancy principle (MDP) method [6], the generalized cross-validation (GCV) method [7],
the L-curve (LC) method [8], and the unbiased predictive risk estimator (UPRE) method [9].

Here, we focus on the GCV and the UPRE methods. The conjugate gradient (CG)
method and generalized singular value decomposition (GSVD) can be used to compute the
GCV and the UPRE functions in a linear search range to find the optimal regularization
parameter. However, when using the CG method, the process is time-consuming, and it is
difficult to determine the optimal linear search range including the optimal regularization
parameter. When using the GSVD, the optimal linear search range can be determined
by analyzing the spectrum (generalized singular values) of the kernel matrix [9], but
computational costs and memory requirements limit the application of this method.

In this paper, the RGSVD [10] algorithm was adopted in the GCV and the UPRE
methods for determination of the optimal regularization parameter. The RGSVD algorithm
uses a randomized algorithm to compute an approximation of the GSVD with less memory
requirements and computing time [10], with which the optimal linear search range can be
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determined based on the generalized singular values. The result from the RGSVD facilitates
efficient computation of the GCV and UPRE functions. Therefore, the regularization
parameter can be determined fast and effectively by the improved GCV and UPRE methods
using the RGSVD algorithm. One comparative test demonstrated the performances of the
GCV and the UPRE methods using the RGSVD algorithm.

2. Inversion Methodology

Generally, the model domain is discretized into many cells, whose physical properties
are the model parameters. According to the linear relationship between model parameters
and measured data, the inverse problem of potential field data has the matrix form as

dobs = Gm, (1)

where dobs ∈ Rn represents the measured data vector, m ∈ Rm is the unknown parameters,
and G ∈ Rn×m represents the kernel matrix. n represents the number of measured data,
and m represents the number of the unknown parameters. In general, m is much larger than
n. Therefore, the inversion of potential field data belongs to an under-determined problem.
Through the singular value decomposition (SVD) of the matrix G or the least squares
solution, Equation (1) can be used to calculate the inversion result directly. However, in
this way, the inversion result may not conform to reality. These ill-posed problems can
be solved by introducing a regularization term [4]. Then, the objective function of this
inversion has the form

φ = ‖Wd(Gm− dobs)‖2
2 + µ2‖WmZm‖2

2, (2)

In Equation (2), ‖Wd(Gm− dobs)‖2
2 is the data misfit, ‖WmZm‖2

2 is the regularization
term, and µ is the regularization parameter, which is used to balance these two terms. In the
data misfit, Wd represents a data weighting matrix. In the regularization term, Wm ∈ R4m×m

represents a smooth constraint matrix and its matrix form is Wm = [Ws; Wx; Wy; Wz],
where Ws ∈ Rm×m, Wx ∈ Rm×m, Wy ∈ Rm×m, and Wz ∈ Rm×m are different component
matrices, respectively [11,12]; and Z represents a depth-weighting matrix [11,12].

Generally, the physical bound constraint is incorporated into this inversion for obtain-
ing a geologically plausible inversion result. Then, the inverse problem of potential field
data becomes the following constrained minimization problem

minimize : φ = ‖Wd(Gm− dobs)‖2
2 + µ2‖WmZm‖2

2
subjectto : mmin ≤ m ≤ mmax

, (3)

where mmin and mmax are vectors consisting of the lower and upper physical bounds on
the unknown model values. Because the matrix Z is a diagonal matrix, the following
transformations can be performed easily:

h = WdGZ−1, r = Wddobs, and y = Zm. (4)

Then, Equation (2) is rewritten as

φ = ‖hy− r‖2
2 + µ2‖Wmy‖2

2. (5)

The constrained minimization problem (3) becomes the following new problem

minimize : φ = ‖hy− r‖2
2 + µ2‖Wmy‖2

2
subjectto : ymin ≤ y ≤ ymax

, (6)

where ymin = Zmmin and ymax = Zmmax are vectors of the lower and upper bounds for y.
The logarithmic barrier method is adopted to incorporate the physical bound constraint
into the objective function [13–15]. Then, the new objective function has the form
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φ = ‖hy− r‖2
2 + µ2‖Wmy‖2

2 − 2λ
n

∑
i=1

[ln(yi − ymin,i) + ln(ymax,i − yi)], (7)

where −2λ
n
∑

i=1
[ln(yi − ymin,i) + ln(ymax,i − yi)] is the barrier function, and λ is the bar-

rier parameter.
The Newton method [13–15] is used to solve the minimization of (7) iteratively. The

regularization parameter µ is kept fixed during the iterations, and the barrier parameter λ
decreases with iteration [13]. At the kth iteration, one step of the Newton method is applied
for (7) to yield{

hTh + µ2Wm
TWm + λ(k)

[(
X(k)

)−2
+
(

Y(k)
)−2

]}
∆y(k) =

−hT
(

hy(k−1) − r
)
− µ2Wm

TWm

(
y(k−1) − y(0)

)
+ λ(k)

[(
X(k)

)−1
+
(

Y(k)
)−1

]
e

, (8)

where X(k) = diag
(

y(k−1) − ymin

)
, Y(k) = diag

(
ymax − y(k−1)

)
, e ∈ Rm×1 is the vector

with all entries one, and y(0) is an initial model. The solution ∆y(k) is the search direction at
the kth iteration. The strategy of Li and Oldenburg [13] is used to obtain the final inversion
result, and Algorithm 1 shows the detailed steps. In step 9, the solution ∆y(k) can be
obtained by the preconditioned conjugate gradient (PCG) method, and the preconditioner
P(k) has the form

P(k) = diag

(√
diag

(
A(k)

))
, (9)

where A(k) has the form

A(k) = hTh + µ2Wm
TWm + λ(k)

[(
X(k)

)−2
+
(

Y(k)
)−2

]
. (10)

Algorithm 1. Inversion of potential field data

Preparation : dobs, G, Wd, mmin, mmax and Kmax.

1. Calculate Wm, and Z.
2. Initialize m(0) = 0.001, and k = 0.
3. Calculate h = WdGZ−1, r = Wddobs, y(0) = Zm(0), ymin = Zmmin, and ymax = Zmmax.
4. Estimate the regularization parameter µ.

5. Calculate λ(1) =
‖hy(0)−r‖2

2
+µ2‖Wmy(0)‖2

2

−2
n
∑

i=1

[
ln
(

y(0)i −ymin,i

)
+ln

(
ymax,i−y(0)i

)] .

6. while k < Kmax
7. k = k + 1.

8. Update X(k) = diag
(

y(k−1) − ymin

)
and Y(k) = diag

(
ymax − y(k−1)

)
.

9. Solve Equation (8) for ∆y(k).
10. Update y(k) = y(k−1) + δβ(k)∆y(k), where δ = 0.925 and

β(k) =


1, if ymin < y(k−1) + ∆y(k) < ymax

min

(
min

y(k−1)
i +∆y(k)i <ymin,i

y(k−1)
i −ymin,i∣∣∣∆y(k)i

∣∣∣ , min
y(k−1)

i +∆y(k)i >ymax,i

ymax,i−y(k−1)
i∣∣∣∆y(k)i

∣∣∣
)

, otherwise

11. Exit the loop if the termination criterion is satisfied.

12. Update λ(k+1) =
[
1−min

(
β(k), δ

)]
λ(k).

13. End
14. Output: Solution m = Z−1y(k).
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When the number of iterations k reaches the preset maximum number of iterations
Kmax or the change of the objective function is less than 1%, the iterative process ends. The
method of estimating the regularization parameter is discussed in Section 3.

3. Estimation of Regularization Parameter

When estimating the regularization parameter, we only focused on (5) without consid-
ering the barrier function. In this way, the regularization parameter is still suitable in the
minimization of (7). Here, the GCV [7] and the UPRE [9] methods are used to estimate the
regularization parameter.

3.1. Generalized Cross-Validation Method

The randomized trace estimation was introduced into the GCV function to solve the
difficulty of a trace calculation in the GCV function [13]. Then, this function for Equation (5)
has the form

GCV(µ) ≈

∥∥∥∥r− h
(

hTh + µ2Wm
TWm

)−1
hTr
∥∥∥∥2

2{
n−RTh

(
hTh + µ2WmTWm

)−1
hTR

}2 , (11)

where R is a random vector consisting of −1 and 1, each with a probability of 0.5. The
parameter µ which minimizes (11) is the optimal regularization parameter µopt. This
parameter µopt can be determined by line search within a range for regularization parameter,
and the process can be solved by using the CG method [13]. However, when using the
CG method, an optimal range for regularization parameter is difficult to determine, and
sometimes the optimal regularization parameter µopt is not within the selected range.
Moreover, the GCV method using the CG method is time-consuming.

The GSVD of the matrix pair [h, Wm] can be used to compute the GCV function [5].
Based on the GSVD, the spectrum of h can be obtained. The optimal linear search range
can be determined by analyzing the spectrum of h [9]. However, the calculation of GSVD is
time-consuming and has a large memory requirement. When the scale of data is large, the
calculation of GSVD is even impractical. Instead, the RGSVD algorithm is adopted. The
RGSVD algorithm uses the randomized algorithm to provide a low-rank approximation of
the GSVD [10]. Compared with the GSVD, the RGSVD can reduce computational costs and
memory demands, and results with good accuracy can be obtained. Algorithm 2 shows
the RGSVD algorithm [10], which is used in this study. The parameter q determines the
accuracy and efficiency of the RGSVD algorithm. As the value of the parameter q increases,
the result becomes more accurate and the computation time is longer.

Algorithm 2. Randomized generalized singular value decomposition (RGSVD) algorithm.
Given h ∈ Rn×m (n ≤ m) and Wm ∈ R4m×m, a target matrix rank q (q ≤ n), calculate an
approximate GSVD of the matrix pair [h, Wm]: h ≈ UCX, Wm ≈ VSX with U ∈ Rn×q,
V ∈ R4m×q, C ∈ Rq×q, S ∈ Rq×q, and X ∈ Rq×m.

1. Generate a q× n Gaussian random matrix A.
2. Calculate the q×m matrix Y = Ah.
3. Calculate the m× q orthonormal matrix Q via QR factorization YT = QR.
4. Form the n× q matrix B1 = hQ and the 4m× q matrix B2 = WmQ.
5. Use [U, V, W, C, S] = gsvd(B1, B2, 0) to calculate the economy-sized GSVD of the matrix

pair [B1, B2]:
[

B1
B2

]
=

[
U

V

][
C
S

]
WT .

6. Form the q×m matrix X = WTQT .
7. Note : h ≈ UCX and Wm ≈ VSX.
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In the RGSVD algorithm, C = diag
(
c1, c2 . . . , cq

)
∈ Rq×q with

0 < c1 ≤ c2 ≤ · · · ≤ cq < 1, (12)

and S = diag(s1, s2, . . . , s2) ∈ Rq×q with

1 > s1 ≥ s2 ≥ · · · ≥ sq > 0, (13)

c2
i + s2

i = 1, ∀i = 1 : q, that is CTC + STS = Iq. According to the result of the RGSVD,
Equation (11) has the form

GCV(µ) ≈

∥∥∥∥r− h
[ q

∑
i=1

γ2
i

γ2
i +µ2

uT
i r
ci
(X†)i

]∥∥∥∥2

2{
n−RTh

[ q
∑

i=1

γ2
i

γ2
i +µ2

uT
i R
ci

(X†)i

]}2 , (14)

where γi = ci/si denotes the ith generalized singular value, ui represents the ith column
of matrix U, and (X†)i denotes the ith column of the Moore-Penrose inverse of matrix X.
The parameter µopt can be found between the minimum and maximum of the generalized
singular value γi. Here, the parameter q is set as n. Therefore, the full generalized singular
values can be obtained. The value of n is slightly large, but the computation time of the
RGSVD algorithm with q = n is still much shorter than that of GSVD.

3.2. Unbiased Predictive Risk Estimator Method

The UPRE function for Equation (5) has the form [16]

UPRE(µ) =
∥∥∥∥r− h

(
hTh + µ2Wm

TWm

)−1
hTr
∥∥∥∥2

2

+2 trace
[

h
(

hTh + µ2Wm
TWm

)−1
hT
]
− n

, (15)

where trace[ ] is the trace of the term in the brackets. The randomized trace estimation [9]
was also introduced in Equation (15) to solve the difficulty from the calculation of the trace.
Then, the UPRE function is approximated by

UPRE(µ) ≈
∥∥∥∥r− h

(
hTh + µ2Wm

TWm

)−1
hTr
∥∥∥∥2

2

+2 R T h
(

hTh + µ2Wm
TWm

)−1
hTR− n

. (16)

The result of the RGSVD is introduced into Equation (16), and Equation (16) has
the form

UPRE(µ) ≈
∥∥∥∥r− h

[ q
∑

i=1

γ2
i

γ2
i +µ2

uT
i r
ci
(X†)i

]∥∥∥∥2

2

+2 RTh
[ q

∑
i=1

γ2
i

γ2
i +µ2

uT
i R
ci

(X†)i

]
− n

. (17)

Similarly, when the value of Equation (17) is the minimum, its corresponding pa-
rameter µ is the optimal regularization parameter µopt, which can be found between the
minimum and maximum of the generalized singular value γi as well. Here, the parameter
q is also set as n.

4. Synthetic Example Tests

In this study, one example was used to demonstrate the performances of the GCV and
the UPRE methods using the RGSVD algorithm. For comparison, the CG method and the
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GSVD method were also used in the GCV and UPRE methods. The following tests were
run on a computer with a 3.00 GHz processor and 32 GB RAM.

The model consists of two cuboids, and Figure 1a shows its 3D perspective view.
The dimensions of the two cuboids are both 300 m × 300 m × 200 m, and the depths of
their tops are both 50 m. Both of them have a density contrast of 1 g/cm3. The gravity
data were generated on a grid with 31 × 21 = 651 points and 50 m × 50 m spacings.
Meanwhile, random Gaussian noise, whose standard deviation is 0.02 mGal plus 2% of
each datum, were incorporated in the gravity data (Figure 1b). The subsurface was divided
into 30 × 20 × 10 = 6000 cells, and dimension of each cell is 50 m × 50 m × 50 m. In the
following inversions, the density range was 0–1 g/cm3 and Kmax was set as 50.

Figure 1. (a) 3D perspective view of the model consisting of two cuboids; (b) gravity data produced by this model.

First, we used the GCV method to determine the regularization parameter in inversion.
In the GCV method, the CG method, the GSVD, and the RGSVD algorithm were used,
respectively. Figure 2a–c show the inversion results from the GCV methods using the CG
method, the GSVD, and the RGSVD algorithm, respectively. These three inversion results
are very similar: two source bodies with cuboid shape are in the actual position of the true
model. Their corresponding GCV function curves are shown in Figure 3a–c, and these
three curves have similar trends. Meanwhile, Table 1 records the corresponding optimal
regularization parameters µopt, and the corresponding elapsed times for the process of
choosing the regularization parameter. The GCV methods using the GSVD and the RGSVD
algorithm have very similar µopt, and the µopt of the GCV method using the CG method is
slightly large. The GCV method using the RGSVD algorithm has the shortest elapsed time,
at only 1.3 s.

Then, the UPRE method was implemented in inversion. Similarly, the UPRE method
used the CG method, GSVD, and the RGSVD algorithm, respectively. Their inversion
results are shown in Figure 2d–f, respectively. These inversion results are similar to those
obtained using the GCV method. The curves for the UPRE function are demonstrated
in Figure 3d–f, and they also have similar trends. Table 1 also lists the value of optimal
regularization parameters and the elapsed times for the UPRE method. Their optimal
regularization parameters are the same as them from the GCV method, and the elapsed
times are close to them from the GCV method. The UPRE method using the RGSVD
algorithm also has the shortest elapsed time.

Through the above comparative test, it was concluded that the GCV and the UPRE
methods using the RGSVD algorithm can quickly provide an optimal regularization pa-
rameter that can generate a satisfying inversion result.
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Figure 2. Inversion results from different regularization methods. The generalized cross-validation (GCV) methods using
(a) the conjugate gradient (CG) method, (b) the generalized singular value decomposition (GSVD), and (c) the randomized
generalized singular value decomposition (RGSVD algorithm; the unbiased predictive risk estimator (UPRE) methods using
(d) the CG method, (e) the GSVD, and (f) the RGSVD algorithm. In all these panels, the black lines indicate the real position
of the model.

Figure 3. The GCV functions using (a) the CG method, (b) the GSVD, and (c) the RGSVD algorithm; the UPRE functions
using (d) the CG method, (e) the GSVD, and (f) the RGSVD algorithm. The blue curve is GCV function or UPRE function,
and the red # is the optimal regularization parameter.



Appl. Sci. 2021, 11, 6326 8 of 8

Table 1. The optimal regularization parameters and the elapsed times for different regularization
methods.

GCV Method UPRE Method

CG GSVD RGSVD CG GSVD RGSVD

µopt 100.0 45.3 44.4 100.0 45.3 44.4
Time 117.5 s 113.0 s 1.3 s 111.2 s 114.3 s 1.4 s

Note: µopt is the optimal regularization parameter, and Time denotes the elapsed time for different regulariza-
tion method.

5. Conclusions

We introduced the GCV and the UPRE methods using the RGSVD algorithm, with which
the optimal regularization parameter can be determined fast in the inversion of potential field
data. We demonstrated the effect of these two methods through a comparative test.
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