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Abstract: The importance of electricity in people’s daily lives has made it an indispensable commodity
in society. In electricity market, the price of electricity is the most important factor for each of those
involved in it, therefore, the prediction of the electricity price has been an essential and very important
task for all the agents involved in the purchase and sale of this good. The main problem within
the electricity market is that prediction is an arduous and difficult task, due to the large number of
factors involved, the non-linearity, non-seasonality and volatility of the price over time. Data Science
methods have proven to be a great tool to capture these difficulties and to be able to give a reliable
prediction using only price data, i.e., taking the problem from an univariate point of view in order to
help market agents. In this work, we have made a comparison among known models in the literature,
focusing on Deep Learning architectures by making an extensive tuning of parameters using data
from the Spanish electricity market. Three different time periods have been used in order to carry
out an extensive comparison among them. The results obtained have shown, on the one hand, that
Deep Learning models are quite effective in predicting the price of electricity and, on the other hand,
that the different time periods and their particular characteristics directly influence the final results
of the models.

Keywords: electricity price forecasting; deep learning; day-ahead market; time series forecasting
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1. Introduction

Electricity is of great importance to society and essential for economic and industrial
development. It is, in fact, one of the most important indicators for measuring the level of
technological and industrial development of a country. It is a vital commodity and no day
could be conceived without it. One of the biggest difficulties when talking about electricity
management is that there is no way to store large quantities of it and, consequently, a
constant balance between demand and supply is necessary, heading to highly volatile
market prices [1].

In the 1990s, the electricity market underwent a process of deregulation [2], which
meant that the market forces and the operator that manages the market were the ones that
determined the balance between supply and demand and not the monopolistic system
carried out by governments.

In the last decades of the 20th century, most electrical systems were reorganised,
shifting from a vertically integrated structure of companies (in many cases national compa-
nies) to a structure of separate businesses (unbundling) [3]. The theoretical basis for this
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regulatory change was that, due to technological progress, economies of scale had disap-
peared in some of the links of the electricity system, so that the introduction of competition
would lead to a greater welfare for society. Thus, while the transmission and distribution
businesses still had strong natural monopoly characteristics (and therefore made sense to
regulate them), competition was introduced for the generation and retail businesses. The
generators, for their part, comprise the market supply, while the retailers aggregate energy
demands, which they then deliver to end users [4].

Electricity price forecasting (EPF) has become a very valuable mechanism for all
market partners in deregulated and competitive electricity markets, when this whole
process is over, the system operator is responsible for setting a final price established for
each hour of the current day.

In deregulated and competitive electricity markets, electricity price forecasting has
become a high-priced tool for all market participants. Both producers and consumers use
day-ahead price forecasts to determine their own bidding strategies to the electricity market.
Consequently, the use of enhanced electricity price predictions strongly increases the
revenues and decreases the risks of producers [5] and in the case of consumers, it maximizes
their utilities [6] and may help with the identification of their needs [7]. Generally accurate
forecasting results in lower scheduling costs because it can correctly predict the number of
high-priced hours to avoid and the number of low-priced hours to be used [8].

Due to the proximity and the peculiarities of the Spanish electrical system, it was
decided to choose this market as a case study, even though it is not one of the easiest to
study due to its idiosyncrasy. Transparency measures taken by many governments have
made possible free access to many of the data that were previously only accessible to those
involved in this market. Nowadays any interested user can manage all the information
available. The Spanish electricity market is managed by the Iberian Electricity Market
(MIBEL) which was formed as a result of the integration in 2007 of the Spanish electricity
system with the Portuguese system. The transmission network is operated by Red Eléctrica
de España (REE) in Spain and Redes Energéticas Nacionais (REN) in Portugal, who manage
and guarantee the operation. Regarding the management of the wholesale spot market,
the authority responsible is the Iberian Energy Market Operator-Spanish Pole (OMIE). The
Transmission System Operator (TSO) is Red Eléctrica de España (REE) and is responsible
for ensuring the overall functioning and stability of the Spanish electricity system through
the operation of the electricity system and the transmission of electricity. In order to
achieve all these objectives and also to bring transparency to the system, REE has created
an information system called the System Operator Information System (e-sios) which
makes the results of the markets or system operation processes public [9]. Additionally, all
the market information is provided by de OMIE too. (http://www.omie.es, accessed on
20 November 2020).

Many methods and ideas have been tried for electricity price forecasting, with varying
degrees of success in Spain. In [10], a short-medium-term forecasting methodology based
on calendar and temperature correction was proposed to forecast demand values in order
to reveal its importance on the electricity price. Furthermore, in [11], an Auto-Regressive
Integrated Moving Average (ARIMA) in combination with Radial Basis Function Neural
Networks (RBFN) was proposed for electricity price data for the Spanish region with very
good results. In this study, our main objective is to use Deep Learning techniques to be
able to make an effective prediction of electricity prices in different significant periods of
time in Spain. The proposed techniques have been Long short-term memory Networks
(LSTM), Convolutional Neural Networks (CNN) and Temporal Convolutional Networks
(TCN). In addition, we have used methods also known in the literature to serve as baseline
and comparative to our proposal. Our contribution is founded on the application of novel
techniques to the electricity market, as well as the search for the best parameters. The
study of these architectures, as well as their parameterization will help us to achieve the
best result, and also to be able to observe if there is a great difference in the effectiveness
of the prediction according to the period being studied. Our study will be based on the
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conclusions obtained in the last review made so far by [12] where an exhaustive comparison
on Deep Learning architectures for time series forecasting was made.

The rest of this paper is organized as follows: Section 2 introduces the Related Works.
In Section 3, our methodology is defined in detail (data model, forecasting models, the
experimental setup and the evaluation procedure). Section 4 explains all the experimental
results obtained. Finally, Conclusions are provided in Section 5.

2. Related Works

Many methods and ideas for Electricity Price Forecasting (EPF) have been tried, with
varying success. According to [13], EPF can be categorized in six major group models which
could be reduced to five due to the fact that two groups can be combined into one larger
class. The five groups are Statistical models, Reduced-form approaches, Fundamental
methods, Multi-agent models and Computational Intelligence models.

Although a rather exhaustive classification has been made, it has been possible to
verify throughout the work carried out with this subject, that generally, the methodologies
used are a combination of some categories of this classification (hybrid methodologies),
as can be seen in Figure 1. This tendency is due to the volatility of the electricity market,
which makes any prediction in this field a challenge that can be seen from many different
perspectives, even combining them.
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Figure 1. Taxonomy of electricity price modelling approaches. The main model types could be combined as hybrid models.

Multi-agent models simulate the interplays between the agents and produce the price
process by matching the demand and supply in the market. In 2014, in the work proposed
by [14], they calculated suppliers’ optimal strategies in electricity markets with the use of
competitive co-evolutionary algorithms. In [15], they use the Nash-Cournout framework
to establish the correlations between wind power and electricity prices. In this type of
framework, the market equilibrium is determined by the capacity setting decisions of
the suppliers. Although this type of models are very flexible regarding the analysis of
electricity market strategies and may seem an advantage a priori, in reality, it is a weakness
since any decision must be previously modelled and justified. Usually, this type of model
focuses more on qualitative rather than quantitative results, which is not very useful when
it comes to predicting prices with great precision.

Fundamental methods model the impacts of physical and economic factors to describe
the price dynamics. A fundamental model for the Nordic market was developed by [16].
In their proposal they considered 27 scalar parameters and 29 formulas to define the
relationships between the fundamental variables and the price formula.
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In 2013, using a stochastic model of the bid stack, the electricity prices were translated
using the demand for power and the prices of generating fuels in [17].

Despite the good results obtained with this type of models, there are open challenges
in the implementation of fundamental models, for example, data availability. Fundamental
variables are often collected over longer time intervals, so these models are more suitable
for medium-term predictions than short-term ones.

Reduced-form approaches describe the statistical properties of electricity price changes
over time with the ultimate goal of derivative product evaluation and risk management;
they do not provide accurate hourly price forecasts. One of the first publications on
modelling electricity prices can be found in [18], where a Merton’s jump-diffusion model
[19] was used. The problem with this type of models is that the performance obtained in
forecasting the next day’s hourly price is not effective.

Statistical models use power market implementations of econometric models in or-
der to forecast the electricity price. In the last years, there have been several proposals
related to statistical models in EPF, in [20] a linear regression model in combination with
regularization techniques was used. The main drawback of this type of methods is that the
forecasting accuracy not only depends on the efficiency of the algorithms employed but
also on the quality of the data analyzed, for example, in the presence of spikes, statistical
models perform poorly.

Lastly, Computational Intelligence models combine learning, evolution and ambiguity
to create methods that can adjust to complicated dynamic systems. Artificial neural
networks, fuzzy systems, support vector machines and evolutionary computation are the
principal algorithms of Computational Intelligence models. The main advantage of these
methods is their flexibility and the capacity to handle complex and non-linear data. Due to
the increase in computing capacity available today, this type of model is the most widely
used, because, although its greatest weakness is the time cost involved, the efficiency in
terms of accuracy is high. In [21], a combination of two deep neural networks was proposed
for an electricity price forecasting system. Furthermore, in the work proposed by [22], an
artificial neural network (ANN) in combination with clustering algorithms was used for
day-ahead price forecasting. Huan et al. presented in [7] the SEPNet method consisting
of a combination of three algorithms (Variational Mode Decomposition, Convolutional
Neural Network and Gated Recurrent Unit) to predict the price of electricity using data
from New York City over the period 2015 to 2018. Lastly, in [23], a novel methodology is
proposed to Electricity Price Forecasting in Australia. This method carried out a Tensor
Canonical Correlation Analysis (TCC) to remove redundant factors, then a Deep Neural
Network (DNN) with a novel Stacked Pruning Sparse Denoising Autoencoder (SPSDAE)
is used to decrease the noise of datasets, and finally a new multi-modal combined (MMC)
method is used to predict the day-ahead cost of electricity.

Given the rise of the methods included in this last category, there has been a great
increase in their use in problems related to the prediction of electricity prices. Due to the
temporal features that this type of problem has, it is usually seen from the perspective of
time series forecasting, as in [24], where recurrent neural networks were used or in [25],
where a hybrid model of adam optimized LSTM neural network was proposed.

Table 1 provides a summary of the papers, divided into categories, mentioned in
this section.
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Table 1. Related work on electricity market price forecasting within each of the categories (established by [13]) into which
the different models published in the literature so far fall.

Ref Year Technique Application

Multi-Agent ladjici2014nash 2014 Competitive co-evolutionary algorithms Calculation of suppliers’ otpimal strategies in
electiricty markets.

rubin2013impact 2013 Nash-Cournout framework Establish the correlations between wind power
and electricity prices.

Fundamental vehvilainen2005stochastic 2005 Stochastic factor model Defining relationships between the fundamental
variables and the price formula in the Nordic
Market.

carmona2013electricity 2013 Stochastic model Tranlation of electricity prices using the demand
for the power and the prices of generating fuels.

Reduced-Form kaminski1997challenge 1997 Merton’s jump-diffusion model Modelling electricity prices.
Statistical tutun2016optimized 2016 Elastic Net Forecasting future net electriicty consumpton of

Turkey.

Computational Intelligence

kuo2018electricity 2018 Conbination fo two nerual networks Creation of a system for price prediction in the
electricity market.

panapakidis2016day 2016 Artificial Neural Network with clustering Day-ahead price forecasting.
ugurlu2018electricity 2018 Recurrent Neural Networks Electricity price forecasting in the Turkish day-

ahead market.
chang2019electricity 2019 LSTM Network Electricity price forecasting using New South

Wales dataset of Australia and French.
huang2021nobel 2020 SEPNet Short-term electricity price prediction using New

York City data
sun2021nobel 2021 Deep Neural Network and Autoencoders Day-ahead elecricity price forecasting using Aus-

tralia data

3. Methodology

In this section, we present the models used in the forecasting methodology and the
experimental setup.

3.1. Time Series Forecasting Models

According to the review carried out in [12], where many different architectures were
compared, LSTM, CNN, and TCN were the ones which obtained the best results. In order
to test the performance of these models against other models, we have decided to use
three other well-known models in the literature, on the one hand another but simpler Deep
Learning model namely Multilayer Perceptron (MLP), and on the other hand Machine
Learning models, such as Regression Trees and Random Forest.

3.1.1. Long Short-Term Memory Network

Long Short-Term Memory (LSTM) networks were introduced in 1997 [26]. They can
model temporal dependencies in larger horizons without forgetting the short-term patterns.

LSTM networks are composed of units that are called LSTM memory cells [26], these
cells contain some gates that process the inputs. These gates are:

1. Input gate, which takes care of preventing the memory cell from being modified by
irrelevant perturbations.

2. Output gate, which takes care of protect other cells from perturbations stored in the
current memory cell.

3. Forget gate, which allows the memory cell to reset the information if it becomes
irrelevant.

3.1.2. Convolutional Neural Networks

Convolutional Neural Networks (CNN) architectures have been a dominant method
in computer vision tasks since the astonishing results were shared on the object recognition
competition known as the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
in 2012 [27]. Nowadays, they are the state of the art of many classification tasks like object
recognition, speech recognition, and natural language processing.

CNN architecture can extract features from high dimensional raw data with a grid
topology without any feature engineering. This can be made with the convolutional
method, a sliding filter that creates a features map and captures the repeated patterns at dif-



Appl. Sci. 2021, 11, 6097 6 of 19

ferent input regions. Furthermore, the convolutional method provides to this architecture
a characteristic called “distortion invariance”, which involves that features are extracted
no matter where they are in the data.

The architecture of CNN is composed of convolution layers, pooling layers, and fully
connected layers. Furthermore, CNN architecture is based on the principles of:

1. Local connectivity because each node is connected only to a region of the input.
2. Shared weights because all neurons in the same layers share the same weight matrix

for the convolution.
3. Translation equivariance.

These properties allow CNNs to have a smaller number of trainable parameters than
RNNs. For these reasons, CNNs are most efficient in the training time. Another essential
aspect of CNNs is the ability to stack different convolutional layers so that the deep learning
model can be more high-performance and obtain a better representation of the time series
at different scales.

3.1.3. Temporal Convolutional Network

Temporal Convolutional Network (TCN) is a new architecture of CNN but more
specialized in temporal series. This architecture is inspired by Wavenet autoregressive
model [28], which was designed for audio generation problems.

TCN architecture is an adapted CNN with these special characteristics:

1. Convolutions are causal to prevent information loss.
2. The architecture can process a sequence of any length and map into an output of the

same length.

TCN architecture uses dilated causal convolutions to learn the long-term dependencies
in the time series. These convolutions increase the network’s receptive field without
losing resolution because the pooling operation is not needed. Additionally, residual
connections are employed to increase the network’s depth to deal effectively with an
extensive history size.

TCN has low memory requirements for training due to shared convolutional filters,
long input sequences can be processed with parallel convolutions, and are more stable
training schemes.

3.1.4. Multilayer Perceptron

Multilayer Perceptron (MLP) is the most basic type of feed-forward artificial neural
network. This neural network is composed by three main type of layers: input, hidden and
output. The architecture is variable but in general will consist in one input layer, several
hidden layers and an output layer [29].

The number of hidden layers will determine the depth of the network. It is the
inclusion of more hidden layers which makes a MLP network a deep learning model. Each
of the layers is in turn composed of neurons connected by parameters that are modified in
the learning process of the algorithm. The objective of this learning is to map and find the
relationship between the expected input and output.

3.1.5. Regression Tree

Decision trees are characterized as machine learning models that are quite easy to
interpret and have a fairly high accuracy. Regression trees are a special type of decision
trees that deal with a continuous goal variable, as electricity price [30].

Regression trees are built through an iterative process that splits each node into child
nodes using some rules. This process ends with the construction of a model or a tree-like
graph. Each of the nodes of the tree is fitted to get the predicted values of the output
variables when new samples are used.
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3.1.6. Random Forest

Random Forests (RF) build a large number of regression trees in order to solve regres-
sion tasks. These trees, which act as regression functions, are combined using bootstrap or
ensemble techniques in order to come to a final decision. When RF is used for regression
problems, the output variables are fitted by using samples of the input variables. For each
input variable, divide the data into several points, and calculate the sum of squared errors
(SSE) for the predicted value and the actual value at each divided point. Then, choose the
minimum SSE value for this node. In addition, the importance of variables can be obtained
by permuting the values of all input variables and measuring their prediction accuracy
differences in out-of-bag samples [31].

3.2. Experimental Setup

The methodology of our work has been divided in two well-differentiated parts
as can be seen in Figure 2. The first step is to find the best hyperparameters for each
model (Train/Test Step). Once these parameters, and therefore the best model, have been
found, the model is trained on a time period different from the previous one (Validation
Step), in order to validate it reliably and avoid over-fitting. In both phases, a Multi-Input
Multi-Output (MIMO) technique has been used.

Figure 2: Scheme followed in our proposal using the MIMO strategy. To improve the reliability

of the results, the dataset is divided in two subsets: The first subset will be used to train

and search for the best hyperparameters of the model, the input-output pairs are formed by
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Figure 2. Scheme followed in our proposal using the MIMO strategy. To improve the reliability of the results, the dataset is divided in
two subsets: The first subset will be used to train and search for the best hyperparameters of the model, the input-output pairs are
formed by training and testing sample time points named tr and ts. The second subset will be used to validate the model on a new
dataset once the best hyperparameters are identified, in order to avoid overfitting. In this case the input-output pairs are formed by
tr_v and v.

The first stage is to obtain the data to be used, which consists of a univariate time
series (only one variable) that will serve as input to the models to be compared. This time
series is formed by the electricity price of the period of time to be studied, which can be
obtained from the e-sios website.
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As in [12], we have used the Multi-Input Multi-Output (MIMO) technique to train and
evaluate the models. The MIMO strategy increases the predictions’ accuracy since it does
not accumulate previous predictions’ errors. This strategy makes use of a sliding window
scheme to create the input-output pairs that will be used by the models to be tested. All
these output pairs have a fixed prediction window, in this case 24 h, while the training
window has a size defined by a factor whose value also has to be optimized [32]. In both
phases, we have tried to make the prediction of day D + 1 as realistic as possible, i.e., at a
set time on day D, the market price values are predicted for each hour of day D + 1.

To test our models, we have divided our originals datasets in two subsets: train dataset
and validation dataset. The training dataset is used to train and search the best parameters
of the models, and once they are found, we evaluate their accuracy with the validation
dataset. The training datasets include all data except the last month of each dataset, which
will be found in the validation datasets.

To evaluate each model, we obtain the model’s prediction feeding it with the validation
dataset windows. For any window of the validation dataset, the model will predict the next
window. Therefore, we can connect all the predicted windows and compare the forecasted
time series’s accuracy with the original one. The input-output pairs for this phase are tr_v
and v, respectively.

However, before we can obtain the predictions of each model, they must have been
trained before. To train the models, they must be fed previously with the training subsets
(tr and tr_v, respectively), which follow the same moving window philosophy as validation
subsets (ts and v).

3.2.1. Hyperparameter Optimization Step

We have based the experimental setup of this paper on [12], in which they have
adjusted the parameters for each model used in the article. The parameters to be optimized
are those that better identify each model, taking into account the characteristics of each one.

These parameters have been collected in a grid, where they try to use different values
for any model and parameters. The grid parameters are determined based on the typical
values in the literature of each model. In all cases, many hyperparameters must be config-
ured. To establish a fair comparison among architectures, they have explored from a single
layer to a deeper network on every occasion. Since there are many parameters that have
been considered, we have decided to refer only to those that are most important for each
model. However, all the parameters used as well as their possible values can be found in
the repository located at [33].

As mentioned above, our datasets have been divided into two parts, one for training
and one for validation. The search for hyperparameters has been carried out with this
first subdivision (training part), for which the sliding window strategy has been followed,
so that each of the models has an input layer with as many neurons as the “past history”
parameter indicates (tr) and an output layer with as many neurons as the prediction horizon
has been established , in this case 24 h (ts).

First, we explore the LSTM architecture, which has three main parameters and can
generate 18 different models. These parameters are the number of recursive layers stacked,
the number of recursive units in each layer, and whether the last layer returns the order of
states or just the final state. If the return sequence is False, the last layer returns a value for
each cycle unit. If the return sequence is True, the last layer returns a value for each time
step, forming a shape matrix (input timesteps × number o f units). Similarly, as we are in a
multi-step-ahead forecasting problem, the LSTM model’s output is connected to a dense
layer with one neuron for prediction. The number of layers in the LSTM model ranges
from 1 to 4, and the number of units varies from 32 to 168. An overview of the parameters
used can be seen in Table 2.
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Table 2. Grid of parameters used for LSTM models.

Model Parameters Values

LSTM
Layers
Units

Return sequence

1, 2, 4
32, 64, 128
True, False

As far as CNN models are concerned, they are composed of stacked convolution
blocks, constituting a one-dimensional convolution along layer followed by a max-pooling
layer. The convolutional blocks use decreasing kernel size, as it is usual in the literature.
Single-layer models have a kernel of size 3, two-layers models have kernel sizes of 5 and 3,
and four-layers models have kernels of size 7-5-3, and 3.We have only considered a pooling
factor of 2, as the input sequence in the datasets is not excessively long. All the parameters
used are summed up in Table 3.

Table 3. Grid of parameters used for CNN models.

Model Parameters Values

CNN
Layers
Filters

Pool size

1, 2, 4
16, 32, 64

0, 2

TCN models are defined by five principally parameters: number of layers, number of
convolutional filters, dilation factors, convolutional kernel size, and whether to return the
final output or the full sequence. The number of dilations and the kernel sizes have been
selected according to the receptive field of the TCN, which follows the formula (number o f
layers × kernel size × last dilation). All the parameters used can be seen in the table below
(Table 4).

Table 4. Grid of parameters used for TCN models.

Model Parameters Values

TCN

Layers
Filters

Dilations
Kernel size

Return sequence

1, 3
32, 64

[1, 2, 4, 8], [1, 2, 4, 8, 16]
3, 6

True, False

Multilayer Perceptrons are characterized as simple neural networks for which the
main difficulty is to find the best combination between the number of layers and neurons,
as well as the filters. The following table shows the configuration of hidden layers used in
this work. All the parameters used can be seen in Table 5.

Table 5. Grid of parameters used for MLP models.

Model Parameters Values

MLP Hidden Layers

[8], [8, 16], [16, 8], [8, 16, 32],
[32, 16, 8], [8, 16, 32, 16, 8],

[32], [32, 64], [64, 32],
[32, 64, 128], [128, 64, 32],

[32, 64, 128, 64, 32]

Decision trees are defined by four main parameters, these are, splitter, max depth, min
samples split and min samples leaf. Splitter defines the strategy used to choose the split at
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each node, the two supported strategies are “best” to choose the best split and “random”
to choose the best random split. Max depth parameter establish the maximum depth of
the tree. Min samples split is the minimum number of samples requires to split an internal
node. Lastly, min samples leaf is the minimum number of samples required to be at a leaf
node. All the parameters used can be seen in Table 6.

Table 6. Grid of parameters used for regression tree models.

Model Parameters Values

Tree

Splitter
Max depth

Min samples split
Min samples leaf

best, random
2, 4, 6, 8, 10

2, 4, 6, 8
1, 3, 5, 7

Lastly, a Random Forest can be defined by four main parameters as well, number of
estimators, max depth, min samples split and min samples leaf. The last three parameters
mean the same as in decision trees, the only different parameter is the number of estimators
which represents the number of the trees in the forest. All the parameters used can be seen
in Table 7.

Table 7. Grid of parameters used for random forest models.

Model Parameters Values

Random Forest

Number of estimators
Max depth

Min samples split
Min samples leaf

100, 300, 600
2, 4, 6, 8, 10

2, 4, 6, 8
1, 3, 5, 7

3.2.2. Validation Step

Once the best hyperparameters have been obtained in the first step, the validation of
the model is carried out. This consists of predicting each day of the validation subset, also
using the sliding window strategy. To make this possible, the model is fed with information
from the previous days (tr_v), defined by the “past history” factor, and the next day is
predicted. Once the predictions have been obtained (o), they are compared to the actual
price (v) to obtain the real effectiveness of each of the models.

Concerning to metrics, the predictions are evaluated with MAE, WAPE, MASE and
MAPE functions. All of these functions provide different information about the accuracy
of the forecasted time series.

Mean absolute error (MAE) is similar to MSE (Mean squared error), but instead of
applying a square, it applies an absolute value. MAE uses the same scale as the data being
measured and it is a standard measure to forecast error in time series analysis [34].

MAE(v, o) = mean(|v− o|) = 1
n

n

∑
i=1
|vi − oi| (1)

Weighted average percentage error (WAPE) [35] is the most different metric of the
chosen ones. WAPE is a variation of MAPE, where the error is rescaled dividing it by the
mean. Due to this, the error is comparable across time series of varying scales. Thanks to
these properties, scale-independency and interpretability, WAPE is widely used to measure
the forecast accuracy, and it is very recommended for forecasting with intermittent and
low-volume data.

WAPE(v, o) =
MAE(v, o)
mean(v)

=
mean(|v− o|)

mean(y)
(2)

Mean absolute scaled error (MASE) is similar to MAE, but it has some properties that
makes it a recommended metric to compare forecast accuracy. An example is the property
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of symmetry, which penalises positive and negative errors equally, as it does with the long
and shorts forecast errors.

MASE(v, o) =
1
n ∑n

i=1 |vi − oi|
1

n−1 ∑n
i=2 |vi − vi−1|

(3)

Mean absolute percentage error (MAPE) is calculated by averaging the absolute error
divided by the observed values. This approach is useful when the size of a prediction
variable is significant in evaluating the accuracy of a prediction [36].

MAPE(v, o) =
1
n

n

∑
i=1

∣∣∣∣vi − oi
vi

∣∣∣∣× 100 (4)

Finally, and given that time is also a variable to be taken into account when talking
about Deep Learning and Machine Learning models, it has been decided to add the average
time (T) taken to train each of the models as a validation metric.

4. Results

In this section, we describe the experiments that were carried out to analyze the per-
formance of the proposal. Firstly, selected datasets are described. Secondly, a comparison
of the results obtained by the models explained in the previous section is included. Lastly,
the software and hardware infrastructure used is specified.

4.1. Datasets Description

In Spain, the electricity system underwent a process of liberalisation between 1997
and 1998 [37], in which the tasks of transmission and distribution (regulated) and genera-
tion and retail (competitive) were separated as it has been presented above. The Spanish
electricity market is in charge of the OMIE, and it is organised in sequential sessions: the
day-ahead, intraday, and balancing sessions.

The price of electricity is different for each of the hours of each day; this price is
established by means of an auction. First, power generation companies and wholesale
retailers buyers are convened in the day-ahead spot market to send their quotes that include
energy price pairs within 24 h of the next day. The market operator (MO) is responsible for
clearing the market and providing a temporary energy plan for each bidder within 24 h of
the next day. By matching all the purchase and sale bids, the electricity market establishes
the price that the energy will have for each of the hours of the following day, i.e., the hourly
marginal price is obtained at the intersection of the supply and demand curves [38].

Every day, between 12:30 and 13:00 of the current day D, the price that the energy
will have in each of the hours of the following day D + 1, within the daily market, is made
public [39].

As it can be intuited, it is very important for the system operators to have an idea of
what the prices may be in the short term, as this will significantly influence the offers they
make, so a system capable of making predictions for the next day is an indispensable tool
for them [40].

The main objective of this study is to see how the choice of data can influence the
effectiveness of the prediction results. For each of the chosen data sets, three months have
been selected, with a total of 2208 time points (hours) for each dataset, with two of them
being used to set the parameters of the models (train/test step), and the remaining month
to validate them (validation step).

For each of the three data sets, a normalization of the data has been carried out, the
type of normalization is also a parameter to be chosen in the first stage, the possible values
are a minmax or z-score normalization. Attempts have been made to choose time periods
with some particularity. These are detailed below:

• Fraud Period: In 2019, the National Commission for Markets and Competition
(CNMC) fined Endesa and Naturgy for altering electricity prices between October
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2016 and January 2017 [41], the months chosen for this study. This period will help to
test how sensitive the models are to periods that may present tax irregularities. To
make the results more comparable, the following periods used will have the same
length, i.e., three months. Hourly electricity price in this period can be observed in
Figure 3 where the yellow line represents the mean price of all the period.

• Normal period: In order to have a reference period, a stage has been chosen in which
no anomalies were detected, unlike the two next data sets. This stage covers the
months from September to December 2019. Figure 4 represents the hourly electricity
price in this period, with the mean represented by a horizontal yellow line.

• Quarantine Period: The year 2020 marked a change in many daily habits due to the
global pandemic. One of the most notable changes was the increase in electricity con-
sumption, as people spent more time at their homes due to quarantine requirements.
The three months from 15 March 2020 to 15 June 2020 have been chosen to represent
this stage. Hourly electricity price in this period can be observed in Figure 5 where
the yellow line represents the mean price of all the period.

Figure 3. Time series of fraud period. On the x-axis we can see that this period covers electricity prices between October
2016 and January 2017, when the Fraud was reported. The horizontal line observed indicates the average for that period
which is 63.46, a much higher value than the other periods in the study.

Figure 4. Time series of normal period. On the x-axis we can see that this period covers electricity prices from September to
December 2019. The horizontal line which can be seen indicates the average for that period with a value of 48.91.



Appl. Sci. 2021, 11, 6097 13 of 19

Figure 5. Time series of quarantine period. On the x-axis we can see that this period covers electricity prices between 15
March 2020 and 15 June 2020. The horizontal line shown indicates the average for this period, which is 28.09.

4.2. Experimental Results

This part of the study focuses on presenting the results obtained in terms of forecasting
accuracy over the validation dataset for each dataset and each model used. The metrics
used for this purpose were MAE, WAPE, MASE, MAPE and Time (T).

Table 8 shows a summary of the best parameter configuration obtained for each
dataset and metric, specifying the best model for each one of them.

Table 8. Best parameter settings obtained for each dataset and each metric. For each of the possible scenarios, there is a
description of which specific algorithm has obtained the best results as well as the best hyperparameters.

Dataset Best Model Mae Best Model Mape Best Model Time

Quarantine

STM STM REE
Layers: 1 Layers: 1 Splitter: Random
Units: 128 Units: 128 Max depth: 2

Return sequence: False Return sequence: False Min samples split: 2
Min Samples Leaf: 7

Normal

NN REE REE
Layers: 3 Splitter: Random Splitter: Random
Filters: 16 Max depth: 8 Max depth: 2

Pool Size: 0 Min samples split: 4 Min samples split: 6
Min Samples Leaf: 5 Min Samples Leaf: 7

Fraud

REE REE REE
Splitter: Random Splitter: Random Splitter: Random

Max depth: 6 Max depth: 6 Max depth: 2
Min samples split: 8 Min samples split: 8 Min samples split: 6
Min Samples Leaf: 3 Min Samples Leaf: 3 Min Samples Leaf: 7

Table 9 presents a comparison between the results obtained with the different architec-
tures for each dataset in terms of MAE. For each of the datasets, the best result is specified
in bold. In quarantine period, the best result was obtained with the LSTM model, with
an average error of 3.535 €. Regarding normal period, the best model was CNN, with
an average error of around 4.125 €. Finally, the lowest error for the fraud period was
obtained with a regression tree, resulting in an average error of 4.034 €. The last row and
column of the table represent the mean MAE for each model and dataset, respectively. The
best average model is LSTM and the dataset with the lowest average MAE error is the
quarantine period.
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Table 9. MAE results for each period and each model. The results have been obtained after choosing
the best set of parameters for each case by carrying out a parameter optimization process. The last
row and column correspond to the means for each model and dataset, respectively. The best model
for each dataset is specified in bold.

Dataset LSTM CNN TCN MLP TREE RF Average

Quarantine 3.535 4.199 3.997 3.648 4.063 4.414 3.976

Normal 4.212 4.125 4.991 4.192 4.160 4.152 4.305

Fraud 4.444 4.847 5.606 4.834 4.034 4.881 4.774

Average 4.064 4.391 4.865 4.224 4.085 4.482

Concerning WAPE, the results obtained can be seen in Table 10. In case of the quar-
antine period, the best model was LSTM with an average WAPE of 0.112. Secondly, for
the normal period the best model was CNN with a percentage of 0.084. Finally, for fraud
the best model was the regression tree with an average WAPE of 0.059. The last row and
column of the table represent the average WAPE per model and dataset, respectively. As
with MAPE, the best mean model is LSTM, while for the datasets, the best results are
obtained with the fraud period.

Table 10. WAPE results for each period and each model. The results have been obtained after
choosing the best set of parameters for each case by carrying out a parameter optimization process.
The last row and column correspond to the means for each model and dataset, respectively. The best
model for each dataset is specified in bold.

Dataset LSTM CNN TCN MLP TREE RF Average

Quarantine 0.112 0.134 0.127 0.116 0.129 0.142 0.127

Normal 0.086 0.084 0.102 0.085 0.085 0.085 0.088

Fraud 0.065 0.072 0.083 0.071 0.059 0.072 0.071

Average 0.088 0.097 0.104 0.091 0.091 0.009

The results in terms of MASE (Table 11) follow the same pattern as for the previous
two metrics. The best result for the quarantine period is obtained with the LSTM model
with a value of 2.600, for the normal period the best result is 1.764 using a CNN model.
Finally, for the fraud period a best result of 1.458 is obtained with decision trees. In average
terms, the lowest error is obtained with the fraud period, and in terms of model with an
LSTM network, as was the case for WAPE and MAE.

Table 11. MASE results for each period and each model. The results have been obtained after
choosing the best set of parameters for each case by carrying out a parameter optimization process.
The last row and column correspond to the means for each model and dataset, respectively. The best
model for each dataset is specified in bold.

Dataset LSTM CNN TCN MLP TREE RF Average

Quarantine 2.600 3.080 2.988 2.693 2.979 3.237 2.929

Normal 1.801 1.764 2.130 1.793 1.769 1.775 1.839

Fraud 1.610 1.737 2.009 1.732 1.458 1.749 1.716

Average 2.004 2.194 2.376 2.073 2.069 2.254

MAPE is the only metric that differs from the others as can be seen in Table 12. In
this case, for the normal period, the best score is obtained with trees, with a value of 0.095,
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while for quarantine and fraud the best result is still LSTM and Trees, with 0.126 and 0.059,
respectively, as was the case for the three previous metrics.

Table 12. MAPE results for each period and each model. The results have been obtained after
choosing the best set of parameters for each case by carrying out a parameter optimization process.
The last row and column correspond to the means for each model and dataset, respectively. The best
model for each dataset is specified in bold.

Dataset LSTM CNN TCN MLP TREE RF Average

Quarantine 12.6 14.8 13.5 12.7 13.3 14.8 13.6

Normal 9.8 10.2 12.0 10.1 9.5 9.6 10.2

Fraud 6.8 7.2 8.5 7.2 5.9 7.1 7.1

Average 9.7 10.7 11.3 10.0 9.6 10.5

Considering the four tables together, it can be observed that the same patterns are
repeated in most cases, i.e., for each period the best model coincides for MAE, WAPE,
MASE and MAPE. If the average of these measures with respect to the datasets is taken
into account, the influence of each of the datasets on the final result is clearly evidenced.
The most characteristic case is the fraud period, which had on average a higher price than
the other two periods, resulting in a higher average MAE. However, for the case of WAPE,
the fraud period is the one that achieves a lower average WAPE, which is due to the fact
that this metric is divided by the mean of the values, so the higher the mean, the lower the
WAPE. Something similar happens with MASE and MAPE, as it can be observed that for
the fraud period the values are lower with respect to the other two periods, this is due to
the fact that they are metrics inversely proportional to the values of the time series.

Table 13 shows the average training time for each of the cases presented in this work.
If we take into account the data sets, there is not much difference between the training,
since the length of the time series is the same. In contrast, the average time taken for each
model is significantly different from one model to the other, with the tree model being the
fastest and the LSTM networks the slowest. The total time spent on training and validation
can also be seen in Table 14

Table 13. Time results in seconds for each period and each model. The results in time were obtained
by calculating the average of each of the times used to train each of the models in the parameter
optimisation process.

Dataset LSTM CNN TCN MLP TREE RF Average

Quarantine 2.698 0.390 2.124 0.368 0.002 0.593 1.029

Normal 2.712 0.391 2.139 0.367 0.002 0.601 1.035

Fraud 2.716 0.392 2.147 0.367 0.002 0.600 1.037
Average 2.708 0.391 2.137 0.367 0.002 0.598

Table 14. Total time in seconds for training and validation of each of the models.

Dataset LSTM CNN TCN MLP TREE RF Average

Quarantine 2651.669 485.885 3822.345 299.721 1.716 854.445 1352.63

Normal 2685.848 488.707 3878.524 302.678 1.976 865.803 1370.589

Fraud 2663.553 494.518 3839.173 303.331 1.972 863.618 1361.027

Average 2667.023 489.703 3846.68 301.91 1.888 861.288
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Finally, Figures 6–8 provide a graphical comparison between the predictions on the
validation set and the actual price values. The graphs show the results obtained with the
best model in terms of MAE for each of the three datasets.

Figure 6. Comparison between actual and predicted price by model LSTM using validation data for the quarantine data
period.

Figure 7. Comparison between actual and predicted price by model CNN using validation data for the normal data period.

Figure 8. Comparison between actual and predicted price by model Tree using validation data for the fraud data period.

Looking at all the metrics presented, both those that take into account the efficiency
of predictions and time, we can observe a drawback that occurs in many works, which
is that the models that take the longest time are the ones that obtain the best results.
In this case, it can be clearly seen that on average the model that takes the longest is
LSTM, while on average it is the one that obtains the best predictions. This is why it is
sometimes necessary to choose between these two fundamental aspects, computation time
and prediction efficiency. Regarding which technique should be used, we have to say that
since it is a very complex problem, the choice of which technique is more appropriate will
depend on the input data, however, it can be corroborated that regardless of the particular
Deep Learning technique we use the results are promising.

4.3. Software and Experimental Setting

All the data used in this study have been collected thanks to the API provided by the
System Operator Information System (e-sios). This API allows for data retrieval in JSON
format through a code in Python so that it can be then processed.
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Due to the large amount of experiments carried out, the executions were performed
on an Intel machine, specifically Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 64 GB of
RAM and 12 cores. The source code with the different tests performed in this study can be
found in [33].

5. Conclusions

In this paper, we have made a comparison among different well-known models in
architecture and their use in the prediction of electricity market prices. This comparison has
been made by optimising the parameters for each of the algorithms and each of the datasets
used. Given the temporal nature of the electricity price, we decided to study different
time periods, specifically three, one of which served as a baseline (normal period), another
period in which fraud was detected in the electricity market (fraud period) and finally
the period that included the quarantine months in 2020, due to the pandemic (quarantine
period).

The results obtained have shown that the electricity market is clearly influenced by
the social and economic circumstances that are occurring on a particular day, which is
why it is important to take into account the ideosyncrasy of the data and use models in
accordance with this fact.

Of all the models used, three stand out: LSTM, CNN and Regression Trees. These three
models are the ones that on average have given the best results for each of the validation
metrics used, specifically, LSTM has obtained better results in the case of the quarantine
period, CNN for the normal period and finally Trees for the fraud period.

In terms of execution time, Deep Learning models have taken the longest, while
Machine Learning models have taken the shortest. This is probably the biggest limitation
in our study, the big difference between the time of the hyperparameter search and the
training and validation time itself. However, once the hyperparameter search has been
performed, the time taken to train the model and validate it is negligible. Given this
limitation we also propose to look at this problem from the Data Streaming point of view,
so that the model only has to be trained once. One of the disadvantages of neural networks
is precisely that, the execution time they consume, however, they have proven to be a very
good choice if a high percentage of prediction success is the objective of the task.

In view of the results obtained, it can be said that for the specific case study we have
dealt with, the Spanish electricity market, the results obtained with the different techniques
are quite promising. As for which technique in particular is the best, we have to say that
being such a complex problem there is no single technique that works well for all data sets,
but what we can assure in view of the results is that Deep Learning techniques work well
for this type of problem.

This paper has focused on a time series study from a univariate point of view, i.e.,
the price is predicted taking into account only the past of this variable. As future work
we propose the use of exogenous variables that have a direct correlation with price, such
as demand [42], renewable energy capacity, balancing market price or trade value as
used in [43], thus moving from a univariate to a multivariate problem. Testing with all
possible variables is an almost impossible task, but the future objective we propose is
to collect information on a wide range of variables and use only those that have a high
degree of correlation with the variable to be predicted. Furthermore, given the large use
of these models in the literature, we believe that it would be interesting to make use of
ensemble technologies to make the final prediction, as this paradigm allows the advantages
of individual models to be combined to make a final model.
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