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Abstract: In this study, we have proposed an algorithm that solves the problems which occur during
the recognition of a vehicle license plate through closed-circuit television (CCTV) by using a deep
learning model trained with a general database. The deep learning model which is commonly used
suffers with a disadvantage of low recognition rate in the tilted and low-resolution images, as it is
trained with images acquired from the front of the license plate. Furthermore, the vehicle images
acquired by using CCTV have issues such as limitation of resolution and perspective distortion.
Such factors make it difficult to apply the commonly used deep learning model. To improve the
recognition rate, an algorithm which is a combination of the super-resolution generative adversarial
network (SRGAN) model, and the perspective distortion correction algorithm is proposed in this
paper. The accuracy of the proposed algorithm was verified with a character recognition algorithm
YOLO v2, and the recognition rate of the vehicle license plate image was improved 8.8% from the
original images.

Keywords: deep learning; license plate detection; image processing; SRGAN; CCTV image

1. Introduction

Artificial intelligence (AI) technology is a branch of computer science that includes
machine learning (ML) and deep learning (DL). AI can be perceived as using any device to
imitate the human cognitive processes such as learning, applying, and solving complex
problems, etc. [1]. The AI techniques are well suited to imaging-based fields, as an image
is the main source of data for training the AI algorithms. ML is dedicated to deploying
algorithms. ML algorithms could be viewed as mapping the observed input data variables
into the output results [2]. DL is an artificial network system that simulates the concept of
human neurons. These techniques have achieved impressive progress in many areas [1,2].
With the development of DL, research on various object recognition methods is being
actively conducted, and the vehicle license plate recognition field is one such method.

Vehicle license plate recognition is frequently used for parking management and speed
limit enforcement systems. This technology prevents car-related accidents and crimes.
The closed-circuit television (CCTV) cameras installed on roads or buildings are used
to store and transmit videos and images. According to the statistics from the National
Statistical Office of South Korea, about 1.2 million CCTVs are installed in South Korea
as of 2019. However, the data acquired through this system is not being fully utilized.
It requires much time and human resources to properly utilize and analyze the images
captured by CCTV, which becomes a limiting factor in quick response to an accident or
crime. This problem can be effectively addressed by deploying an automated method that
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can quickly detect information, such as the type, color, and license plate of the vehicle. The
technology for recognizing a vehicle license plate uses an image obtained through CCTV,
which is usually taken from a long distance and with a wide angle of view. This causes
problems, such as a limitation of the resolution, motion blur, and perspective distortion
due to various environmental changes and camera installation locations. It is desired to
have an image processing technology that can accurately recognizes the characters smaller
than the image size. With the development of image processing technology, studies have
been conducted in areas such as object detection, tracking, and camera captured image
recognition technologies [3]. For efficiently managing the vehicles information, research on
vehicle license plate recognition is also being actively conducted [4,5].

In general, the public license plate recognition model is trained based on the front
license plate image. The model trained using this technique suffers with the issues of
decreased recognition rate when the license plate is recognized in the vehicle image cap-
tured using CCTV [6,7]. This is due to the fact that when a vehicle image is captured in a
general environment using CCTV, the license plate is tilted, or recorded in low resolution.
A common way to solve this problem is to develop a new database and retrain it to solve
the recognition rate problem. However, this requires a high cost and time. To overcome
this problem, we have proposed an image processing algorithm which can improve the
license plate recognition rate by using the existing database.

In CCTV images, the license plates usually appear to be tilted and have low-resolution
that results in the lower recognition rate when the existing learning model is applied.
To solve this problem, this paper proposed the resolution improvement method and the
method for restoring a tilted image. The proposed technique consists of two steps that
enhances the recognition rate of the license plate. In the first step, the deep learning-
based super-resolution generative adversarial network (SRGAN) algorithm [8] is used to
improve the lower resolution image of the license plate. In the second step, the perspective
transformation technique is deployed on the tilted license plate image for the correction of
perspective distortion.

Section 2 of this paper, the ‘License Plate Recognition System’, contains the proposed
license plate recognition system which is composed of the SRGAN method and perspec-
tive distortion. Section 3 is the ‘Experimental Results’, which provides the experimental
verification of the proposed algorithm, followed by Section 4, our ‘Conclusion’.

2. License Plate Recognition System
2.1. System Configuration

In this paper, we propose a novel method to improve the recognition rate of the deep
learning models trained with a general database for vehicle license plate recognition using
CCTV images. Figure 1 shows the flowchart of the proposed license plate recognition
system. First, a commonly used deep learning model YOLO v2 [9] is applied to the input
image. This model is used to acquire an image, including a license plate area, which is the
area of interest [9]. From the detected ROI image, a high-resolution license plate image
is obtained using SRGAN. The license plate area is extracted, and the boundary pixels
of the license plate are obtained by using the image segmentation technique. A linear
approximation method is applied to the boundary pixels, and a separate linear equation
is used for each side of the license plate. The intersection points of all straight lines are
calculated by using the above-applied set of linear equations. The homography between the
feature points is calculated, and the perspective distortion is corrected. Finally, the YOLO
v2 based character recognition technique is applied to the corrected image for recognizing
the license plate character.
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Figure 1. Flowchart for the license plate recognition algorithm.

2.2. License Plate Detection

As there is much unnecessary information, such as noise and background area, in the
entire vehicle image, it is not easy to recognize the license plate. To solve this problem, the
algorithm must detect the area of the vehicle license plate, which is the area of interest.
In this study, we used a pre-trained YOLO v2 network model for vehicle license plate
detection. Table 1 shows the YOLO v2 architecture. Figure 2 shows the result of detecting
the license plates using pre-trained YOLO v2 [9,10].

Table 1. YOLO v2 architecture.

Type Filters Size/Stride Output

Convolutional 32 3 × 3 224 × 224
Maxpool 2 × 2/2 112 × 112

Convolutional 64 3 × 3 112 × 112
Maxpool 2 × 2/2 56 × 56

Convolutional 128 3 × 3 56 × 56
Convolutional 64 1 × 1 56 × 56
Convolutional 128 3 × 3 56 × 56

Maxpool 2 × 2/2 28 × 28
Convolutional 256 3 × 3 28 × 28
Convolutional 128 1 × 1 28 × 28
Convolutional 256 3 × 3 28 × 28

Maxpool 2 × 2/2 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 1 × 1 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 1 × 1 14 × 14
Convolutional 512 3 × 3 14 × 14

Maxpool 2 × 2/2 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 1 × 1 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 1 × 1 7 × 7
Convolutional 1024 3 × 3 7 × 7

Convolutional
1000

1 × 1 7 × 7
Avgpool Global 1000
Softmax
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Figure 2. (a) Input images; (b) license plate detection images.

2.3. Super Resolution
2.3.1. Super-Resolution Generative Adversarial Network (SRGAN)

A generative adversarial network (GAN) is a deep learning model consisting of a
generator and discriminant network. The delimiter learns to separate the actual data from
the generated data, while the constructor learns in the direction that interferes with it.
In this process, the generator expects to discover the manifold where the actual sample
distribution exists. The unsupervised learning GAN has the characteristic of estimating the
probability distribution of the original data, and allowing the artificial neural network to
create the distribution. Figure 3 shows the network structure of SRGAN using two deep
learning models with opposing relationships. This algorithm is used in paper [8].
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The generator’s deep learning model receives and trains with low-resolution images.
The generator inference results are fed into the discriminator and learned until the high-
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resolution image is determined. The learned generator makes it possible to reconstruct
a low-resolution image to deceive the discriminator that determines whether it is a high-
resolution image. Thus, the generator can perform a high-resolution restoration [11,12].

2.3.2. Improved Low-Resolution License Plate Image

In this study, the image was improved using the SRGAN model to recognize a vehicle
license plate captured with a low-resolution CCTV. Figure 4 shows the image of the
improved license plate using the SRGAN model.
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It can be seen in Figure 4 that the improved license plate image using SRGAN has
sharper edged components, corresponding to the high frequencies than the input image.
The improved image is used as the input image for license plate recognition [12].

2.4. Distortion Conrrection

The improved image using SRGAN was used as the input image for the image
processing step. This step is used to correct the perspective distortion, which is the problem
in the license plate recognition.

2.4.1. Binarization

First, the license plate area is binarized for the perspective distortion correction. In the
image segmentation Equation (1), f and g are the input and output images, respectively,
and T is the threshold value. For the input image f , when the value of the pixel (x, y) is less
than the threshold value T, the corresponding pixel value is 0. However, when the value
is greater than or equal to the threshold value, the corresponding pixel values become 1.
Thus, the divided image can be obtained.

g(x, y) =
{

i f f (x, y) ≥ T, 1
i f f (x, y) < T, 0

(1)

Figure 5 shows the binarization image. This image is used to detect the parallelogram
corresponding to the license plate area. This is an essential technique for selecting a thresh-
old value. It distinguishes the area corresponding to the license plate in the obtained image.
In this study, T is selected using the Otsu [13] binarization technique to automatically
determine the threshold value.
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2.4.2. Morphology

The morphological filter was used to remove noise included in the boundary line of
the license plate area, and smooth the boundary line in the binary image. First, the dilation
operation was used with a 3 × 3 mask as Equation (2) for the Otsu threshold image result g.
Next, the erosion operation was conducted to remove noise with a size smaller than 6 × 6
using a 6× 6 mask, as given in Equation (2). Then, the boundary line in the resulting image
of the morphological operation appears close to the straight line, as shown in Figure 6 [14].

I ⊕ H ≡ {(p + q)| f or every p ∈ I, q ∈ H}
I 	 H ≡

{
p ∈ Z2

∣∣∣ (p + q) ∈ I, f or every q ∈ H
} (2)
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2.4.3. Random Sample Consensus (RANSAC)

After the morphological operation, the linear approximation is used to detect the
quadrangle corresponding to the license plate area. Finding an appropriate linear model
for the pixels (xi, yi) of the extracted image means the process of minimizing a, b in the
following equation.

E =
N

∑
k=1

(yi − (axi + b))2 (3)

The least-square solution can be obtained by calculating the pseudo-inverse matrix, as
shown below.

[a b] = [y1 · · · yi · · · yN ]

 x1 1
...

...
xN 1


[ x1 · · · xi · · · xN

1 · · · 1 · · · 1

] x1 1
...

...
xN 1


 (4)

In the above calculated model, the results will depend on the quality of the input data.
Thus, we apply the RANSAC algorithm to obtain the optimal solution without including
bad data into the model through random sampling [15].



Appl. Sci. 2021, 11, 6292 7 of 12

First, we randomly select five points, the minimum data for determining the elliptic
model parameters. For five points, the model is obtained using the least-squares method
stated earlier. For all data in the image, the number of data is calculated, where the distance
between the ellipse and data is less than a predetermined allowance. The data contained
within the tolerance is called an inlier, while the data outside the boundary is called an
outlier. When the proportion of the inlier in the total data exceeds a certain threshold, the
model parameters are determined again by only the inlier. If the percentage of inlier is
below a certain level, the previous process is repeated by randomly selecting data.

Each linear approximation technique is an application of the RANSAC line-fitting
technique. This is a technique for selecting a reliable pixel with an approximate equation.
It is approximated without being affected by other linear components that can be approxi-
mated. RANSAC line fitting is applied to the outermost coordinates adjacent to the line
(xi, yi). The second approximate line equation is obtained in this process. By repeating this
process (Figure 7b), four approximate linear equations and four feature points are obtained.
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The next step is to measure the angle of the corners of the license plate-shaped
rectangle. If this square corner is not 90◦, it determines that the license plate is distorted,
and performs the perspective transformation. Figure 8 shows the image of measuring the
angle of the license plate edge.
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2.4.4. Perspective Transformation

The shape projected on the image appears differently depending on the angle of the
object and camera planes. To map these two planes, the projection transformation is used.
If the three points are located on a straight line, the three points are placed on the straight
line after the projection transformation.

The projection transformation is a linear transformation expressed as Equation (5). x′

y′

1

 = H

 x
y
1

 =

 h1 h2 h3
h4 h5 h6
h7 h8 h9

  x
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1
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where H is a 3 × 3 matrix, (x, y) are coordinates of the image before the transformation
and (x′, y′) are coordinates of the image after conversion. The elements of the matrix
H can be calculated using the direct linear transformation (DLT) algorithm [16,17]. To
determine the elements of the matrix H using the DLT algorithm, at least five pairs of
the corresponding points are required. In this study, the feature points extracted from
Figure 9 are used. Thus, the coordinates of the four rectangular vertices were used as
feature points on the corresponding projection plane. H was corrected using Equation (6)
for distortion correction.

x′ =
h1x + h2y + h3

h7x + h8y + h9
, y′ =

h4x + h5y + h6

h7x + h8y + h9
(6)
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Figure 9 shows the result of correcting the perspective distortion using Equation (6).
The input image of Figure 10a shows severe inclination. If this is corrected using a

perspective transformation, the position of the license plate becomes constant to favor
character recognition (Figure 10b).
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2.5. Character Recognition

To confirm the letters and numbers of the image, corrected for perspective distortion,
this paper was verified using the YOLO v2 model. This model is commonly used for
character and number recognition [18–26]. Figure 11 shows the detection result used for
the verification dataset.
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3. Experimental Results

To evaluate the proposed license plate recognition algorithm performance, we ac-
quired vehicle images using a network camera with a resolution of 3-Mega pixels installed
on the road. Still images that can be identified with the naked eye were selected and used
as experimental data. The experimental image data consist of 2500 image sheets. The
experiment was conducted using license plates with various sizes and colors of characters.

Figure 12 shows the experimental results of using the proposed image improvement
algorithm. The experimental results showed that characters misrecognized in existing
low-resolution images were successfully recognized using the proposed method. However,
there is a problem in that the characters are not normally recognized when the perspective
distortion of the license plate is severe among images of the license plate restored in high-
resolution. To solve this problem, the distortion-correction technique proposed earlier was
applied to images. Figure 13 shows the image to which the distortion-correction technique
is applied.
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Besides the distortion-correction technique, the experimental results verify that the
proposed algorithm improves the recognition rate. Table 2 presents the experimental data
result using the proposed algorithm. The license plate recognition rate of the original image
was 72.6% which was, however, improved to 73.2% by using the low-resolution image
reconstruction technique described in Section 2.3. When the distortion correction technique
described in Section 2.4 was used in conjunction, the recognition rate became 81.4%, which
verified the validity of the proposed license plate detection algorithm.

Table 2. Application result of proposed algorithm.

Total Image 2500

Original image
True recognition 1815
False recognition 685

Accuracy 72.6%

Super-resolution method (2.3)
True recognition 1832
False recognition 668

Accuracy 73.2%

Perspective distortion-correction method (2.4)
True recognition 2037
False recognition 463

Accuracy 81.4%

4. Conclusions

In this study, we proposed a novel method to improve the recognition rate of the
deep learning models trained with a general database for vehicle license plate recognition
using CCTV images. The proposed method uses the SRGAN method in combination with
the perspective distortion-correction algorithm to improve the license plate recognition
rate. The SRGAN method was used to improve the low-resolution images acquired by
using the CCTV. A perspective distortion-correction algorithm was then deployed for
improved recognition of the tilted license plate. The perspective distortion-correction
algorithm employs the Otsu threshold method to binarize the image, remove noise from
the binarized image, and apply a morphological filter to differentiate license plates. In
the acquired image of the vehicle, the license plate area is extracted by using the straight
line corresponding to the four sides of the license plate by deploying the RANSAC line
fitting technique. The intersection point of the two lines was extracted as a feature point
for distortion. The perspective transformation was applied to license plates with severe
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perspective distortion using feature points to correct perspective distortion. As a result of
performing the character recognition on the corrected image, the character recognition rate
in the existing low-resolution image was 72.6%. However, the recognition rate improved to
73.2% using a super-resolution algorithm, and with the SRGAN, the distortion-correction
algorithm was also applied for the misrecognized characters and the recognition rate
was further improved to 81.4%. The validity of the proposed algorithm was verified by
confirming a higher-recognition rate improvement of more than 8.8% compared to low-
resolution images. We anticipate that in our future work, we will also associate the smart
parking area implementation. Further study should consider the combination of lighter
deep neural networks to maintain the accuracy and improve recognition speed.
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