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Abstract: The Bouc–Wen nonlinear hysteretic model has many control parameters, which has been
widely used in the field of seismic isolation. The isolation layer is the most important part of the
isolation system, which can be effectively simulated by the Bouc–Wen model, and the isolation
system can reflect different dynamic characteristics under different control parameters. Therefore,
this paper mainly studies and analyzes the nonlinear dynamic characteristics of the isolation system
under different influence factors based on the incremental harmonic balance method, which can
provide the basis for the dynamic design of the isolation system.

Keywords: Bouc–Wen; nonlinear hysteretic model; incremental harmonic balance method; vibration
isolation system

1. Introduction

In recent years, the idea of seismic isolation building is widely used in civil engineering,
vehicle engineering, aerospace engineering and other fields, such as the construction of
commercial complexes, hospitals, residential buildings, tunnels and subway stations, shock
absorption of vehicles and launch of rockets, etc. This is achieved mainly through the
installation of seismic energy-absorption devices or coating with damping materials to
achieve the optimal application of different material characteristics, which can ensure that
the isolation system effectively protect the superstructure from earthquake damage or
damage. At present, with the continuous development of seismic isolation technology,
countries around the world are also carrying out research on seismic isolation theoretical
systems related to seismic isolation structures [1–14].

As one of the most important parts of the isolation structure, the mechanical proper-
ties of the isolation layer are mainly hysteretic characteristics; meanwhile, the hysteretic
nonlinearity system usually is a kind of multi-valued, non-analytical system, so it is very
difficult to establish a mathematical model of the universal hysteretic nonlinear system. In
previous works, Caughey used a bilinear hysteretic model to study the random vibration of
the system [15], and some scholars also used a piecewise linear hysteretic model to analyze
the system response [16]. However, in the piecewise linear model, due to the abrupt change
in stiffness, it is difficult to reflect the yield characteristics of the system. For this reason,
relevant scholars began to use the smooth curve model to analyze a hysteretic system [17].
In 1967, Bouc proposed a simple and smooth hysteretic model controlled by differential
equations. Later, Wen et al. improved this model and proved that this model could gen-
erate a series of different hysteretic loops [18]. Subsequently, the Bouc–Wen model was
developed as a smooth curve hysteresis model, which includes both nonlinear stiffness and
damping; it can approximate all kinds of smooth hysteretic curves and reflect the mechani-
cal properties of the system under different control parameters well. Therefore, the model
has been widely used in research and analysis in the field of engineering applications.

Domestic and foreign scholars have also made relevant explorations regarding the
solving methods of nonlinear systems. For example, Marano used the stochastic param-
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eter analysis method to describe the response of the seismic isolation bridge model and
evaluated the performance of the seismic isolation device [19]. Meibodi used Incremental
Dynamic Analysis (IDA) to determine the response of analyzing the nonlinear model [20].
TSiatas adopted the state space method to analyze the Hysteretic Energy Sink [21]. Li
used a numerical simulation method to mainly analyze the parameter characteristics of
a nonlinear hysteretic system [22]. Zhu adopted the normalized Bouc–Wen model to de-
scribe the hysteretic characteristics of a magnetorheological damper [23]. Kim analyzed
the asymmetric hysteresis behavior of the Bouc–Wen model based on phenomenology [24].
Zhu established the generalized Bouc–Wen model to accurately describe the nonlinear
phenomenon of the piezoelectric actuator, and then compensated the hysteresis effect
to solve the problem [25,26]. Niola proposed a Traceless Kalman Filter to identify the
parameters of the hysteretic model, and the effectiveness of this method was verified by
numerical simulation and experiments [27]. Casalotti used the asymptotic analysis method
and path-tracking method to study the resonance dynamics behavior of nonlinear struc-
tures [28]. Wu analyzed the modified Bouc–Wen model with MATLAB and established
the nonlinear hysteretic suspension model. The frequency response characteristics of a
semi-active suspension were studied [29]. Bai used the incremental harmonic balance
method (IHB) to analyze the cubic nonlinear viscous damped vibration system, which was
verified by the fourth-order Runge–Kutta numerical integration [30]. Hossein used the
incremental harmonic balance method to study the dynamic behavior and stability of the
two-degree-of-freedom nonlinear system [31]. Liu studied two-degree-of- freedom systems
with piecewise linearity and has done many other work in this field [32,33]. At present,
the methods to analyze hysteretic systems mainly include the slow variation method or
harmonic balance method, etc. However, according to the relevant results of numerical
analysis technology at home and abroad, it can be found that the main research is on the
frequency response curve and bifurcation diagram of the relevant model, and to distinguish
the stable state, whereas research on the control parameter space of the system is obviously
insufficient. In this regard, the accurate and effective prediction of system behavior by
adjusting the major parameters has gradually become a highly popular topic [34].

2. Mechanical Properties of the Bouc–Wen Model

The Bouc–Wen model (the Bouc–Wen nonlinear isolation model with two degrees
of freedom) is a hysteretic model widely used in the engineering and scientific research
fields at present, and specifically widely used in the range of seismic isolation engineering.
Moreover, the hysteretic restoring force and displacement diagram of the model is smooth
and continuous, and the restoring force of the seismic isolation structure can be simulated
by using the model, as shown in Figure 1.
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In addition, the following equations, Equations (2) and (3), are satisfied:

.
z =

1
xy

(A
.
x(t)− β

.
x(t)|zn(t)| − γ

∣∣ .
x(t)

∣∣zn(t))n = 1, 3, 5 . . . (2)

.
z =

1
xy

(A
.
x(t)− β

.
x(t)zn(t)− γ

∣∣ .
x(t)

∣∣∣∣∣zn−1(t)
∣∣∣|z(t)|)n = 2, 4, 6 . . . (3)

where Z is the hysteretic displacement of the system, the area of the hysteretic loop
controlled by the parameter A; the shape of the hysteretic loop is controlled by parameters
β and γ; the smoothness of the hysteretic curve controlled by n; and α represents the ratio
of the back-to-front stiffness of the yield value. When α = 1, the system has ordinary linear
elasticity.

For different values of parameters β and γ, the hysteretic characteristics of the structure
will change in different forms. When β + γ > 0, as shown in Figure 2a,b, the structure
presents soft characteristics, and the hysteretic restoring force of the system decreases as
the displacement response increases. When β + γ = 0, the structure is linear in the loading
stage. When β + γ < 0, the structure shows hardening properties, and the hysteretic
restoring force of the system increases with the increase in displacement response. As we
can be seen from Figure 2b,d, when the ratio of β/|γ| is relatively large, the enveloping
graph of the system hysteretic restoring force curve is larger and the curve shape is relatively
full, which proves that the structural system consumes more energy under this parameter.
When the ratio is small, it can be seen that the overall enveloped area of Figure 2a,c is
small, and the energy dissipation characteristics of the structural system are relatively weak
compared with the others.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. Bouc–Wen hysteresis loops with different parameters. (The values of β in (a–d) are 0.15, 
0.5, 0.15, 0.5; The values of γ in (a–d) are 0.85, 0.5, −0.85, −0.5.) 

3. Theoretical Analysis of the Nonlinear Isolation System 
The structure presents strong nonlinear characteristics under the action of an actual 

strong earthquake. For the isolation structure, the material properties of the isolation 
layer differ greatly from the structure, so the isolation structure can be divided into the 
superstructure and the substructure. The characteristics of the isolation layer are coupled 
and simplified by the Bouc–Wen nonlinear model, in which the horizontal stiffness of the 
superstructure is large and usually presents a translational state. In order to study the 
nonlinear dynamic characteristics of the isolation system, a strong nonlinear solution 
method—Incremental Harmonic Balance Method (IHB) [35] as adopted in this paper, to 
analyze the Bouc–Wen nonlinear model and to study the influence law of the different 
control parameters under the steady-state response of the system. 

The Bouc–Wen nonlinear isolation model with two degrees of freedom under 
harmonic excitation is shown in Figure 3a,b. 

 
 

Figure 2. Bouc–Wen hysteresis loops with different parameters. (The values of β in (a–d) are 0.15, 0.5, 0.15, 0.5; The values
of γ in (a–d) are 0.85, 0.5, −0.85, −0.5.)



Appl. Sci. 2021, 11, 6106 4 of 14

3. Theoretical Analysis of the Nonlinear Isolation System

The structure presents strong nonlinear characteristics under the action of an actual
strong earthquake. For the isolation structure, the material properties of the isolation
layer differ greatly from the structure, so the isolation structure can be divided into the
superstructure and the substructure. The characteristics of the isolation layer are coupled
and simplified by the Bouc–Wen nonlinear model, in which the horizontal stiffness of
the superstructure is large and usually presents a translational state. In order to study
the nonlinear dynamic characteristics of the isolation system, a strong nonlinear solution
method—Incremental Harmonic Balance Method (IHB) [35] as adopted in this paper, to
analyze the Bouc–Wen nonlinear model and to study the influence law of the different
control parameters under the steady-state response of the system.

The Bouc–Wen nonlinear isolation model with two degrees of freedom under harmonic
excitation is shown in Figure 3a,b.
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where M, C, K and Kn, respectively, represent the structural mass, damping, linear stiffness
and nonlinear hysteretic matrix, and introduce the time scale. Then, Equation (5) can be
written as

ω2M
..
x + ωC

.
x + Kx + ωKn = F cos τ (6)

among which
F =

[
f 0 0

]Tx =
[

x1 x2 z
]T

Applying incremental processes:

X(i) = X(i0) + ∆X(i), X(1) = x1, X(2) = x2, X(3) = z, ω = ω0 + ∆ω (7)

where ∆X(i) and ∆ω are weak increments. Substitute Equation (7) into Equation (6), and
then ignore the high-order trace, and only retain the items below the first order, as shown
in Equation (8).

ω0
2M∆

..
x + ω0C∆

.
x + K∆x + Knd∆x + Cnd∆

.
x = Φ−

[
2ω0M

..
x0 + C

.
x0 + Kn(

.
x0)
]
∆ω

Φ = F cos(τ)−ω0Kn(
.
x0)− (ω0

2M
..
x0 + ω0C

.
x0 + Kx0)

(8)

where Knd and Cnd are the partial derivatives of the nonlinear term Kn with respect to x
and

.
x, which can be written in the Jacobian matrix form as follows:
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Suppose the steady-state solution of the system is

xi0 =
n
∑

k=1
aik cos(2k− 1)τ1 +

n
∑

k=1
bik sin(2k− 1)τ1 = DAi

∆xi0 =
n
∑

k=1
∆aik cos(2k− 1)τ1 +

n
∑

k=1
∆bik sin(2k− 1)τ1 = D∆Ai (i = 1, 2, 3)

(11)

among which

D = (cos τ1, cos 3τ1, . . . , cos(2n− 1)τ1, sin τ1, sin 3τ1, . . . , sin(2n− 1)τ1)

Ai = (ai1, ai2, . . . ain, bi1, bi2, . . . bin)
T

∆Ai = (∆ai1, ∆ai2, . . . ∆ain, ∆bi1, ∆bi2, . . . ∆bin)
T

(12)

The steady-state solution of the system is equivalent to the following Equation (13):

x = SA, δx = SδA (13)

among which
A =

[
AT

1 AT
2
]T , ∆A =

[
∆AT

1 ∆AT
2
]T

S =

[
D

D

]
(14)
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Substitute Equation (13) into Equation (8), and apply the Galerkin algorithm on both
sides of the equation to obtain∫ 2π

0 δxT[ω0
2M∆

..
x + ω0C∆

.
x + K∆x + Knd∆x + Cnd∆

.
x
]
dτ =∫ 2π

0 δxT{[Φ− (2ω0M
..
x0 + C

.
x0 + Kn(

.
x0)
)]}

∆ωdτ
(15)

Substitute Equation (7) into the formula:∫ 2π
0 ST

[
ω0

2M
..
S + ω0C

.
S + KS + KndS + ω0Cnd

.
S
]
dτ∆A =

∫ 2π
0 Φdτ−∫ 2π

0 ST
[
2ω0M

..
S + C

.
S + Kn

]
dτA∆ω

(16)

Order:

Kmc =
∫ 2π

0 ST
[
ω0

2M
..
S + ω0C

.
S + KS + Cnd

.
S + ω0KndS

]
dτ

Rmc =
∫ 2π

0 ST
[
2ω0M

..
S + C

.
S + Kn

]
dτ

R =
∫ 2π

0 Φdτ

(17)

The linear equations can be obtained as follows:

Kmc∆A + Rmc A∆ω = R (18)

When studying the relationship between the vibration response of each degree of
freedom of the system and the change in excitation frequency, ∆ω can be made to be the
active increment, where ∆ω = 0 in each solution point, and thus Equation (17) becomes

∆A = R/Kmc (19)

In the iterative process, firstly, a set of initial test values of the steady-state response
under the corresponding external load can be calculated. Then, the remainder is obtained
according to the above equation. If the corresponding threshold is not reached, we can
continue to apply a small increment to the excitation frequency, as ω(i+1) = ω(i) + ∆ω,
and then proceed to the next iteration. If R exceeds the corresponding threshold, itera-
tion Equation (20) shall be continued until it reaches the allowable range, and then the
amplitude–frequency characteristic curve of the structure can be obtained.

Kmc
i∆A(i+1) = Ri, A(i+1) = Ai + ∆A(i+1) (20)

4. Analysis of the Influence Factors of the Nonlinear Isolation System
4.1. Influence of the Isolation Control Parameters

For the isolation structure using the Bouc–Wen model, β and γ can effectively reflect
the dynamic characteristics of the isolation system. Therefore, the steady-state responses of
each particle of the system under different control parameters were analyzed in the two
cases, as shown in Table 1.

Table 1. Value table of the model control parameters.

Parameters m1 m2 c1 c2 k1 k2

Values 1 8 0.2 0.4 4 2

γ ≥ 0
β 0.25 0.5 0.75 1.0
γ 0.75 0.5 0.25 0

γ ≤ 0
β 0.1 0.25 0.5 0.75
γ −0.9 −0.75 −0.5 −0.25

Figure 4a shows that when γ ≥ 0, all particles of the isolation system drift to the
left, which shows the soft mechanical properties. With the increase in the ratio of the
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control parameters β/γ, the amplitude response of each particle of the structural system
becomes smaller, which proves that the energy dissipation effect of the structure is better
and the energy transmission characteristics are more complete under this parameter. By
comprehensive comparison with Figure 4, it can be found that in the isolation system of
Bouc–Wen model with this parameter, there is no unstable solution in the first- and second-
order resonance region of each particle, and there is no amplitude jump phenomenon in
the peak curve. The whole system is stable.
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Figure 5 shows that when γ < 0, all particles of the isolation system drift to the right,
which shows the hardened mechanical properties. At this time, the material characteristics’
change will make the system particles appear as having an unstable solution with jumping
phenomena. By comparing Figure 5a–c, it can be found that as the ratio of the control
parameters β/|γ| decreases, the amplitude response of each particle of the structural
system gradually increases. In this case, the material in the isolation system appears as
aging or hardening characteristics, which is easy to lead to the overall destruction of the
isolation structure.
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By comprehensive comparison of Figures 4 and 5, it can be found that when γ ≤ 0,
the isolation bearing appears as aging, corrosion, low-temperature hardening and other
phenomena [36,37]. The steady-state response of each particle of the system has an unstable
solution, and the peak curve of the first-order resonance region shows an amplitude jump
phenomenon. In addition, it can be observed that if and only if β/|γ|<1, the structural
system has an unstable solution and produces a large response. Therefore, the influence of
the control parameter should be fully considered in the actual design.

4.2. Influence of the Damping Ratio of the Isolation Layer

When other control parameters are kept constant, the influence of the damping ratio on
the isolation system can not be underestimated. As shown in Figure 6, when the damping
ratio of the isolation layer is relatively small, a large amplitude jump occurs in the range of
the first-order resonance zone of each particle. With the increase in the damping ratio, the
unstable solutions of each particle gradually disappear, and the system response gradually
presents a stable state. As can be seen from Figure 6a–c, the response of the system does
not decrease with the damping ratio, which gradually increases when it is larger than the
critical value. Therefore, the reasonable selection and placement of damping materials
and damping elements can make the material properties work better, and it is necessary
to consider the optimal selection of different damping ratios for the target model in the
actual design.
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4.3. The Influence of External Excitation Amplitude

In order to verify the accuracy and effectiveness of the incremental harmonic balance
method, the Runge–Kutta method is used in this section to jointly verify the stability of the
isolation system under the influence of the parameters.

Equation (4) is transformed into an autonomous system as follows (Equation (21)):

.
x1 = x4.
x2 = x5.
x3 = (x5 − x4 − β(x5 − x4)x3 − γ(x5 − x4)|x3|).
x4 = m1

−1(F cos(ωt)− k1x1 − k2x3(α− 1)− c1x4 − αk2(x1 − x2)− c2(x4 − x5)).
x5 = m2

−1(c2(x4 − x5) + k2x3(α− 1) + αk2(x1 − x2))

. (21)

As shown in Figure 7, the Runge–Kutta method and the IHB analysis results are almost
consistent, which proves the accuracy of the results. With the increase in the amplitude of
the external excitation, the superstructure and the substructure in the first-order resonance
region have different degrees of jump phenomena, which can present an unstable state,
and the second-order resonance region of the peak is relatively small.
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4.4. Influence of Mass Ratio

Five different mass ratios are selected in this section, which are as follows: µ = 8:1,
µ = 4:1, µ = 2:1, µ = 1:1, and µ = 0.5:1. The mass ratio is the ratio of the mass of the
superstructure to that of the substructure; i.e., µ = m2/m1, which can represent the
different layers and forms of the actual structure.

Figure 8 shows the amplitude–frequency characteristic curve of each particle in the
system as the mass changes; it was found that when the mass ratio of the structure is
µ = 8:1, there will be an obvious jump phenomenon in the first-order resonance region
of each particle, and the system is in an unstable state. As the mass ratio decreases, the
unstable region gradually disappears, and the influence factor has a significant weakening
effect on the response amplitude. Meanwhile, the peak value gradually moves from the low
frequency region to the high frequency region. However, when the mass ratio decreases to
less than 1:1, as the mass ratio of the superstructure is small, the isolation system will have
a larger amplitude response.
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5. Conclusions

The incremental harmonic balance method was used to solve the Bouc–Wen isolation
system under different influence factors. Furthermore, a stability analysis was carried
out, and the accuracy of the results verified by the Runge–Kutta method. The influence
of the isolation control parameters, damping ratio and external excitation amplitude
parameters on the isolation system was obtained, which provides a basis for practical
engineering designs.
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