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Abstract: Automatic building extraction from high-resolution remotely sensed data is a major area
of interest for an extensive range of fields (e.g., urban planning, environmental risk management)
but challenging due to urban morphology complexity. Among the different methods proposed, the
approaches based on supervised machine learning (ML) achieve the best results. This paper aims
to investigate building footprint extraction using only high-resolution raster digital surface model
(DSM) data by comparing the performance of three different popular supervised ML models on a
benchmark dataset. The first two methods rely on a histogram of oriented gradients (HOG) feature
descriptor and a classical ML (support vector machine (SVM)) or a shallow neural network (extreme
learning machine (ELM)) classifier, and the third model is a fully convolutional network (FCN) based
on deep learning with transfer learning. Used data were obtained from the International Society
for Photogrammetry and Remote Sensing (ISPRS) and cover the urban areas of Vaihingen an der
Enz, Potsdam, and Toronto. The results indicated that performances of models based on shallow ML
(feature extraction and classifier training) are affected by the urban context investigated (F1 scores
from 0.49 to 0.81), whereas the FCN-based model proved to be the most robust and best-performing
method for building extraction from a high-resolution raster DSM (F1 scores from 0.80 to 0.86).

Keywords: automated building extraction; machine learning (ML); deep learning (DL); digital
surface model (DSM); histogram of oriented gradients (HOG); support vector machine (SVM);
extreme learning machine (ELM); fully convolutional network (FCN)

1. Introduction

In recent years, the availability of high-spatial-resolution remote sensing data has
fostered the development of research methods and applications in several fields [1], such
as urban planning, land monitoring, and environmental risk management [2–5] (e.g.,
urbanization delineation, vegetation mapping, flood modeling). The accurate information
provided by the high-resolution data has been exploited both in large-scale problems, such
as land use and land cover types [6,7], and small-scale ones, such as the extraction of urban
objects: trees, roads, buildings, etc. [8–10]. Laser imaging detection and ranging (LiDAR)
airborne mapping systems supply point clouds datasets containing 3-dimensional x, y,
and z points and attributes to produce precise digital terrain model (DTM) and digital
surface model (DSM) products—within a gridded or raster data format—in both natural
and manmade environments [11].

Automatic building extraction from remotely sensed data is a major area of interest
for an extensive range of applications but challenging due to difficulties in extracting
precise boundaries because of urban morphology complexity [12]. Different methods have
been proposed to address this issue [13], such as methods based on template matching,
knowledge, object-based image analysis, and machine learning (ML) [14]. Commonly used
template-matching-based approaches for automated buildings and urban objects footprints
detection use “snake” or active contour model (ACM) [15] improvements [10,16–18] and
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integration with ML and deep learning (DL) [19]. The approaches based on supervised
ML can achieve the best results, especially along with DL [14], a subset of ML based on
neural networks with representation learning [20]. Traditional computer vision techniques
require manually engineered feature descriptors for the desired object detection, whereas
DL models automate the process of feature engineering [21,22]. Generally, classical ML-
based object detection methods involve two steps: feature extraction and classifier training.
Among features descriptors, histogram of oriented gradients (HOG) [23] features have
proven to be effective in describing the edge or local shape information of the urban
objects [14,24–27]. Typical ML algorithms for classifier training include, but are not limited
to, the support vector machine (SVM) [7,28–30], artificial neural network (ANN) [31,32],
including the extreme learning machine (ELM) [33] and AdaBoost. Several successful
buildings and urban objects detection approaches are based on DL methods [10,34–37],
such as convolutional networks, and in particular, fully convolutional networks (FCNs)
have shown good performance on semantic segmentation [38–42], with correct pixel
classification and accurate spatial information [43].

Despite the numerous algorithms proposed, building segmentation based only on the
geometric information provided by DSM data is still a complicated task [44,45], mainly
because objects with similar morphological characteristics and height can create ambiguity,
resulting in position inaccuracy and local under-sampling [35,45].

A simplified method to detect and extract the building footprint based only on a
DSM as input without any other additional feature could be beneficial in scenarios where
only DSM data are available and a more expeditious solution is desirable (e.g., the rapid
assessment of building damage). This paper aims to investigate the capability of three
different, popular supervised ML models—namely HOG with SVM, HOG with ELM, and
FCN—to detect building footprints using only raster DSM data as input and evaluate their
performance on a publicly available benchmark dataset. This empirical comparison may
highlight the potential usefulness of expeditious methods and help understand which
model performs best in different urban environments. The first two methods rely on a
HOG feature descriptor and a classical ML classifier (SVM) or a shallow neural network
classifier (ELM) [46–48], and the FCN model is based on DL [49,50]. The descriptor and
classification models were chosen for their accuracy [14,51], especially in segmentation
tasks [52], popularity [14], simplicity, reduced computational time, and the ability to extract
building footprint masks without reducing the resolution of raster data.

2. Materials and Methods
2.1. Overview

Figure 1 shows the general workflow of our study. The core steps included data
retrieval and preparation, model implementation and training, and test performance
evaluation. All the algorithms were implemented using the MATLAB environment, except
the FCN that was implemented with the Python programming language and the Torch
package. The experiments were conducted on a Fujitsu Celsius Workstation with Intel Xeon
E5-2643 CPU (3.30 GHz) and 16 GB RAM. The following subsections describe each step.
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Figure 1. Overview of the study workflow steps: data retrieval and preparation (labeling, resizing, and train/test split),
model implementation and training (building extraction), and test performance evaluation.

2.2. Dataset Description

The data used in this study were obtained from the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) “Test Project on Urban Classification, 3-D
Building Reconstruction, and Semantic Labeling”. The sets consisting of airborne images
and laser scanner data were made publicly available to evaluate and compare different
urban object extraction methods, providing benchmark datasets with ground truth [13,53],
more updated and complete than the existing ones [54–56].

For the sake of generalizability, the available datasets were chosen covering three
urban areas that differ in terms of urban morphology.

The first part of the dataset was captured over the city of Vaihingen an der Enz
(Germany) and originally obtained from the digital aerial cameras tests carried out by
the German Association of Photogrammetry and Remote Sensing (Deutsche Gesellschaft
für Photogrammetrie, Fernerkundung und Geoinformation, DGPF) [57]. Each of the
33 different-sized patches (Figure 2) of the Vaihingen dataset contained a labeled true
orthophoto (TOP) paired with a DSM [58] with a ground sampling distance of 9 cm. The
publishers of the dataset provided a train/test split (30 patches for training, outlined with
red, and 3 for testing, outlined with green). The morphology of Vaihingen presents the
characteristics of a relatively small Central European village with many detached buildings
and small multi-story buildings. It encompasses slightly different urban fabrics: relatively
dense patterns formed by historic buildings with complex shapes and sparse trees, loose
patterns formed by few high-rising residential buildings surrounded by trees, and regular
patterns formed by small detached houses.

The second part of the dataset was captured over the city of Potsdam (Germany)
and was originally obtained from the DGPF tests [58]. The Potsdam dataset consisted of
38 patches containing a labeled TOP paired with a DSM with a 6000 × 6000 pixel size and
a ground-sampling distance of 5 cm. The provided train/test split for the Potsdam dataset
(Figure 3) consisted of 35 patches for training (outlined with red) and 3 for testing (outlined
with green). The morphology of Potsdam represents a typical Central European historic
city with large building blocks, narrow streets, and a dense settlement structure.
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Figure 2. Digital surface model (DSM) patches of the Vaihingen an der Enz dataset: training (red)
and test (green) subsets.

Figure 3. Digital surface model (DSM) patches of the Potsdam dataset: training (red) and test
(green) subsets.

The third part of the dataset covered the city of Toronto (Canada) and consisted of
3 different-sized patches containing a TOP and a DSM interpolated from the airborne laser
scanner point cloud with a grid width of 25 cm. The given train/test split ratio for the
Toronto dataset (Figure 4) was 2:1. The urban morphology of downtown Toronto exhibits
the characteristics of a typical modern North American megacity as the presence of different
urban objects and urban fabrics formed by a mixture of low- and high-story buildings with
various degrees of shape complexity in rooftop structures and streets, including clusters of
high-rise buildings that cast fairly large shadows [59].

The final database retrieved from the different ISPRS challenges was representative of
the typical Central European and North American cities with respect to urban complexity,
dimensions, and fabric density, especially suitable for method evaluation and comparison.
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Figure 4. Digital surface model (DSM) patches of the Toronto dataset: training (red) and test
(green) subsets.

The supervised learning models require a labeled set of data to learn, during the train-
ing process, the underlying patterns that can be used to make predictions on novel data.

To solve the building detection task, the building footprints were considered as a
group of pixels that can be distinguished from the pixels representing any other objects
that may appear in an urban environment (roads, paved areas, vegetation, etc.) through
discriminatory features extracted from the DSM raster images. Thus, the input to the
models and test data were lists of DSM tiles and the corresponding binary maps (Figure 5)
containing the ground truth for two semantic classes: building and non-building. For the
Vaihingen and Potsdam sets, the binary masks were generated by selecting the building
category from the provided ground truth (8-bit RGB tif files with one color per land cover
class). For the Toronto set, the 8-bit binary masks were obtained by rasterizing the shapefiles
describing the building outlines.

Figure 5. Sample of the dataset of digital surface model (DSM) patches and corresponding binary masks (ground truth):
(a) Vaihingen test set, (b) Potsdam test set, and (c) Toronto test set.
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The preprocessing phase consisted of rescaling the raster data with an adequate
factor and applying nearest interpolation (Figure 1). The initial mismatching resolutions—
9 cm/pixel for the Vaihingen set, 5 cm/pixel for the Potsdam set, and 25 cm/pixel for
the Toronto set—were conformed to a unique value of 36 cm/pixel to improve computa-
tional speed and performances. This value was obtained by progressively down-scaling
a sample until a marked computational time reduction was seen without significant loss
of information. The adjusted set of DSM tiles and masks was binned into training and
test subsets.

Despite representing different and complex urban morphologies, the generated dataset
showed a balanced class distribution. The number of pixels belonging to the building
class and non-building class was close to the ideal 1:1 ratio (percentage difference << 0.5%)
in every tile. Furthermore, the quality of the original datasets ensured the absence of
uncertainty in labeling due to noise, low resolution, no-data pixels, inaccurate object edges,
or class overlapping. Thus, the possible biases for the building extraction models were
minimized, safeguarding the fairness of the test evaluation and the potential transferability
of the learned knowledge.

2.3. Models’ Implementation and Training
2.3.1. Shallow ML-Based Building Detection

A shallow ML-based model that can classify pixels as building or non-building re-
quires discriminative and computable engineered features for image segmentation and
pixels classification.

Among the existing edge- and gradient-based descriptors, the HOG descriptors ap-
peared especially suitable for detecting the construction footprints, as HOG detectors
cue mainly on contours, can be computed quickly, and are fairly invariant to geometric
transformations and occlusions [23].

The HOG feature extraction chain computes occurrences of gradient orientation in the
detection window, or the region of interest (ROI) across the input, on a regular cell grid
and uses overlapping local contrast normalization to enhance the accuracy. For every pixel
in the input, the gradient vectors contain information on pixel value changes in x (gx) and
y (gy) directions with respect to its four neighbors.

The attributes of the gradient are its magnitude

M(x, y) =
√

gx
2+gy

2 (1)

and its direction
θ = arctan

(
gy/gx

)
. (2)

Gradient information is then pooled into a 1-D histogram of orientations that can be
used as input for ML algorithms.

Thus, the feature extractor encoded the raster inputs into feature vectors to feed a
classifier for the object/non-building instance detection, namely ELM and SVM classifiers.

The first method for building detection under examination used HOG as an input
to the SVM [60], a supervised ML algorithm that produces accurate classifications of
remotely sensed data [28,61–63]. The binary SVM classifier models a data point as a multi-
dimensional vector belonging to one of two classes and constructs a hyperplane or set of
hyperplanes to separate the classes [64] with the maximal margin (a space containing no
observations) and the lowest misclassification [65–67].

The SVM classifier was fitted on the aforementioned processed training set to find the
best-separating hyperplane (i.e., the decision boundary) using as input the predictor vectors
Xj along with their class labels Yi ∈ {+1, − 1}. During the training process, sequential
minimal optimization [68] solved the constrained optimization problem by breaking it into
a series of sub-problems that could be solved analytically. The final model was then saved
to perform prediction on the independent test set in the evaluation phase.
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The second method combines the HOG and an ELM [47] classifier instead of the
SVM [46]. The ELM trains a shallow feedforward neural network with a single hidden
layer, i.e., the feature mapping, which does not need parameter tuning [69–71]. The main
advantages of the ELM method compared to the previous one include better scalability
and similar generalization at a faster learning speed [72].

The ELM classifier was fitted on the same training subset with a single hidden layer
of 1000 neurons and a training ratio value of 0.9 to find the combination of nodes, weights,
and biases minimizing the error between the actual output of the network (predictions)
and the expected one (the ground truth) and obtain a learned model to be used for the
test evaluation. The net started with random input weights and calculated the best values
using the root-mean-square error to assess the prediction accuracy.

2.3.2. DL-Based Building Detection

The third building detection model was based on a DL architecture. The FCN-based
semantic segmentation [50] classifies the building or non-building class for each pixel
directly within the image inputs. The FCN gives a pixel-wise output (label map) without
needing a hand-engineered feature vector to feed the classifier for building extraction of
remotely sensed data [7,42,73–75].

The state-of-the-art classification convolutional model VGG-16 [76,77] structure was
repurposed for the segmentation task employing the method fully described in [50]: adapt-
ing the original architecture into an FCN and transferring its learned representations by
fine-tuning to the desired task. The repurposed architecture combines the semantic global
information of deep, coarse layers to learn the feature hierarchy and the local knowledge of
shallow, fine layers with 32-, 16-, and 8-pixel strides to improve the segmentation accuracy
and enable pixel-wise predictions.

We fit the three models on a common portion of the dataset (the training set) by feature
extraction and classifier training for the shallow ML-based models and fine-tuning through
transfer learning for the DL model and then evaluated their discriminatory ability on the
untouched data left (the test set).

2.4. Test Evaluation

The three implemented methods were fitted on a common dataset and then used to
generate predictions on the same hold-out test set to obtan an unbiased estimate of each
model’s accuracy.

Given the building label as the positive class and non-building label as the negative
class assigned to every single pixel of the raster images, the true positives (TPs), false
positives (FPs), true negatives (TNs), and false negatives (FNs) were counted to obtain the
pixel-wise metrics for the evaluation of the binary classifiers [78,79] and a contingency map
from a pixel-to-pixel comparison [32,80,81].

The TPs were the pixels correctly identified as building pixels; the FPs were non-
building pixels wrongly labeled as belonging to the building class. Similarly, the TNs were
non-building pixels correctly classified, whereas the FNs were building pixels wrongly
classified as non-building pixels (undetected building pixels). Totaling the number of TPs,
TNs, FPs, and FNs added up to the total pixels of the test set.

Sensitivity, or recall, is the proportion of TPs, pixels that actually are positive (building
class). Sensitivity takes values in the range (0, 1); with higher sensitivity, fewer building
pixels are undetected (larger footprints).

Sensitivity or Recall =
TP

TP + FN
, (3)
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Specificity is the proportion of TNs, pixels that actually are negative (non-building
class). Precision takes values in the range (0, 1); higher specificity leads to fewer pixels
mislabeled as building.

Specificity =
TN

TN + FP
, (4)

The relationship between sensitivity and specificity was visualized using the receiver
operating characteristic (ROC) curve and the area under the curve (AUC) [82] to quantify the
performance of each classifier over its range of possible cut-offs (classification thresholds).

Precision or positive predicted value (PPV) is the proportion of relevant pixels (TP)
among all the pixels classified as building pixels (positive) in the test. The PPV varies from
0 to 1, corresponding respectively to the value of the worst and the best classifier.

Precision or PPV =
TP

TP + FP
, (5)

Similarly, the negative prediction value (NPV) represents the proportion of pixels with
accurate non-building test results (TN) among all the pixels identified as non-building
pixels (negative class). NPV reference values are 0 for the worst classification and 1 for the
best classification possible.

NPV =
TN

TN + FN
, (6)

The F1 score combines the precision and recall values by taking their harmonic
mean. The F1 score takes values in the range (0, 1); higher F1 values correspond to
better model performance.

F1 score = 2× Precision× Recall
Precision + Recall

, (7)

The mean-square error (MSE) evaluates the mean of the quadratic prediction errors;
lower values indicate better performance.

MSE =
1

Npixels
(imgref − imgout)2 , (8)

The Matthews correlation coefficient (MCC) effectively and reliably measures the
quality of binary classifications [83], even if the classes are unbalanced, by taking into
account true and false positives and negatives. MCC values range from the worst value −1
to the best value +1.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (9)

3. Results

We reported pixel-based metrics to evaluate the prediction error for each of the
presented models for the building detection task in different urban areas.

Figure 6 shows the contingency maps resulting from the pixel-wise results of the
binary classification with the SVM, EML, and FCN superimposed on the aerial images of
the considered areas: the building pixels correctly detected (TPs) are colored in yellow,
FPs are colored in red, and FNs are colored in blue. As seen from examples in Figure 6,
ELM tended to underestimate the pixels belonging to the building class, since a fairly
high rate of FNs was produced. The resulting segmentation images were not close to
reality in the Vaihingen and Toronto patches: in the first case, the smaller footprints were
undetected; in the second case, there were “holes” in some footprints, having building
pixels surrounding non-building areas, which is a characteristic of urban fabrics formed by
specific architectural typologies (e.g., courtyard, siheyuan, and patio buildings). However,
the SVM seemed in the Vaihingen case more prone to overestimating the number of
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building pixels due to the higher occurrence of FPs. The contingency maps produced by
the FCN model showed a better correspondence of the predicted footprint position and
size to ground-truth masks in all subsets.

Figure 6. Contingency maps obtained from a pixel-to-pixel comparison between the masks outputted by the models and
the ground truth by urban area: (a) Vaihingen test set, (b) Potsdam test set, and (c) Toronto test set. True positives are shown
in yellow, false positives in red, and false negatives (missed building pixels) in blue.

For quantitative evaluation of the different classifiers, we reported pixel-wise classifi-
cation accuracy (Table 1) in terms of sensitivity, specificity, precision, the NPV, F1 scores,
the MSE, the MCC, and the AUC using both the aggregate metrics and the metrics split
by area.

Table 1. Pixel-wise performance by area for the three models: test evaluation metrics.

Sensitivity Specificity Precision NPV F1 Score MSE MCC AUC

HOG-SVM

Vaihingen 0.773 0.767 0.446 0.933 0.566 0.044 0.657 0.782
Potsdam 0.737 0.876 0.718 0.886 0.728 0.079 0.620 0.828
Toronto 0.887 0.871 0.742 0.949 0.808 0.033 0.826 0.914

Total 0.817 0.854 0.687 0.923 0.746 0.058 0.725 0.867

HOG-ELM

Vaihingen 0.415 0.935 0.608 0.868 0.493 0.114 0.513 0.710
Potsdam 0.720 0.888 0.735 0.881 0.727 0.084 0.620 0.840
Toronto 0.654 0.909 0.749 0.863 0.698 0.102 0.644 0.771

Total 0.653 0.906 0.731 0.870 0.690 0.099 0.626 0.809

FCN

Vaihingen 0.741 0.966 0.872 0.923 0.801 0.061 0.833 0.948
Potsdam 0.801 0.948 0.784 0.899 0.792 0.060 0.834 0.964
Toronto 0.834 0.947 0.877 0.925 0.855 0.052 0.821 0.973

Total 0.785 0.956 0.883 0.914 0.831 0.063 0.834 0.960

Considering the Vaihingen test set, MCC values of the HOG-SVM and HOG-ELM
models (0.657and 0.513, respectively) were significantly lower than the value of the FCN
model (0.833); compared with the ELM classifier, the SVM was more prone to detecting
building pixels as it disclosed higher sensitivity (77.3% vs. 41.5%), but the precision was
lower (44.6% vs. 60.8%). The metrics relative to non-building pixels were not found to differ
markedly. Considering the Potsdam test set, the HOG-SVM and HOG-ELM models showed
similarly better outcomes in terms of sensitivity but were slightly outperformed by the FCN
model; the difference became greater considering the MCC, a metric that provides a balanced
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measure of the relationship between reality and prediction. Considering the Toronto test set,
however, the MCC values of the HOG-SVM and FCN models were significantly higher than
the value of the HOG-ELM model (0.826 and 0.821 vs. 0.664), which suffered from lower
sensitivity and NPV due to the presence of small clusters of FN pixels inside the clusters of
pixels representing the building footprints, as shown in Figure 6.

Evaluating the aggregated metrics, the best values were achieved by the FCN-based
classifier: the FCN-based building detection method exhibited good overall detection
reliability. It was found that such an approach produces good-quality results in the different
urban contexts considered, as demonstrated by the values of the F1 score (0.831), AUC
(0.960), and MCC (0.834), which are fairly close to the ideal value of 1.

Figures 7 and 8 illustrate the detection abilities of the three binary classifiers comparing
ROC curves calculated on the output scores. The ROC curves of the SVM-based (blue lines),
ELM-based (red lines), and FCN-based (orange line) classifiers plotted the dependency
of the true-positive rate (sensitivity) on the false-positive rate (1—specificity) obtained at
various thresholds.

Figure 7. Receiver operating characteristic (ROC) curves for the aggregated data, showing the
relationship between true-positive and false-positive rates estimated by the three models compared
to the ground truth.

Figure 8. Receiver operating characteristic (ROC) curves of the three models for the different urban areas: (a) Vaihingen,
(b) Potsdam, and (c) Toronto.

Globally, all the final models could successfully detect the building footprints within
the study areas using only DSM patches as input, presenting good predictive ability with
AUC > 0.8 [84].

The SVM-based classifier produced accurate predictions in Toronto (AUC = 0.96),
fairly good predictions in Potsdam (AUC = 0.83), but minor predictions in Vaihingen
(AUC = 0.78) patches. The ELM-based classifier performance varied according to the
considered urban area: the prediction accuracy on the Potsdam test set slightly surpassed
the SVM accuracy (AUC = 0.84 vs. 0.83), whereas the test results on Vaihingen and Toronto
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datasets were the poorest among the considered methods, albeit being still acceptable
(AUC = 0.71 and 0.77). The FCN curves were close to the “perfect” classifier, with AUC
values between 0.95 and 0.97 for each urban area.

4. Discussion

The study compared the performance of three common supervised ML techniques—
HOG with SVM, HOG with ELM, and FCN—for the task of building footprint extraction
from high-resolution DSM data on a benchmark dataset of DSMs of three different urban
contexts (Vaihingen an der Enz, Potsdam, and Toronto). Our results showed that all the
ML techniques could successfully complete the task, but the FCN appeared more robust to
urban fabric diversity.

The performance of both HOG-based models was influenced by the urban context
investigated and in particular decreased within the Vaihingen area. This area is more
challenging due to the complexity of the urban fabrics that are composed of many small
buildings varying in shape, sparse low vegetation and trees, and irregular narrow road net-
works. The improvements in the Potsdam area could be attributed to the larger footprints
of the constructions and the relatively reduced number of trees. The worst generalization
ability of the two methods based on classical feature learning and classifier training may
be caused by the size of the training dataset [72,85], confirming the worse performance of
the ELM classifier compared to the SVM on small datasets [72].

In summary, these results show that a DL approach based on FCNs is the most prefer-
able method as it achieves good classification regardless of the urban context, despite the
inaccuracy in contours and boundaries that is a drawback of DL-based segmentation [86],
and support evidence from previous studies [35,36,38,39,41,85]. Furthermore, such an
approach automates the feature engineering and benefits from transfer learning that limits
the impacts of the training data size.

However, with a limited data size, although sufficient for the comparison, caution
must be applied, as the findings might not be fully appliable in the case of large datasets or
urban scenarios with substantially different morphological structures, e.g., Asian cities [87].

Table 2 summarizes the main advantages and disadvantages of the three methods.

Table 2. Advantages and disadvantages of the three implemented methods.

Method Algorithm Advantages Disadvantages

HOG-SVM [60] - Good predictive abilities

- Training data size sensitivity
- Manual feature engineering
- Not suitable for urban context

with sparse vegetation, small
footprints, and narrow roads

HOG-ELM [70]
- Average predictive abilities
- Fastest computational time

- Possible training data size
sensitivity

- Manual feature engineering
- Not suitable for urban context

with sparse vegetation, small
footprints, and narrow roads

- Not suitable for urban context
with large footprints

FCN [50]

- Best predictive abilities in all
urban contexts

- Transfer learning (training data
size robustness)

- Automatic feature extraction
- Easy implementation
- High transferability potential

- Irregular footprint edges
- Irrelevant feature susceptibility
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5. Conclusions

In this paper, we performed an empirical comparison of three different supervised
ML-based building detection methods—HOG-SVM, HOG-ELM, and FCN models—on a
benchmark high-resolution remotely sensed dataset using only raster DSMs. Two of these
methods belong to the classical feature learning and classifier training category—shallow
ML—whereas the third is a DL network. We used HOG as a feature descriptor and trained
the classifiers (SVM and ELM) for the first two methods using publicly available ISPRS
datasets. The same data were employed for fine-tuning the FCN architecture through
transfer learning. The high quality of the publicly available data resolved the major
problem of correctly labeling the training data, on which depend the predictive skills of
the final trained models. The methods are easy to implement, as analogous functions
are widely accessible in both proprietary and open source software and programming
languages (e.g., MATLAB, Python, R).

Our results demonstrate that determining the footprint of buildings from remotely
sensed data can produce different results, depending not only on the urban morphology of
the context to be surveyed but also on the model choice.

The performances of building detection techniques based on shallow ML were af-
fected by the complexity of the urban context considered, in particular by the presence
of vegetation and smaller footprints. The FCN-based model has proven to be the most
robust and best-performing method for building extraction from high-resolution DSM
data. Furthermore, this DL technique can generate accurate building masks without any
manually engineered features with high transferability potential. Due to this, the model has
the potential to solve similar pixel classification tasks, such as extraction of a different class
(e.g., ground surfaces, vegetation, cars) or multi-class segmentation by being re-trained
with adequate ground-truth masks and classes number. Using solely a DSM as input data
increases portability between urban areas as such data are widely available, continuously
improved, and constantly released [88].

Future work could investigate the potentials in the aforementioned multi-class prob-
lem domains, i.e., multi-class semantic segmentation of urban areas, as well as a systematic
analysis of the impacts on the accuracy of the raster resolution variation for applications
in data-poor environments or at a larger scale. To better explore the robustness to urban
fabric heterogeneity and geographic transferability, future experiments may also include
the application in different kinds of settlements (e.g., informal, regional, and vernacular
settlements) that can present different morphological characteristics. A metrics ensemble
based on both raster resolution and urban morphology could also lead to a more complete
characterization of the advantages and disadvantages of each algorithm. The knowledge of
the urban context, analysis of urban objects, color information from orthophotos [34], and
additional data could be used to develop novel methods for classification, pre-processing
the inputs, or post-processing the outputs. Thus, studies on combinations of different
approaches and data to improve the FCN detection accuracy would be worthwhile.
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69. Ertuğrul, Ö.F.; Kaya, Y. A Detailed Analysis on Extreme Learning Machine and Novel Approaches Based on ELM. Am. J. Comput.

Sci. Eng. 2014, 1, 43–50.
70. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In

Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary,
25–29 July 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2, pp. 985–990.

71. Huang, G.-B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn. Comput. 2014,
6, 376–390. [CrossRef]

72. Liu, X.; Gao, C.; Li, P. A Comparative Analysis of Support Vector Machines and Extreme Learning Machines. Neural Netw. 2012,
33, 58–66. [CrossRef]

73. Bischke, B.; Helber, P.; Folz, J.; Borth, D.; Dengel, A. Multi-Task Learning for Segmentation of Building Footprints with Deep
Neural Networks. arXiv 2017, arXiv:1709.05932.

74. Li, Y.; He, B.; Long, T.; Bai, X. Evaluation the Performance of Fully Convolutional Networks for Building Extraction Compared
with Shallow Models. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort
Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 850–853.

75. Liu, T.; Abd-Elrahman, A. An Object-Based Image Analysis Method for Enhancing Classification of Land Covers Using Fully
Convolutional Networks and Multi-View Images of Small Unmanned Aerial System. Remote Sens. 2018, 10, 457. [CrossRef]

76. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

77. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
78. Murphy, K.P. Machine Learning: A Probabilistic Perspective; Adaptive Computation and Machine LEARNING series; MIT Press:

Cambridge, MA, USA, 2012; ISBN 978-0-262-01802-9.
79. Zheng, A. Evaluating Machine Learning Models; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015; ISBN 978-1-4920-4875-6.
80. Scarpino, S.; Albano, R.; Cantisani, A.; Mancusi, L.; Sole, A.; Milillo, G. Multitemporal SAR Data and 2D Hydrodynamic Model

Flood Scenario Dynamics Assessment. IJGI 2018, 7, 105. [CrossRef]
81. Albano, R.; Mancusi, L.; Adamowski, J.; Cantisani, A.; Sole, A. A GIS Tool for Mapping Dam-Break Flood Hazards in Italy. IJGI

2019, 8, 250. [CrossRef]
82. Powers, D.M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. arXiv

2020, arXiv:2010.16061.

http://doi.org/10.1127/1432-8364/2010/0041
http://doi.org/10.3390/app9214674
http://doi.org/10.1016/j.landusepol.2020.105158
http://doi.org/10.1109/TGRS.2004.827257
http://doi.org/10.1080/01431160110040323
http://doi.org/10.1177/1536867X1601600407
http://doi.org/10.5555/1046920.1194907
http://doi.org/10.1007/s12559-014-9255-2
http://doi.org/10.1016/j.neunet.2012.04.002
http://doi.org/10.3390/rs10030457
http://doi.org/10.1145/3065386
http://doi.org/10.3390/ijgi7030105
http://doi.org/10.3390/ijgi8060250


Appl. Sci. 2021, 11, 6072 16 of 16

83. Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary
Classification Evaluation. BMC Genom. 2020, 21, 6. [CrossRef]

84. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA; Toronto, ON, Canada, 2005;
ISBN 978-0-471-72214-4.

85. Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing Fully Convolutional Networks, Random Forest, Support Vector
Machine, and Patch-Based Deep Convolutional Neural Networks for Object-Based Wetland Mapping Using Images from Small
Unmanned Aircraft System. GISci. Remote Sens. 2018, 55, 243–264. [CrossRef]

86. Yang, Y.; Zhou, X.; Liu, Y.; Hu, Z.; Ding, F. Wood Defect Detection Based on Depth Extreme Learning Machine. Appl. Sci. 2020,
10, 7488. [CrossRef]

87. Chen, T.-L.; Chiu, H.-W.; Lin, Y.-F. How Do East and Southeast Asian Cities Differ from Western Cities? A Systematic Review of
the Urban Form Characteristics. Sustainability 2020, 12, 2423. [CrossRef]

88. Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models
(ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [CrossRef]

http://doi.org/10.1186/s12864-019-6413-7
http://doi.org/10.1080/15481603.2018.1426091
http://doi.org/10.3390/app10217488
http://doi.org/10.3390/su12062423
http://doi.org/10.3390/rs12213482

	Introduction 
	Materials and Methods 
	Overview 
	Dataset Description 
	Models’ Implementation and Training 
	Shallow ML-Based Building Detection 
	DL-Based Building Detection 

	Test Evaluation 

	Results 
	Discussion 
	Conclusions 
	References

