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Featured Application: Contactless and high-resolution scanning of planar surfaces find applica-
tion in several disciplines that involve sensitive or deformable samples, such as the study and
conservation of heritage objects, textiles, documents, and paintings. Off-the-shelf solutions come
at a high cost. In this work, an approach to contactless, high-resolution scanning of planar sur-
faces is proposed that is relevant to several applications. The implementation of this approach
exhibits reduced hardware cost, is based on open designs, and can be replicated with ease.

Abstract: The design and implementation of a contactless scanner and its software are proposed. The
scanner regards the photographic digitization of planar and approximately planar surfaces and is
proposed as a cost-efficient alternative to off-the-shelf solutions. The result is 19.8 Kppi micrometer
scans, in the service of several applications. Accurate surface mosaics are obtained based on a novel
image acquisition and image registration approach that actively seeks registration cues by acquiring
auxiliary images and fusing proprioceptive data in correspondence and registration tasks. The device
and operating software are explained, provided as an open prototype, and evaluated qualitatively
and quantitatively.

Keywords: scanner; imaging, image registration; image mosaic; image stitching; 3D printer

1. Introduction

The generation of image mosaics out of partial images of a surface is a useful task in
many applications. Mosaics are useful because they image a larger amount of surface than
a single image does. If a mapping between pixel and metric coordinates is achieved, then
world measurements can be performed using the mosaic, much like in cartographic maps.
Image registration upon general surfaces enables photorealistic maps for Geographical
Information Systems; photopanoramas [1]; and also specialized mosaics from usually
unseen surfaces such as the inner of pipes [2], the gastrointestinal tract [3], and the human
retina [4]. At the core of all methods for image mosaic generation is the problem of
image registration.

The simplest case of mosaic generation is met when imaging a planar surface, by
multiple and conveniently tessellated overlapping frontal views. Just this case is useful in
several domains, such as remote sensing [5], document scanning [6], bioinformatics [7,8],
art [9], and others. Approaches to this problem that are based purely on visual cues are
continuously making progress but, given pixel quantization, they exhibit error. For a
large number of images, this error accumulates and gives rise to distortions. For this
reason, applications that require large mosaics make use of independent information about
the location of the camera. For example, photorealistic stitching of remote sensing and
aerial images is supported by GPS measurements. We use this principle in the context
of overhead scanning, where approximate location measurements are available from the
motion mechanism of the scanner.

The optical resolution of scanners is measured by the number of pixels, or points, per
unit area. We use the equivalent of dots per inch—that is, points per inch (ppi). The ppi
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is a 1D metric that denotes the resolution of points across a line and, thus, a resolution
of 100 ppi means that in the scanned image, 100× 100 = 10 Kp would be devoted for a
surface area of 1 in × 1 in = 1 in2. It is equivalent to say that the scanned image has a
resolution of 10 Kp/in2 (number of points/per square inch).

In this work, a contactless, flatbed scanner, which costs less than 1000 USD, offers
19754 ppi resolution, and has a scanning area of 33 × 37 cm2, is proposed. Accurate
surface mosaics are obtained based on a novel image acquisition and image registration
approach that actively seeks registration cues by acquiring auxiliary images and utilizing
proprioceptive data in correspondence and registration tasks. The implementation in a
device with accompanying software is presented, provided as an open prototype, and
evaluated qualitatively and quantitatively.

1.1. Visual Registration of Images

The problem of computational image registration dates back at least four decades
of study. Methods in the literature are usually called “local” if they use point features
correspondence or “global” if they use overall image similarity [10,11]. When combining
images in a mosaic, these images are required to have some lateral “overlap” and the
registration task is called stitching. Due to restricted overlap, stitching is more accurate
when local methods are used.

Given point correspondences across two images of a planar surface, robust registration
solutions have been found and, by now, are textbook material [12,13]. When many images
are registered sequentially in a mosaic, the error is accumulated, distorting the result.
A solution is to employ a “global alignment” or “bundle adjustment” step, which either
obtains a more accurate solution or, at least, distributes error so that the shape of the
scanned area is retained. Although this improves the result, the error from the registration
of many images manifests as local, noticeable distortions, often called “seams”. For a
few images, these distortions are small and well-treated by methods that reduce their
visual prominence. However, when the number of images is increased by two orders of
magnitude, we observed these distortions to become significant and noticeable at close and
macroscopic inspection.

1.2. Proprioceptive Image Registration

Another way to register images in mosaics is employed by scanners, which use
mechanisms to drive the sensor at locations where the acquired images would precisely
match. The utilized sensors are most often line cameras with intense illumination and are
less-often photographic cameras. A market survey of pertinent solutions can be found in
Appendix A.

Contact-based, flatbed scanners provide up to 1000 ppi at a significantly high cost.
Large-format scanners provide resolutions of up to 1200 ppi and are almost contactless.
However, the scanned material should be less than a thickness threshold, i.e., 3 cm, to
pass through the scanning slit and also exhibit high cost. Film scanners exhibit higher
resolution, but require contact, material transparency, and are limited to the frame size of
photographic film.

Large-format scanners are contactless and designed for sensitive documents but
are also used for scanning textiles and other similar materials. They reach up to A0
scanning size. The precision required for this mechanical task elevates the cost of the
scanning hardware.

Book scanners are contactless and exhibit resolution in the range of 600–1200 ppi.
Their cost ranges from low to very high, though in many cases, the elevated cost is due
to the mechanics for the automation of page-turning. It ought to be noted though that
V-shaped—as opposed to flatbed—book scanners are unsuitable in the case of deformable
materials such as fabrics or sand.

Recently, the need for realistic textures gave rise to flatbed, contactless surface scanners,
called “material scanners”. They use camera photography and exhibit resolutions of up
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to 1000 ppi. Their effective scanning surface is in the order of 30× 40 cm2. Lower-cost
material scanners utilize the sensor of the mobile phone [14], the result however exhibits
lower resolution and definition compared to the aforementioned solutions.

1.3. The Proposed Approach

To the best of our knowledge, the proposed work exhibits the following
novel characteristics.

The cost-efficient motion mechanism of a Cartesian 3D printer (C3Dp) is used to
(a) systematically place the camera at prescribed locations and (b) to collect proprioceptive
data that improve registration accuracy. The motion model of the C3Dp provides 3 Degrees
of Freedom (see Figure 1, left). These are sufficient to place the camera at any frontal posture
of the volume above the scanned surface. The scanner motors may exhibit backlash, which
points to localization uncertainty, but not exhibit error accumulation. Using this motion
mechanism, images are systematically acquired. We compensate for the potential lack of
accuracy due to low-end hardware or mechanical jitter by strategically acquiring auxiliary
images that help the generation of spatially accurate scans.

Figure 1. Abstraction of C3Dp motion (left, recreated from [15]) and proposed scanning
locations (right).

Image registration is based on the fusion of visual and proprioceptive data. The
stepper motor is used to anchor error accumulation per motor step, due to the (approxi-
mately) repeatable nature of stepper motors. To cope with the uncertainty of motor error,
we strive to acquire as many registration cues as our memory can store. Images that
capture neighboring surface regions overlap laterally. Please confirm for all Additionally,
auxiliary images are acquired. These images overlap medially, due to elevations of the
camera relative to the scanned surface, and are used to provide additional registration
cues. However, the registration of images at different scales is not trivial for large-scale
differences [16,17]. Therefore, we elevate the camera in controlled steps, safeguarding the
preservation of registration cues across the scale.

To maximize mosaic resolution, we obtain the largest number of pixels per unit area
that we can. Thus, we select an affordable lens that can provide focused images at the closest
possible distance or, otherwise, a “macro lens”. Telecentric lenses would be extremely more
useful. However, not only they are more expensive, but they are also bigger and heavier.
The latter two properties would escalate the cost of a motion mechanism with the same
motion precision much more than the lens would.
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As a trade-off between the available memory and the requirement for as many regis-
tration cues as possible, we acquire images in a pyramidic scheme, as shown in Figure 1
(right). The base of the pyramid (called layer 0) represents the set of images acquired as
close as possible to the surface. Higher layers represent imaging at larger distances. In the
figure, each node represents a point in 3D space where the sensor will acquire a frontal
image of the scanned surface.

2. Materials

The proposed approach is implemented using the following materials.

2.1. Off-the-Net and Off-the-Shelf Components

The proposed Cartesian 2D scanner (C2Ds) is a device that is attached next to the
printing head of a C3Dp. The C3Dp is not otherwise modified; thus, the attachment
can be removed without affecting its operation. The motion mechanism belongs to the
C3Dp. This mechanism moves the printing plate laterally, in two dimensions, and the
printing head only vertically. The C3Dp is commanded to reach the imaging locations by a
microcontroller.

The C2Ds was built on top of an adaptation of the Prusa i3 series C3Dp, which were
chosen due to their wide adoption, low cost, and ease of construction. The operating vol-
ume is 24.89 × 21.08 × 6.86 cm3. The selected parts for the C3Dp are cited in Appendix A.

The visual sensor was an Olympus Tough TG-5, which has a minimum focus distance
of 1 cm, 4000 × 3000 p resolution, and a FoV of 16◦× 12◦.

The motor is controlled by the Marlin open-source firmware. Marlin is widely used
and runs on the cost-efficient 8-bit Atmel AVR microcontrollers. The reference platform
for Marlin is the Arduino Mega 2560 with RAMPS 1.4, which is directly compatible with
the equipment used for implementing the printer. This firmware runs on the mainboard
and manages real-time controls for heaters, steppers, sensors, lights, LCD, buttons, etc.
The control language is a derivative of G-code. G-code commands issue simple instructions,
such as “set heater 1 to 180” or “move to XY at speed F”.

The power supplies shipped with 3D printers usually generate up to 350 W on 12 V
output. In our implementation, a more robust solution was preferred to accommodate the
power requirements of the visual sensor. To this end, a 650-W ATX power supply was used.
The electronics and the sensor are connected to the 5-V output while the stepper motors
are connected to the 12-V output.

The prototype is shown in Figure 2. The rightmost image zooms into the attachment,
which is mounted together with the printing head.

Figure 2. Prototype and close-up of the mounted sensor.
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2.2. Motor and Motion

The implementation of a C3Dp contains some free variables, such as the quality of
materials, the torque of motors, etc. To reduce the effect of vibrations and increase motion
accuracy, the device was implemented as follows.

Aluminum frames of 40 × 40 mm thickness were used for the truss. The backside of
the print bed was enhanced with an aluminum frame to increase its weight. High-quality,
heat-hardened steel rods of 12 mm-thickness and high-quality linear bearings were used for
the motorized part of the printing bed. Printable components of the apparatus were printed
using PET-G and a 60% infill rate to enhance their stiffness and reduce the possibility of
heating deformation due to intensive use.

To provide enough torque for this implementation, motors were standard Nema 17-
sized high-torque stepper motors. The motor’s motion was transmitted via 6 mm nonelastic
timing belts, integrated with steel threads for enhanced stiffness. Motors are driven by the
Texas Instruments DRV8825 Stepper Motor Controller ICs. The controller supports up to
1/32 microstepping. The device is operated through a microcontroller built on top of the
Arduino Mega 2560. For the wiring of the C2Ds, the RAMPS 1.4 Arduino Mega Pololu
Shield was used.

On account of the achieved mechanical robustness, the printing bed was increased by
a factor of 4.764 from its specification to 50× 60 cm2. The bed was coated with a 5 mm-thick
aluminum sheet to ensure a flat slide for the placement of samples.

2.3. Imaging

The camera faces the imaged surface perpendicularly. To mount the camera, a sensor
base was designed using the TinkerCad software. The design, shown in Figure 3 (left), was
exported in STL format and printed on the C3Dp—see Figure 3 (right). The design of the
mount is compatible with the print head and is placed on its backside, allowing both heads
to be mounted concurrently.

Figure 3. Design of the camera base (left) and photograph from its printing on the C3Dp (right).

The time required to capture the required number of images exceeds the duration
of typical consumer-grade batteries, i.e., ≈1300 mAh. To avoid interrupting the scan for
changing and the consequent sensor displacements, power was continuously provided
as follows. A printed case emulating the battery was wired to a power supply of the
appropriate voltage and current. The second component in Figure 4 guides and stabilizes
wirings. The models can be found in the Supplementary Material.

Figure 4. Designs of a battery emulator and photographs of its implementation.
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2.4. Communication and Control

The scanner control software runs on a personal computer connected wirelessly to
the controller. This computer runs software mediating the image acquisition process. The
software executes a scanning plan, containing the locations of image acquisition, encoded
as 3D coordinates.

Specifically, print bed and sensor are drawn to a designated relative position, due to a
G-Code command to the controller, e.g., “G1 X2.57 Y1.93 Z18.20”. The signal for image
acquisition is then sent. The command sequence, encoded in HTTP, in Table 1 (top) is sent
to trigger the acquisition of an image. Image acquisition failures and delays are treated
as follows: The software checks if the image has indeed been acquired, using the HTTP
command in Table 1 (bottom). This command acquires the list of stored images to be com-
pared with a previously collected one. These two sequences are repeated until the image is
acquired. Each filename is stored to later conveniently rename the acquired images.

When all the pictures are acquired, the files are manually copied from the memory
card of the sensor and automatically renamed by the software. The renaming includes
the coordinates of image acquisition in the filename in the form of Z-Y-X.jpg, such as
‘018.20-001.93-002.57.jpg’. These 3D coordinates are only readings of the C3Dp controllers,
they are not regarded as absolute measurements but fused with visual cues, as discussed
in Section 3.3.

Table 1. Sensor communication command sequences.

Image Acquisition

http://192.168.0.10/exec_shutter.cgi?com=1st2ndpush
http://192.168.0.10/exec_shutter.cgi?com=2nd1strelease

File Listing

http//192.168.0.10/get_imglist.cgi?DIR=/DCIM/100OLYMP

2.5. Cost

The cost of materials is reported in Table 2. On the date of submission, the total cost
was 952 USD.

Table 2. Costs of utilized materials.

Component Quantity Price (USD)

Visual sensor, Olympus Tough TG-5 1 430
Microcontroller (Arduino Mega 2560) 1 42
Controller RAMPS 1.4 1 9
DRV8825 Stepper Motor Driver 5 20
Stepper motors 5 100
Extruder 1 10
30 mm × 30 mm aluminum truss 3 m 120
Metal rods 12 mm 2 pieces, 12 mm × 100 cm 24
Metal rods 10 mm 4 cm × 60 cm 28
Aluminum sheet 5 mm 2 pieces, 60 × 40 cm 50
Lead Screw T8 540 mm 2 20
Nut for Lead Screw T8 Lead 8 mm 2 4
Timing Belt XL 44′′ 1 10
Aluminum GT2 Timing Pulley 2 4
Aluminum Flex Shaft Coupler 5–8 mm 2 4
Aluminum GT2 Timing Pulley Idler 1 2
ATX PSU 650 W 1 60
Filament 1/2 kg 15
Total 952
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3. Method
3.1. Image Acquisition

Images are acquired in layers that form pyramids. For a pyramid layer, the locations of
image acquisition form a hypothetical grid. These locations are determined so that images
laterally overlap at all boundaries. For succeeding pyramid layers, overlap is medial.
Camera centers are determined so that for consecutive layers, a node of the upper layer
is a parent to the nodes of the lower layer that image the same surface region. To reduce
scanning time and proprioceptive error, each layer is scanned in boustrophedon order.

Given the sensor’s FoV and the proportions of lateral or medial overlap, camera
locations are precomputed and stored in a tree-shaped data structure. These locations
are depth-first serialized and converted to scanner coordinates. Images are acquired and
indexed so that lateral and medial adjacency relations are retained.

3.2. Image Correspondence

Image correspondence is keypoint-based. We selected SIFT [18] as the baseline, but
any other more suitable keypoint flavor can be used instead. Correspondences are sought in
neighboring images, either laterally or medially. Matching accounts for the planarity of the
imaged surface. Individual point matches are sought only within circular neighborhoods,
as predicted by scanner motion. Correspondence establishment is symmetrical, as in [19].
Registration uses RANSAC [20] for robustness, using projective homography for the cost
function. Correspondences are approved only if the reprojection error is below threshold τ;
otherwise, they are discarded.

3.3. Image Registration

We call a map the imaged surface, in pixel coordinates, in the coordinate frame of the
mosaic to be created. The input to image registration is the proprioceptive estimates of the
camera centers and the established point correspondences across laterally or medially adja-
cent images. The output is a set of projective homography transforms Hi, estimated for each
image Ii, where i enumerates the images across all pyramid layers. These homographies
associate image locations in each Ii to the corresponding locations in the mosaic.

World points Ci are the proprioceptively obtained coordinates for these locations in 3D
space. Image points ci are the image centers of images Ii. Initially, projective homography
Hg is estimated across this map and the 3D grid locations Ci, using least-squares.

For each pair of adjacent images Ii and Ij, we enumerate the correspondences between
them using k and denote their locations in Ii and Ij as fki, fkj, respectively. The computation
estimates the homographies by optimizing the following objective function:

∑
i

∑
j
(Hifki − Hjfkj)

2 + ∑
i
(HgCi − Hici)

2. (1)

The first term is the conventional reprojection error metric for point correspondences.
In that term, j enumerates the neighbors of Ii. The second term promotes compliance with
the scanner coordinates. In Figure 5, the notation is illustrated.

Figure 5. Illustration of objective function notation.

The projective homography has 8 free variables and, thus, the optimized variables are
8 times the number of images. The optimization capitalizes on the adjacency information
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contained in the pyramid data structure, to create a topological graph, as the one in
Figure 1 (right). This graph has points Ci as nodes and, as vertices, their adjacency relations.
These relations constrain the search space of the optimization. We employed the work
in [21], which is a framework for least-squares optimization of an error function that
can be represented by a graph and has been specifically designed for SLAM or bundle
adjustment problems.

An additional benefit of using the aforementioned graph-based method is the ro-
bustness to “missing estimates”. Such a case was encountered in Section 3.2, where we
discarded unreliable homography estimates. Another is the case where the apex of the
pyramid cannot be reached by the hardware. The latter case is encountered when covering
wider areas, using multiple, laterally overlapping pyramids. There is no special treatment
for running the method in this way. The difference is the lack of the cues that would have
been provided by images acquired from a larger distance.

3.4. Image Combination

The high definition of the macro lens at close distances comes at a significant cost,
which is its shallow depth of field, or otherwise, the range at which imaged surfaces are in
focus. This locus is a spherical shell centered at the focal point. For the macro lens, this shell
is thin and small. The depth of focus is set representative of the fovea, such that the center
of the image is best focused. As the imaged surfaces are planar, the image periphery is
less focused. Another common issue in mosaics is the occurrence of seams at the stitching
boundaries. Both issues are treated with the method in [22], applied for 32 spectral bands.

4. Results

The goal of the experiments was to assess mosaic registration accuracy and to explore
tolerance to departures from the assumptions of Lambertian reflectance and the surface
planarity. Indicative samples were drawn from applications relevant to sensitive materials,
found in art, biology, document analysis, and textiles. The selected materials exhibit
variability as to their reflectance properties and their 3D surface texture. We included shiny
and rough materials in the samples. We did not include highly transparent, highly specular,
or highly reflective materials.

Macroscopic images of the samples, acquired by a conventional camera, are shown
in Figure 6. In the figure, from left to right and top to bottom, samples 1–5 are paintings;
sample 6 is a blank piece of cotton canvas; sample 7 is a scarcely handwritten A4 page;
sample 8 is a stamped and signed passport; samples 9 and 10 are blank and printed graph
paper, respectively; samples 11–13 are pieces of silk fabric; sample 14 is a leaf; samples 15
and 16 are fine and coarse-grained sand, respectively; sample 17 is an assortment of coins;
sample 18 is a banknote. Samples 13 and 18 were scanned entirely. For the rest, a 5 × 5 cm2

region was scanned. In Figure 7, 2048 × 2048 p regions from images of the finest layer are
shown, in the same order as in Figure 6.
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Figure 6. Samples.

Figure 7. Sample details.

4.1. Conditions

In all experiments, the sensor was operated in autofocus and automatic stacking mode.
The illumination was produced by the sensor’s flash and ambient light. Sensor brightness,
contrast, and color balance were set to automatic. The utilized sensor provides images
encoded in JPEG format, at 4000 × 3000 p resolution. The average size of the image file
is 2.4 Mb. The frequency of image reacquisitions, as per Section 2.4, was ≈1/1000. The
effective scanning area is 33 × 37 cm2 and is a region of the printing bed at its center,
allowing for laterally bounding paraphernalia.

The maximum elevation of the C3Dp was 30 cm. This elevation determines the height
of a hypothetical pyramid. When the sensor is at that height, it occurs at its apex. In each
layer of this pyramid, the lateral overlap is 50% for horizontal or vertical adjacency and 25%
for diagonal. The pyramid has 5 layers, configured as in Table 3. Doubling the elevation
per layer results in a medial overlap of ≈4, meaning that a parent node fully overlaps with
4 images from a finer layer. This level of medial overlap was sufficient for the samples we
scanned. Denser or sparser configurations are treated in the same way. For the utilized
sensor, the base layer of this pyramid is 5 × 5 cm2 and is covered by 25 × 19 = 475 images.
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Table 3. Temporal and computational requirements.

Layer Elevation X Steps # Y Steps # Start X Start Y Step X Step Y

Fine 0 18.2 19 25 2.56 1.92 2.56 1.92
1 36.4 9 12 5.13 3.85 5.13 3.85
2 72.8 4 6 10.27 7.70 10.27 7.70
3 145.6 2 3 20.55 15.41 20.55 15.41

Coarse 4 291.2 1 1 41.11 30.83 41.11 30.83

The inequality between the numbers of X and Y steps is by preference. Given the
rectangular camera FoV, this configuration results in a square scanned area. The surface
region covered by each image is shown in the top row of Figure 8. Each image corresponds
to a pyramid layer, ordered from left to right and from coarse to fine scale. The surface
area covered by each image is outlined using different colors for neighboring images.
In the example, the square formed in the rightmost map is 5 × 5 cm2. The bottom row
shows the acquired images warped to the mosaic map or, in other words, the mosaics
obtained for each pyramid layer. For the leftmost map, one image was warped; this image
is the one acquired at the pyramid apex. The remainder maps are mosaics of warped
images acquired at the locations denoted in the third and fourth column of Table 3. The
rightmost mosaic comprises of 475 images. In the remainder of this section, the obtained
mosaics are cropped to omit blank areas. The mosaics presented in Figures 9–13 image the
same amount of area. The dimensions of the mosaics in Figures 14 and 15 are reported in
Sections 4.2.5 and 4.2.7, respectively.

The sensitivity of the keypoint detector was tuned to its highest level. The number
of keypoint features detected in the original images typically ranges 30–60 K features per
image. Datasets with more intricate texture, such as the banknote and textiles, exhibited
about 100 K features per image. However, the robust correspondences across image pairs
are much fewer and are in the range of 0.5–5 K. The reprojection error threshold employed
to judge the reliability of a homography estimate was τ = 25 p (see Section 3.2).

The same computer was used in all experiments. Its specifications were as follows:
CPU x64 Intel i7 8-core 3 GHz, RAM 64 Gb, GPU Nvidia GeForce GTX 4 Gb RAM
(GTX1070), SSD 256 Gb, HDD 2 Tb. The critical parameter is RAM as it determines
the number of correspondences that can be stored in memory and, ultimately, the number
of images that can be stitched into a mosaic given the capacity of said memory. The use of
time and computational resources, as a function of the scanned area, is reported in Table 4.

Figure 8. Scanned area and mosaics per pyramid layer.
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Figure 9. Paintings.

Figure 10. Canvas, handwritten paper, and passport with stamp and handwriting.
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Figure 11. Repetitive patterns.

Figure 12. Fiona.

Figure 13. Approximately planar surfaces.
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Figure 14. Fabrics.

Figure 15. Larger scans.

Table 4. Temporal and computational requirements.

Area (cm2) Scan time (h) RAM (Gb) Storage (Gb) Computation Time (h)

25 2 3.4 1.4 3.5
91 8 12 5.5 11.5

176 15.3 25 10.5 38.5

4.2. Qualitative Tests
4.2.1. Computational Behavior

Our primary investigation regarded the translational component of the estimated
homographies. The estimated homographies lead to image shifts that are always less than
4 p. In other words, none of the estimated homographies suggest an update of Ci that
would cause an image shift no larger than 4 p. In turn, this suggests that no homography
estimate is in gross contradiction with the proprioceptive readings.

Second, we observe that the method is robust to the occurrences of missing information
that were encountered in the experiments. The information missing was either a single
pyramid apex in the use of multiple pyramids or registration failures due to a lack of
reliable point correspondences. In all cases, a complete mosaic is provided for the layer of
the highest detail.

4.2.2. Paintings

To study paintings, we acquired painted samples upon canvas, Canson paper, and
regular printing paper. The samples exhibited various degrees of surface roughness. The
colors were made from soft pastel or oil. The results are shown in Figure 9. To better
investigate the effect of height variations, in the example of the top row, the impasto paint-
ing technique [23] (p. 100) was utilized. This technique involves painting in overlapping
layers and gives rise to surface anomalies. The average height step of these anomalies was
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0.75 mm. The example is centered upon a 1.5 mm protrusion. In the remaining rows of
Figure 9, the examples are sorted in the declining level of surface roughness.

4.2.3. Paper and Canvas

A white sheet of paper and a white piece of canvas tested the application of the
method in documents and plain fabrics. Canvas is a textile with repeated structure, but
only macroscopically, as cotton fibers provide unique textures at the imaging resolution.
Cotton plies are in the range of 12–20 µm. The results are shown in Figure 10. Under
investigation were potential effects due to blank surface space. No such effects were
observed, as paper when closely inspected reveals rich texture. The same was the case
for cotton canvas used for painting. Still, in the third layer from the top, a homography
estimate was discarded.

4.2.4. Repetitive Patterns

To test against the sensitivity of feature-based image registration to repetitive patterns,
conventional graph paper was used. The results are shown in Figure 11. As in the case of
the canvas, in the fine mosaic layers, sufficient uniqueness cues are found to abstain from
gross misregistration errors. Nevertheless, a failure is observed in the autofocus function
of the sensor. At the second layer from the top, some images were out of focus, possibly
due to the sensitivity of the autofocus mechanism of the sensor to repeated texture. The
homography estimate was considered unreliable and, thus, discarded. We repeated the
experiment this time using printed text, using the “Liberation Serif —Regular” font, at 6 pt.
In this condition, said effect did not occur.

4.2.5. Fabrics

Though the study of fabrics is related to heritage [24] and industrial applications, ways
to digitize textiles and fabrics are constrained in the products reviewed in Appendix B.
These approaches do not scan the fabric in sufficient resolution to reveal the fine crafting
of some textiles. We chose patterned silk fabrics handwoven on a Jacquard loom because
this type of weaving allows for intricate patterns on the fabric. We chose silk as the
most challenging material, because its fibrils are sleek, reflecting light from many angles,
attributing it with its characteristic sheen. Moreover, silk is one of the finest plies. Silk
fibers from the Bombyx Mori, as in the example, are in the range of 5–10 µm (a human hair
is ≈ 50 µm). We scanned two samples woven with the same two-color pattern but with
alternating colors. The results are shown in Figure 14.

4.2.6. Fiona

To image biological tissue, a leaf was scanned. The result is shown in Figure 12.
Biological samples avail more information when backlit. If illumination frequency is
modulated, spectral absorption measurements can be obtained. We plan such a version of
this scanner for the future.

4.2.7. Larger Scans

We tested the utilization of multiple, laterally overlapping pyramids in samples of
larger areas. The targets were a 21 × 7 cm2 piece of industrially woven, patterned silk
fabric and a 12 × 6.2 cm2 banknote. The results are shown in Figure 15. The pyramids used
were X and Y for these cases, respectively. For the fabric, an arrangement of 5× 2 pyramids
was used and, thus, the top layer was a mosaic of 10 images. For the banknote, a 2× 3
arrangement was used and, thus, the top layer comprised 6 images. In this configuration
of RAM and scanning resolutions, the maximum scan size is 42× 14 = 588 cm2. In the
Supplementary Material, the scans of both sides of the banknote are provided.
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4.3. Benchmark and Quantitative Experiments

Quantitative experiments were challenging due to our inability to accurately manufac-
ture targets of known size and with local features at the fine scale required. For this reason,
we used structures of known size, such as coins and security prints.

4.3.1. Resolution

We report an optical resolution of 19,754 horizontal and 19,820 vertical ppi, without
interpolation. Thus, mosaic pixels deviate by a factor of φ = 0.00334 from squareness. The
measurement was obtained using the banknote, which is of known dimensions. This means
that mosaics are linearly scaled by a factor of φ in the vertical direction. If needed, the
mosaic can be resampled to feature square pixels. We report the horizontal as the scanner
resolution—19,754 ppi. The benchmark was obtained using a banknote and mm-grade
graph paper.

4.3.2. Mosaic Encoding

For a 5× 5 cm2 mosaic with 5 layers, 626 images were acquired, as described in Table 4.
Their storage capacity is ≈1.5 Gb. As the mosaic images are overly large for conventional
image viewers, we render them in 256 p × 256 p image partitions called “tiles”. In the
Supplementary Material, tiles are provided in their original resolution encoded in JPEG
format. The resolution of mosaics and their storage requirements are shown in Table 5.
In the Supplementary Material, a hierarchical viewer (OpenSeadragon 2.4.2) is provided
that enables the inspection of all layers in their original resolution, similarly to photorealistic
mapping systems.

Table 5. Mosaic resolution and storage capacity in JPEG encoding.

Layer # Resolution (Gp) Storage (Mb)

0 3707.8 395
1 927.0 97
2 23.7 27
3 56.0 9
4 14.5 3

To be easily accessed, mosaics are rendered in smaller resolutions, such as in the
figures of this document. In the Supplementary Material, the mosaics for each layer are
provided in their original resolution.

4.3.3. Approximately Planar Surfaces

To observe the effects of surface roughness, we scanned two types of sand and an
assortment of coins. The results are shown in Figure 13, in increasing order of surface
roughness. The coins ranged from 1.67–2.33 mm in thickness. For the coarse-grained sand,
height steps of grains between adjacent grains well-exceeded 3 mm.

We did not detect artifacts for fine-grained sand or coins. Though not easily found, the
case of coarse-grained sand exhibits some tractable mismatches, as the image combination
method cannot compensate for the lack of accurate registration between the overlapping
image regions. They are shown in Figure 16, where each image shows a region of ≈1 cm2.
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Figure 16. Registration failure examples.

4.3.4. Image Structure

Ideally, when viewed at the same resolution, mosaic layers that image the same surface
region should be identical. The similarity between mosaic layers was quantified by cross-
correlation in the domain of [−1, 1]. We computed this metric between consecutive layers,
as well as between the top and bottom layer. In Table 6, we report the correlation values.
The first row shows the correlation coefficient between the coarsest and the finest layer.
The remainder columns show the correlation values for consecutive layers.

Table 6. Correlation coefficients between mosaic layers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0–4 0.5 0.3 0.1 0.2 0.6 0.6 0.5 0.6 0.9 0.9 0.2 0.5 0.6 0.3 0.7 0.8 0.3 0.5
0–1 0.9 0.8 0.9 0.9 0.9 0.8 0.7 0.8 0.5 1.0 0.9 0.8 0.9 .9 0.9 0.9 0.5 0.8
1–2 0.8 0.7 0.7 0.9 0.9 0.4 0.6 0.9 0.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.6 0.9
2–3 0.6 0.3 0.6 .8 0.9 0.5 0.6 0.9 1.0 1.0 0.8 0.8 0.9 0.8 0.9 0.9 0.6 0.9
3–4 0.7 0.5 0.4 0.4 0.8 0.7 0.7 0.7 0.9 1.0 0.2 0.7 0.8 0.7 0.8 0.8 0.7 0.9

To measure systematic distortions, we used the images of coins (from Section 4.3.3),
which are circular structures. We performed Canny edge detection [25] in the finest mosaic
layer and selected the edges corresponding to the circular creases of the 2 c and a 5 c coin.
The selected edges were used to fit circles, using least-squares without a robust selection of
inliers. In Figure 17, the selected edges are shown on the left pair of images. In Table 7, we
report deviations of the detected edges from the fitted circle.

Figure 17. Edges belonging to the inner and outer creases of two coins (left) and edge detection
details (right).

Table 7. Mean circle fit error and standard deviation.

Circle Radius (p) Error (p)

2 c outer 3464.8 3.05 (2.62)
2 c inner 3216.8 4.09 (3.50)
5 c outer 3936.4 4.86 (3.17)
5 c inner 3630.8 5.20 (3.36)
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This example facilitates observations at the locations of lateral image overlap, where
seams are typically observed. In general, due to accurate registration and the effect of the
method in [22], seams are usually easily observable in fine scales. In the experiment, the
focus distance was automatically adjusted. As the coins are elevated from the background,
near the coin boundary, the sensor focuses either on the paper background or the coin.
When the focus is placed on the background, the image region where the coin appears is
blurry and, instead, the background is focused. Though the structure distortion is minute,
the difference in the focus of the blended images is observable, when image edges are
detected as in the right pair of images in Figure 17. In turn, the different amounts of
image blur at the boundaries of the blended image gives rise to edge dislocations. In
Figure 18, a mosaic of 2× 2 images is shown for each sample in the experiments (minified
for document scale). In the Supplementary Material, these images can be found in their
true resolution. We observe that although no high frequent seams are observed, global
brightness difference is observed between stitched images.

Figure 18. Mosaics of 2× 2 original images.
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5. Discussion

The quantitative experiments show that registration errors are in the order of 10 p
in mosaics comprising ≈ 4 Tp. Correlation across layers was consistently positive, thus
pointing to the nonoccurrence of gross registration errors. We also found no evidence of
systematic distortion or error accumulation.

The obtained mosaics were inspected for distortions due to departures from the
planarity assumption. We found the limitation of the current configuration to be sharp
steps of over 3 mm.

We performed no correction as to the global optimization of image intensities. Setting
the camera acquisition mode to automatic brightness adjustment adapts the dynamic range
of image acquisition to the content of each image. This can be observed in the mosaics of
the top layers, where brightness differences across surfaces of the same luminance can be
observed. Compensation methods tailored for mosaics exist in the literature, e.g., [26,27].
On the other hand, reflectance calibration even by simple means, i.e., “gray card”, supports
the veridical measurement of lightness. It remains to be studied whether images of higher
dynamic range are required to capture the brightness variations encountered in all images.

We did not control the stacking process provided by the sensor. By assigning this
control to the embedded system accompanying the sensor, we may be wasting potential
sensitivity to depth variations. Control of bracketing techniques would provide better
focus and, thus, more image features. In addition, it can be supported even by weak depth
cues, such as depth from defocusing [28] or stereo vision.

There are two main factors relevant to scaling the proposed approach for larger scans:
the size of the C3Dp bed and memory of the computer that runs the optimization, as
per Section 3.3. Larger setups can be achieved using open-source platforms, such as the
MPCNC, to more precisely control motion over areas up to 2× 2 m2.

6. Conclusions

A surface scanning approach and its implementation are proposed in the form of a
scanner imaging modality. The proposed approach employs auxiliary images to strengthen
image registration cues and fuses proprioceptive data to produce mosaics of the scanned
surface with a resolution of 19.8 Kppi. We conclude that the resultant device and approach
offers a useful imaging modality for several applications in a cost-efficient manner.

Supplementary Materials: All of the mosaic results shown in this paper can be found in their original
resolution at http://doi.org/10.5281/zenodo.4983052, accessed on 3 July 2021. A supplementary
video presentation of two indicative results can be found in the supplementary material and is also
available online at https://youtu.be/3rhcAUcekkM, accessed on 3 July 2021.
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Abbreviations
The following abbreviations are used in this manuscript:

C3Dp Cartesian 3D printer
C2Ds Cartesian 2D scanner
FoV Field of View
GPS Global Positioning System
HTTP Hypertext Transfer Protocol
JPEG Joint Photographic Experts Group
USD Unites States Dollar
mAh milliamp Hour
c cent
G giga
h hours
m millimeter
µ m micrometer
cm centimeter
kg kilogram
p pixel
pt point
ppi points per inch
T tera
V Volt
W Watt

Appendix A. Printed Components

Table A1. Printed components. Accessed on 3 July 2021.

Name Source

Z-axis leadscrew https://www.thingiverse.com/thing:519391
Controller case https://www.thingiverse.com/thing:2047732
Bowden extruder https://www.thingiverse.com/thing:2243325
x-carriage https://www.thingiverse.com/thing:2514659
z-axis https://www.thingiverse.com/thing:1692666
y-axis belt holder https://www.thingiverse.com/thing:1030200
y-belt tensioner https://www.thingiverse.com/thing:3404464
y-axis motor holder https://www.thingiverse.com/thing:2808408

Appendix B. Market Survey

All prices are approximate and estimated on the day of submission. Unreported prices
are ones that require asking for a quote and all exhibit a larger price than the others in the
same table.

Table A2. Flatbed A0 scanners.

Name Optical Resolution (ppi) Price (USD)

Kurabo K-IS-A0FW 1000 50 K
Microtek LS-4600 600 60 K

https://www.thingiverse.com/thing:519391
https://www.thingiverse.com/thing:2047732
https://www.thingiverse.com/thing:2243325
https://www.thingiverse.com/thing:2514659
https://www.thingiverse.com/thing:1692666
https://www.thingiverse.com/thing:1030200
https://www.thingiverse.com/thing:3404464
https://www.thingiverse.com/thing:2808408
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Table A3. Film scanners.

Name Optical Resolution (ppi) Price (USD)

Plustek OpticFilm 8100 7200 400
Epson Perfection V550 Photo 12,800 600
UScan+ HD LTE 2400 Quote

Table A4. Large format scanners.

Name Optical Resolution (ppi) Price (USD)

Colortrac SmartLF Sci 1200 5–12 K
Colortrac SmartLF SC 42 Xpress 1200 7 K
Contex IQ Quattro X - 44” 1200 7 K
Contex IQ Quattro 4450/4490 1200 7–8 K
Image Access WideTEK 48CL 1200 6 K
ROWE 850i - 55” 1200 22 K
Image Access WideTEK 60CL 1200 12 K
CRUSE ST Light 300 300 30 K
CRUSE ST Light 600 600 30 K
CRUSE Synchron Table (ST) 830 30 K
CRUSE CS 85/145 ST-T 600 30 K
CRUSE CS 82 ST-T 2450 600 30 K

Table A5. Book scanners.

Name Optical Resolution (ppi) Price (USD)

Suprascan double A0 600 Quote
Suprascan Quartz A0 LED HD 600 Quote
Sma Scanmaster 0 3650 600 Quote
book2net Hornet 400 Quote
Czur ET16 275 355
Fujitsu Scansnap SV600 280 500
SMA ScanMaster 2 1200 10 K
SMA RoboScan 2 600 10 K
IID Bookeye 5 V3 600 10K
Bookeye 4 V3 Kiosk 600 10 K
Bookeye 4 V2 Semiautomatic 600 10 K
Bookeye 4 V2 Professional Archive 600 10 K
Zeutschel OS Q1 600 10 K
Zeutschel OS HQ 1000 10 K
Zeutschel OS Q0 600 10 K

Table A6. Material scanners.

Name Optical Resolution (ppi) Price (USD)

Vizoo xTex 1000 Quote
xrite TAC7 385 Quote

Table A7. Scanning services.

Name Optical Resolution (ppi) Price (USD per Sample)

Materialcapture 600 100–300
Muravision 920 100–300
Overnight scanning 600 100–300
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