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Abstract: The balise transmission system (BTS) is an automatic identification system for vehicle–
ground communication based on radio frequency identification (RFID) technology. The electromag-
netic coupling characteristics of BTS have a very important effect on the transmission quality of the
uplink telegram signals. However, signal transmission problems of BTS often occur due to unreason-
able installation mode or parameter setting. In order to solve these problems, it is necessary to fully
discuss the electromagnetic coupling characteristics of the BTS. In this paper, the transmission process
of energy and data between the onboard antenna unit and the balise was analyzed using digital twin
technology. A high-precision dynamic electromagnetic coupling model of the BTS was established
from four aspects of three-dimensional structure, physical properties, behavior patterns, and rule
restrictions. Then the accuracy of the model was verified by experiments. Finally, the influence of
typical parameters on the uplink signal is calculated and analyzed quantitatively. The results showed
that compared with other factors discussed in this paper, the vertical distance and the installation
mode had greater effects on the uplink signal. These results can be used to guide the engineering
installation and related optimization of the BTS.

Keywords: balise transmission system; digital twin; electromagnetic coupling; quantitative evaluation

1. Introduction

As the key subsystem of train control system, the balise transmission system (BTS)
completes the information transmission between ground balise and onboard equipment by
means of electromagnetic induction, so as to realize train positioning and line information
identification. The BTS has been widely used in the world’s railway signal systems. Europe
and China have issued specifications for BTS, which stipulate the conditions that BTS
should meet [1–3]. However, with the deepening of international railway exchanges and
the increasing use of transnational trains, the communication quality between the balise and
the onboard equipment is facing new challenges. These balises and the onboard antenna
unit (OAU) from different countries and manufacturers adopt different design concepts,
which may lead to the loss of transmission performance due to unsatisfactory matching
after these devices work together [4]. These problems further reduce the reliability of the
BTS and threaten the safety of train operation [5]. Therefore, the electromagnetic coupling
characteristics between the OAU and the balise of the BTS need to be fully analyzed.

In recent years, some scholars have studied the electromagnetic coupling process of the
BTS. In [6], the static model of balise uplink data transmission was established by the finite
element method, and the electromagnetic field distribution of the process was obtained
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by electromagnetic simulation. In [7], the dynamic process of uplink data transmission
was modeled and analyzed using electromagnetic field theory, and the corresponding
optimization suggestions were put forward from the perspective of installation height
and installation mode between the OAU and the balise. According to the test method
recommended by the standard, the electromagnetic coupling characteristics of BTS were
tested and analyzed in [8]. The electromagnetic coupling model of the BTS was established
in [9], and the reason for the induced voltage amplitude envelope of the onboard receiving
antenna in the coupling process was analyzed. Reference [10] established the calculation
model of the balise operating distance, and analyzed the influence of different installation
modes on electromagnetic coupling characteristics. In [11], a transmission performance
evaluation method based on an equivalent impedance model was proposed to monitor
the downlink transmission quality of the BTS. In [12], a calculation model of the inductive
voltage amplitude envelope of the balise downlink receiving antenna during the coupling
process was established, and the sidelobe effect was analyzed using the model. In addition,
Subset-036 provides some requirements for the BTS, but these requirements usually have a
larger allowable range.

However, although the electromagnetic coupling process of the BTS has been discussed
and analyzed in the literature mentioned above, the problem of system matching under
different engineering application conditions has not been completely solved. The influence
of different installation modes, vertical distance, and lateral deviation between the OAU
and the balise on the transmission characteristics of uplink telegram signal has not been
fully studied. In addition, the intensity of downlink tele-powering signal also has an
impact on the transmission characteristics of uplink telegram signal, but this has not been
discussed in any literature. In order to fully understand the complex coupling relationship
among various factors involved in the electromagnetic coupling process of the BTS and
establish the electromagnetic coupling model that unifies the above factors, it is necessary
to find a new research method to achieve this purpose.

Digital twin (DT) is an important technology for portraying, simulating, optimizing,
and visualizing the physical world in the information world. The concept of DT was
first proposed by Grievers in 2003 [13], which was first applied in the aerospace field. In
recent years, with the deepening of the research on DT, it has become increasingly apparent
that the most significant advantage of the DT is that it can closely and timely reflect the
actual service state of physical entities to enhance information-based services in the life
cycle of entities [14]. In [15], a digital twin model of lithium-ion batteries was proposed to
evaluate the degradation of battery performance. In [16], a ship digital twin model was
established based on the data collected by sensors, and the speed loss caused by marine
pollution was successfully estimated by the model. Reference [17] proposes a proprietary
framework for production line performance prediction based on digital twin technology,
which can monitor the performance of the production line when production demand
changes suddenly. In [18], a fuselage DT model was established to predict the fracture
probability of critical components of the fuselage. In [19], the DT technology was used to
model highway bridges for safety risk assessment. The above research proves the great
potential of DT in predicting the bad behavior of complex systems [20].

In addition, the characteristic of DT technology is that it can describe the model
comprehensively from four aspects: three-dimensional structure, physical characteristics,
behavior patterns, and norm restrictions [21]. The electromagnetic coupling process of BTS
is a dynamic interactive process, which cannot be fully explained by traditional static model.
DT is a good way to overcome this contradiction. Through the DT method, this dynamic
process can be fully analyzed and discussed from the different aspects mentioned above.

The purpose of this study was to quantitatively analyze the electromagnetic coupling
characteristics of the BTS using digital twin technology. In this paper, the electromagnetic
coupling process of the BTS was introduced, and the main factors involved in the electro-
magnetic coupling process were qualitatively analyzed using the fishbone diagram method.
Then, according to these sensitive factors, the analytical model or fitting model of each
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module in the transmission coupling process was established. By combining these modu-
larized models, a digital twin model to quantitatively analyze these sensitive factors was
successfully established. Experiments were designed to verify the validity and accuracy of
the digital twin model. Finally, the digital twin model was used to quantitatively evaluate
the influence of some sensitive parameters on the electromagnetic coupling characteristics
of the BTS.

The rest of this paper is organized as follows: In Section 2, the electromagnetic coupling
process of BTS is reviewed, and the key factors on the electromagnetic coupling process are
discussed in the fishbone diagram. Section 3 establishes a high-precision electromagnetic
coupling model of the BTS. In Section 4, two experiments are designed to verify the digital
twin model. Then, the influence of some sensitive parameters on the electromagnetic
coupling process is analyzed quantitatively in Section 5. Section 6 is the discussion and
conclusion.

2. Modeling Foundation of the Digital Twin
2.1. Basic Working Principle of the BTS

The BTS is an essential carrier for the train to get the information of the current
running state in time. The BTS consists of onboard equipment (balise transmission module
(BTM) and OAU which includes transmitting antenna and receiving antenna) and ground
equipment (passive balise, active balise, and lineside electronic unit). The working diagram
of the BTS is shown in Figure 1.

Figure 1. Working diagram of the BTS.

During the train operation, the onboard transmitting antenna continuously sends tele-
powering signals to the ground. When the train approaches the passive balise, the balise is
activated from dormant state. After entering the active mode, the balise sends the stored
telegram signals according to the specified format, modulation, and bit rate. The received
tele-powering signals are converted into voltage supply signals for the passive balise.
When the tele-powering signal is too weak to ensure the operation of the passive balise,
the process of sending telegram signals ends. During balise activation, telegram signals
are sent in a circular manner. For active balise, its power supply is provided by lineside
electronic unit. The BTM obtains telegram signals through the onboard receiving antenna.
The received signals whose amplitude exceeds the threshold level of BTM will be sent to the
subsequent circuit module for processing. BTM performs the following functions: balise
power supply, signal acquisition, filtering, amplification, demodulation, and decoding, and
finally reports the decoding results to the kernel of automatic train protection (ATP). Thus,
the ATP kernel could adjust the train operation state in time by combining the information
of telegram and other sensors.

In the communication process of the BTS, the transmission quality of uplink telegram
signal is related to whether the ATP kernel can obtain effective telegram signals successfully.
In SUBSET-036, several parameters that affect the signal transmission characteristics were
discussed. The vertical distance between the OAU and the balise should range from 220 to
460 mm. The balise can be installed in the middle of the track in longitudinal or transverse



Appl. Sci. 2021, 11, 6002 4 of 23

ways. In addition, the specification does not put forward specific requirements for the
shape and size of the onboard antennas. The current intensity of the tele-powering signal
on the onboard transmitting antenna is also limited indirectly.

In fact, according to the previous research, the change of uplink telegram signal power
with the train movement direction directly affects the effective transmission distance and
effective transmission time of the uplink telegram signal [5]. Therefore, the electromagnetic
coupling characteristic discussed in this paper refers to the variation of the uplink telegram
signal power received by the onboard receiving antenna with the antenna displacement.

2.2. Factor Analysis of Electromagnetic Coupling Process

In order to establish the high-fidelity electromagnetic coupling model of BTS, it is
necessary to find all the key factors that affect the electromagnetic induction process
through qualitative analysis. Concerning the requirements in [1] and the discussion of
the system workflow in the previous section, the key factors affecting the uplink signal
reception are analyzed by the fishbone diagram analysis method.

According to their attributes, the Figure 2 classifies all factors: normative restrictions,
determined by the manufacturer, and uncontrolled. Moreover, they are represented by the
letters N, D, and U, respectively.

Figure 2. Fishbone diagram of the influencing factors of the uplink received signal.

The uplink signal received by BTM depends on four aspects: balise transmitting
antenna, uplink transmitting current, onboard receiving antenna, and spatial property of
the transmission antennas.

The characteristics of balise transmitting antenna and onboard receiving antenna
depends on the shape, size, and matching circuits of each antenna. However, except that
the shape and size of the balise antenna are required in SUBSET-036, the design of the OAU
does not have too many restrictions. For the OAU, it only needs to pass the relevant tests
in SUBSET-085 to meet the basic performance required by the test specification. Therefore,
for the parameters that are not specified in the specification, the equipment manufacturer
can use different designs to achieve the required performance of the equipment.

During the operation of the train, the uplink transmission current of the passive balise
is not constant. This situation may further lead to the loss of signal transmission quality.
The uplink current depends on the onboard transmitting antenna, tele-powering signal,
balise receiving antenna, and its internal conversion circuits. Among them, the properties
of the conversion circuit can be tested according to the balise input and output characteristic
test in SUBSET-085.

The spatial property between the transmitting antenna and the balise antenna in the
3D space depends on the longitudinal (train running direction), lateral (perpendicular to
the track), vertical (installation height) displacement, and debris (such as ice and snow,
gravel, metal block) in the adjacent space of the antenna.
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The above-mentioned factors together have an important influence on the transmission
quality of the uplink telegraph signal. How to deal with the relationship among these
factors and the DT model is discussed in the following chapters.

3. DT Model of the Electromagnetic Coupling Process of the BTS
3.1. Structural Design of DT Model of Electromagnetic Coupling Process of the BTS

The equipment components of the BTS and their operating principles were discussed
in Section 2.1. The factors influencing the electromagnetic coupling process of the BTS
were discussed qualitatively in Section 2.2. On the basis of these two subsections, this
subsection discusses the DT model structure of the electromagnetic coupling process of
the BTS. Then the design scheme of the system-level model is proposed, and the modeling
objectives and tasks of each sub-model are specified. The mapping relationship between
the real-world BTS and the DT model of the system’s electromagnetic coupling process is
shown in Figure 3.

Figure 3. Schematic diagram of mutual inductance model between balise antenna and onboard antenna.

The downlink excitation circuit of the BTM sends the RF power signal to the balise
through the onboard transmitting antenna, and the balise receiving antenna receives the
downlink magnetic flux. The transmission process of this RF power signal requires a
downlink transmission model for describing the effect on the magnetic flux received by the
balise receiving antenna due to the RF power signal current strength, the antenna shape
and size, and the relative position change of the antennas during the train movement.

After the balise receiving antenna receives the RF power signal, the balise is activated
from the dormant state. The internal conversion circuit of the balise processes the RF
power signal to provide the transmitting current for the uplink signal to the passive balise
transmitting antenna. This process requires an equivalent current model of the passive
balise that describes the mapping of the magnetic flux strength received by the balise
receiving antenna to the uplink signal current strength of the balise transmitting antenna.

The onboard receiving antenna receives the uplink signal from the balise transmitting
antenna through the air gap interface. The magnetic flux received by the onboard receiving
antenna is affected by the antenna shape and size, the current strength on the balise
transmitting antenna, and the relative position between the antennas. This process requires
an uplink transmission model.

The matching circuit of the onboard receiving antenna can improve the performance
of the receiving antenna and reduce the loss of transmission performance caused by
impedance mismatching and resonance frequency offset. Therefore, a matching circuit
model of the onboard receiving antenna is needed to predict the relationship between
the magnetic flux of the uplink signal received by the onboard receiving antenna and the
uplink signal power on the input port of the BTM.

Since the relative positions of the OAU and balise are constantly changing during
train movement, both uplink and downlink transmission models need to fully reflect
the changes in signal transmission characteristics caused by such dynamic factors. The
uplink and downlink transmission models have similarities and are both electromagnetic
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induction models. Therefore, for both models, the fundamental task was to establish an
accurate model of mutual induction between the antennas.

By combining the above sub-models, a DT model of the electromagnetic coupling
process of BTS can be successfully established in theory. In order to realize the quantitative
analysis of the electromagnetic coupling characteristics of BTS, it is a challenging task
to accurately build each of the above sub-models and realize the lossless connection of
the sub-models.

3.2. Mutual Inductance Calculation between the OAU and the Balise

Balise antenna and vehicle antenna generally adopt the design of rectangular coil
antenna, which belongs to electric small loop antenna. According to the research in [22],
when the OAU of the BTS is more than 11 cm away from the metal plate, the influence of
the eddy magnetic field generated by the metal plate on the OAU can be ignored. Therefore,
we can establish a simplified model of the uplink transmission process in the BTS, as shown
in Figure 4.

Figure 4. Schematic diagram of mutual inductance model between balise antenna and onboard antenna.

Rectangular ABCD is a balise transmitting antenna, and rectangular EFGH is an on-
board receiving antenna. A three-dimensional rectangular coordinate system is established,
taking the center of the balise transmitting antenna as the origin. It takes the directions
parallel to the AB and DA sides of the balise transmitting antenna as the OX axis and the
OY axis. Let the direction perpendicular to the balise transmitting antenna be the OZ axis.

The train speed vector
→
V is consistent with the positive direction of the OX axis.

Let µ0 be the vacuum permeability, and x0 and y0 be half of the side length of the
balise transmitting antenna along the OX axis and the OY axis, respectively. Let x1 and y1
be half of the side length of the onboard receiving antenna along the OX axis and OY axis,
respectively. (∆x, ∆y, ∆z) is the coordinate of the center point of the onboard receiving
antenna. An analytical model of mutual inductance between two parallel rectangular
antennas at arbitrary relative positions can be obtained by applying the second-order
vector potential method [23].

M =
2µ0
π2

∫ ∞

−∞

∫ ∞

−∞
ke−k∆z+j(a∆x+b∆y) sin(ax0)

a
· sin(by0)

b
· sin(ax1)

a
· sin(by1)

b
dadb. (1)

Equation (1) is an essential basis for the quantitative evaluation of the electromagnetic
coupling characteristics of the BTS. It explains the interaction between the onboard receiv-
ing antenna and the balise. The induced voltage of the onboard receiving antenna can also
be calculated according to (1).

3.3. Modeling and Analysis of Matching Circuit

In order to ensure the transmission efficiency of telegram signals and reduce the signal
distortion caused by reflection and group delay, the antennas of BTS are usually impedance
matched. The equivalent circuit of the uplink signal transmission antennas using an L-type
matching circuit is shown in Figure 5.
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Figure 5. Equivalent circuit of uplink signal transmission antennas.

For the uplink transmitting antenna of the balise, Z1 is the input impedance, C1 and
C2 are the series and parallel tuning capacitors, respectively, R1 represents the sum of the
equivalent resistance of the transmitting antenna and the series loss resistance, and L1
represents the equivalent inductance of the transmitting antenna. i1 is the current flowing
through the balise transmitting antenna. For the onboard receiving antenna, L2 represents
the equivalent inductance of the onboard receiving antenna. i2 is the induced current on
the onboard receiving antenna. R2 represents the sum of the equivalent resistance and the
series loss resistance of the onboard receiving antenna. C3 and C4 are the series and parallel
tuning capacitors, respectively. Z2 and Z3 are resistors for impedance matching, Z4 is the
load impedance. L3 and C5 are used to filter the tele-powering signal. M is the mutual
inductance between the balise transmitting antenna and the onboard receiving antenna.

This article focuses on the analysis of the equivalent circuit of the onboard receiving
antenna. The purpose of the parallel tuning capacitor C4 is to reduce the relatively large
impedance connected in parallel on the right side so that the real part is equal to R2. The
quality factor Qr of the receiving antenna can be changed by adjusting the resistance of
R2. The role of the series tuning capacitor C3 is to resonate with the antenna equiva-
lent inductance L2 and the parallel capacitor C4, thereby canceling the reactance part of
the circuit.

Since the onboard receiving antenna usually uses a single-turn rectangular planar loop
antenna, its equivalent capacitance can be ignored, and we can calculate the equivalent
inductance L2 [24] as follows:

L2 =
µ0
π


la · ln

[
2lalb

dc·
(

la+
√

la2+lb2
)
]
+ lb · ln

[
2la lb

dc·
(

lb+
√

la2+lb2
)
]

−2
[
la + lb −

√
la2 + lb2

]
+ la+lb

4

, (2)

where la and lb are the sizes of the long and short sides of the rectangular planar loop
antenna respectively, and dc is the diameter of the equivalent cylindrical conductor with
the same cross-sectional perimeter of the antenna conductor.

dc =
2(t + w)

π
, (3)

where t is the thickness of the rectangular loop antenna conductor and w is the width of
the conductor.

The quality factor Qr of the matching circuit can be calculated as follows:

Qr =

√
Ztotal

R2
− 1, (4)

where Ztotal can be calculated according to the circuit structure:

Ztotal = Z2 +
Z3

(
jωL3 + Z4 +

1
jωC5

)
jωL3 + Z4 +

1
jωC5

+ Z3
. (5)
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Therefore, once the quality factor Qr is defined, the total resistance R2 of the series
circuit can be calculated.

The reactance value Xs of the matching circuit in series with the antenna and the
reactance value Xp of the matching circuit in parallel with the antenna can be expressed as:{

Xs = QrR2

Xp = Ztotal
Qr

, (6)

According to the resonant frequency of the designed circuit, the parameters of the
corresponding inductor and capacitor components can be calculated.{

Ls =
Xs
ω = QrR2

2π f0

Cp = 1
ωXp

= Qr
2π f0Ztotal

, (7)

In Equation (7), Ls represents the inductance in the series circuit, and Cp represents
the capacitance in parallel with the output impedance (Cp = C4).

Because the antenna is inductive, its inductance L2 is not equal to the calculated value
of the above impedance-matched series inductance Ls. Therefore, the inductance of the
antenna itself can be used for impedance matching.

For the remaining inductance ∆L = L2 − LS, when ∆L is greater than 0, the imaginary
part is matched to 0 through series capacitance, so C3 can be calculated as follows:

C3 =
1

ω2(L2 − Ls)
=

1
2π f0(2π f0L2 −QrR2)

. (8)

The double-mesh equation of the entire equivalent circuit can be expressed as:
(

R1 + jωL1 +
1

jωC1
+ Z0

jωC2Z0+1

)
i1 − jωMi2 = U0

jωMi1 −
(

R2 + jωL2 +
1

jωC3
+ Ztotal

jωC4Ztotal+1

)
i2 = 0

. (9)

When the onboard receiving antenna is tuned at the center frequency of 4.234 MHz,
the sum of the imaginary parts of jωL2 +

1
jωC3

+ Ztotal
jωC4Ztotal+1 should be 0, and the real part

of Ztotal
jωC4Ztotal+1 is equal to R2, so:

i2 =
jωMi1

2R2
. (10)

When ∆L is less than 0, series inductance can be used to increase the inductance of
the series circuit, so as to offset the capacitive reactance of the parallel circuit to achieve a
matching state. At this time, the resonant current i2′ of the onboard receiving antenna at
the center frequency can be calculated by the same way:

i2′ = i2 =
jωMi1

2R2
, (11)

Therefore, the port voltage of shunt capacitor C4 is:

Uztotal =
Z2 − jωC4Ztotal

2

2R2(1 + ω2C4
2Ztotal

2)
× jωMi1. (12)

Combining (1), (5), and (12), the port voltage of the load impedance Z4 after matching
and filtering can be obtained:

Uz4 = 2Az f0µ0i1(Qr+j)
π ×

∫ ∞
−∞

∫ ∞
−∞ ke−k∆z+j(a∆x+b∆y)

· sin(ax0)
a · sin(by0)

b · sin(ax1)
a · sin(by1)

b dadb.
(13)
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where Az = Z3Z4
(Z2Z3+Z2Z4+Z3Z4)

.
According to (13), it can be seen that the voltage of the uplink signal received by

the onboard receiving antenna after good impedance matching is related to the quality
factor of the antenna and has nothing to do with the reactance components in the matching
circuit. The voltage is also affected by the size of the balise transmitting antenna and the
onboard receiving antenna, the relative spatial position between the antennas, and the
current flowing through the transmitting antenna. The received uplink signal voltage is
proportional to the current intensity on the balise transmitting antenna.

3.4. Equivalent Model of Passive Balise Transmitting Current

Depending on the balise energy source, the i1 in (13) changes accordingly. The LEU
provides the current on the active balise transmitting antenna, so the current intensity can
be kept constant during communication. However, the passive balise uses the received
tele-powering signal as the energy source, and the magnitude of the transmitted current is
affected by the received magnetic flux, which changes with the longitudinal displacement
between antennas.

In order to accurately describe the change of the uplink signal transmitting current
intensity of the passive balise with the magnetic flux intensity of the received downlink RF
power signal, the input–output characteristics of the passive balise need to be modeled.
Directly building such a model is a difficult task for balise, whose internal conversion
circuits contain nonlinear devices. Fortunately, the SUBSET-085 test specification proposes a
black-box test method for balise input–output characteristics. According to the balise input–
output characteristic curve, the equivalent current model of the balise can be obtained by
curve fitting.

When the train passes through the passive balise, the current on the balise transmitting
antenna is determined by the magnetic flux φd passing through the balise receiving antenna
and the input–output characteristics of the balise:

φd = Mdid. (14)

Md is the mutual inductance between the onboard tele-powering transmitting antenna
and the balise receiving antenna, which can be calculated by referring to (1). The excitation
current id is an adjustable constant provided by the BTM. The balise input–output charac-
teristic is determined by its internal conversion circuit and needs to meet the requirements
of the SUBSET-036 functional interface specification [1], as shown in Figure 6.

Figure 6. Balise input–output characteristics.

The abscissa represents the magnetic flux of the tele-powering signal received by the
balise. The ordinate represents the current on the balise transmitting antenna, which comes
from the received magnetic flux processed by the internal conversion circuits. The relevant
parameter requirements of the reduced size balise in SUBSET-036 specification are shown
in Table 1.
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Table 1. Characteristics for a reduced size balise.

Tele-Powering Magnetic Flux (nVs) Loop Current
(mA)

φd1 = 4.9 Iu1 = 37
φd2 = 7.7 Iu2 = 59
φd3 = 5.8 Iu3 = 186
φd4 = 130 Iu3 = 186
φd5 = 250 Non-permanent damage

We can fit the curve in Figure 6 with a univariate nonlinear regression model:

iφ = aφ + bφφd +
cφ

φd
2 +

dφ

φd
6 , (15)

In (15), aφ, bφ, cφ, and dφ are all constants, φd represents the magnetic flux, and iφ

represents the current on the balise transmitting antenna.
According to Figure 6, the balise uplink current is positively correlated with the

magnetic flux passing through the balise receiving antenna, but it is a nonlinear relationship.
An accurate balise input–output characteristic curve is the basis for establishing the uplink
current model of the passive balise. Fortunately, a method to measure this input–output
characteristic curve of balise has been proposed in [2]. Furthermore, this test is also a
necessary part of the functional test of the balise. Therefore, a simplified method is to attain
the balise input–output characteristic curve through testing and use (15) to fit the curve,
omitting the modeling of the complex conversion circuits inside the balise.

According to the requirements of the balise input–output characteristic test in the test
specification, a certain type of passive balise was tested. The connection block diagram of
the test equipment and the test layout are shown in Figures 7 and 8, respectively. The test
program and procedures were consistent with the requirements in the specification. It is
worth noting that in this test, the vertical distance between the test antenna and the balise
was 220 mm.

Figure 7. Balise input–output characteristics test configuration.

The test was carried out in the laboratory which could meet the requirements of the
test equipment and test environment in the specification. The red star in Figure 9 is the test
result of the balise input–output characteristics. On this basis, Equation (15) was used to fit
the results, and the fitting curve is shown as the blue dotted line in Figure 9. The regression
equation is as follows:

iφ = 82 + 0.04141φd −
74.06
φd

2 −
22820
φd

6 . (16)



Appl. Sci. 2021, 11, 6002 11 of 23

Figure 8. Balise input–output characteristics test scenario.

Figure 9. Test and fitted results of balise input–output characteristic.

The determination coefficient R2 and root mean square error (RMSE) were used as the
criteria for the goodness of fit of the model:

R2 = 1−
(

∑
e

(
ye − iφe

)2/∑
e
(ye − y)2

)
. (17)

where y1, . . . ye are the measurement results of the input–output characteristics of the balise,
e is the total number of measurement points, and iφe is the corresponding fitting result
calculated according to (16).

According to the calculation, the coefficient of determination R2 of the regression
equation is 0.9946, and the RMSE is 0.2221. These indicators show that the curve fitting of
the input–output characteristics of the balise achieved satisfactory results.

Combining (14) and (16), the expression for calculating the uplink current is as follows:

iφ = 82 + 0.04141Mdid −
74.06

(Mdid)
2 −

22820

(Mdid)
6 , (18)

The information transmission of the BTS was realized by near-field induction coupling.
The communication distance was much smaller than the signal wavelength, so we could
ignore the multipath effect and doppler shift effect in the communication process. Accord-
ing to (13), (14), and (18), the digital twin model of electromagnetic coupling process of the
BTS was successfully established. By this model, the telegram signal intensity coupled to
the onboard receiving antenna when the OAU and the balise were in any relative position
could be accurately calculated.
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3.5. DT Model of Electromagnetic Coupling Process of BTS

The three most essential sub-models of the electromagnetic coupling process of BTS
are developed in Section 3.2., Sections 3.3 and 3.4, respectively. In this subsection, based on
the research in the previous four subsections, the sub-models are fused, and a DT model
of the electromagnetic coupling process of BTS is successfully constructed, as shown in
Figure 10.

Figure 10. DT model of electromagnetic coupling process of BTS.

The mutual inductance model between antennas was involved in constructing the up-
link or downlink transmission model. The uplink transmission model needed to calculate
the mutual inductance between the onboard receiving antenna and the balise transmitting
antenna, as shown in (1). For the downlink transmission model, the antennas of the mu-
tual inductance model became the onboard transmitting antenna and the balise receiving
antenna, and the corresponding antenna parameters in (1) needed to be replaced.

The downlink transmission model could be obtained according to (14). In (14), Md
refers to mutual inductance between downlink transmission antennas, which can be
calculated by referring to (1).

The equivalent current model of the passive balise was obtained by the black-box test
method, as shown in (18). When the passive balise changes, we first used the black-box test
method to obtain the test result curve of the input and output characteristics of the balise
and then obtained the corresponding equivalent current model according to the fitting
result of (15).

According to the uplink transmission model and the matching circuit model of the
onboard receiving antenna, the uplink signal power received by the onboard receiving
antenna at any relative position of the OAU and balise can be calculated, as shown in (13).
The current i1 in (13) is the uplink transmitting current of balise, which is consistent with
iφ in (18) for the passive balise.
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The fusion of the above sub-models resulted in a system-level DT model that allowed
the analysis of the electromagnetic coupling process of the BTS. The effect of the variation
of different system parameters on the uplink signal transmission characteristics could be
studied quantitatively using this DT model.

4. Experimental Verification of the Digital Twin Model

In this section, two experiments are designed to verify the proposed electromagnetic
coupling model. The OAU and balise in the experiments came from a BTS equipment
manufacturer in China. The test was carried out in a laboratory whose qualification,
environment, and related test equipment all met the requirements of SUBSET-085. In order
to evaluate the similarity between the calculated results of the electromagnetic coupling
model and the actual measured results, the Pearson correlation coefficient and Spearman
rank correlation coefficient were used as evaluation indices. However, the above two
methods were only applicable to the evaluation of linear or monotonous nonlinear relations
and were not good at dealing with complex nonlinear relations between different data [25].
To make up for the above deficiencies, the maximum mutual information coefficient
(MIC) [26] was used as a supplement to judge whether there was a nonlinear correlation
between the two results.

4.1. Verification of the Tele-Powering Field Conformity

Table 2 shows the dimensional parameters and typical parameters of the OAU and
passive balise produced by a BTS manufacturer, in which the dimensional parameters of
the onboard receiving antenna were consistent with that of the transmitting antenna. id
represents the current of the tele-powering signal on the onboard transmitting antenna.
For the OAU and balise in Table 2, we measured the tele-powering field conformity in
the laboratory with reference to [2]. The test configuration and test scenario are shown in
Figures 11 and 12, respectively. The vertical distance between the OAU and the balise was
set to 340 mm. During the measurement, the balise was fixed on the desktop, and the OAU
moved laterally along the X-axis.

Table 2. Some typical parameters of the OAU and the passive balise (Part A).

2x0
(mm)

2y0
(mm)

2x1
(mm)

2y1
(mm)

∆z
(mm)

∆y
(mm)

id
(mA)

200 390 300 370 340 0 1000

Figure 11. Tele-powering field conformity test configuration.
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Figure 12. Tele-powering field conformity test configuration.

There were two major differences from the tele-powering field conformity measure-
ment scheme in the specification. The first was that the tele-powering signal emitted by the
onboard transmitting antenna remained constant during the entire measurement process.
However, the response of the balise at each measurement position needed to be measured
and recorded. Second, from the measurement connection diagram, we could find that a
special balise test antenna replaced the passive balise, thus eliminating the need for an
additional 4.2 MHz test antenna. The specially designed balise test antenna was based on
the reduced size passive balise, adding an external monitoring interface. The filter and the
power meter were directly connected to the particular balise test antenna. The filter was
used to isolate the influence of the 27 MHz tele-powering signal on the power meter B so
that the balise response could be directly measured by the power meter B.

Except for the above two differences, the test methods and test procedures were consis-
tent with the specification requirements. Simultaneously, using the downlink transmission
model referring to (1) and (14), and the same antenna parameters in Table 2, the change of
the magnetic flux received by the balise with the longitudinal displacement of the OAU
was calculated. The measurement results and calculation results are shown in Figure 13.

Figure 13. Validation results of the tele-powering field conformity test.

The magnetic flux received by the balise is related to the relative position of the balise
and the OAU. When the OAU and the balise coincided in the XOY plane, the balise received
the most magnetic flux. With the increase in longitudinal displacement between the OAU
and the balise, the received magnetic flux gradually decreased and reached the minimum
value when the absolute value of the longitudinal displacement difference was around
50 cm. When the longitudinal displacement between the antennae further increased, the
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magnetic flux received by the balise first slowly increased to the maximum of the sidelobe,
and then continued to decrease with the increase of the displacement.

The above phenomenon was determined by the magnetic field distribution character-
istics of the rectangular antennas. When the magnetic flux received by the balise reached
its minimum value, the direction of magnetic induction intensity in the balise region was
reversed by increasing the longitudinal displacement of the OAU and the balise. Linhai
Zhao simulated the magnetic field distribution between the balise and the onboard rectan-
gular antenna [7]. His simulation and analysis results also showed that the information
transmission between the rectangular antennas would cause the sidelobe effect.

The longitudinal displacement–downlink flux envelope curves were very similar
between the measured results and the calculated results. However, the calculated result
near the longitudinal displacement ∆x = 0 was significantly larger than the measured
result. The calculated value was 3.05 nVs greater than the measured value at ∆x = 0.
With the increase of longitudinal displacement, the difference decreased gradually. This
phenomenon was caused by the inconsistency between the current id of the tele-powering
signal used in the calculation and the current on the onboard transmitting antenna during
the measurement. Due to the accumulated errors in the measurement process, the current
intensity of the tele-powering signal on the onboard transmitting antenna may not reach
1000 mA.

We adjusted the current intensity of id in the calculation model to 880mA, and kept
all the other parameters as before. The corrected calculation result could be obtained as
shown by the black dotted line in Figure 13. The corrected calculation result curve almost
coincided with the measurement result curve, and the difference between the corrected
calculation result and the measurement result was only 0.23 nVs at ∆x = 0. This confirmed
the previous conjecture that the error was caused by the difference in the current of the
tele-powering signal.

The Pearson correlation coefficient, Spearman rank correlation coefficient, and maxi-
mum mutual information coefficient were 0.9998, 0.9786, and 0.9999, respectively, for the
corrected curve and the measured curve. This indicates that the electromagnetic coupling
calculation model proposed in this paper can accurately predict the tele-powering field
conformity measurement results.

4.2. Verification of the Uplink Field Conformity

The OAU and the balise in this verification are the same as the antennas in Table 2. The
difference is that this verification is to test the uplink signal transmission characteristics.

Some typical parameters of the uplink receiving antenna matching circuit obtained
from the manufacturer are shown in Table 3. With these parameters, the signal power of
the uplink receiving antenna port can be calculated according to (13).

Table 3. Some typical parameters of the OAU and the passive balise (Part B).

Qr Az ∆z (mm) ∆y (mm)

3 0.5 340 0

The uplink field conformity test configuration is shown in Figure 14. The signal
generator sent the telegram signal with the center frequency of 4.2 MHz to the balise, and
the attenuator was used to isolate and protect the signal generator. We adjusted the output
power of the signal generator and observed the power meter A to make the uplink signal
current intensity on the balise transmit antenna reach 59 mA. The 27 MHz tele-powering
transmitting antenna was impedance-matched with a 50-ohm load. We attained the signal
power of the uplink receiving antenna port by power meter B.
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Figure 14. Uplink field conformity test configuration.

The test scenario was consistent with Figure 12. During the measurement process,
the current intensity of the uplink signal on the balise transmitting antenna remained the
same. The signal power of the onboard receiving antenna port at each position needed to
be measured and recorded. The rest of the measurement steps were consistent with the
measurement scheme of uplink field conformity in the test specification. The results of
measurement and calculation are shown in Figure 15. The cause of the sidelobe effect in
Figure 15 is the same as that in Figure 13, which is also by the magnetic field distribution
characteristics of the rectangular antennas. Compared with Figure 13, Figure 15 adopts a
logarithmic coordinate system so that the sidelobe effect appears more prominent. The en-
velope of the calculation result curve was very similar to that of the measurement result
curve, and the error between the measurement and calculation results in the main lobe
zone was within 2 dB.

Figure 15. Validation results of the uplink field conformity test.

The Pearson correlation coefficient, Spearman rank correlation coefficient, and max-
imum mutual information coefficient were 0.9943, 0.9971, and 0.9999, respectively, for
the calculation curve and the measurement curve. This shows that the proposed electro-
magnetic coupling calculation model can accurately predict the uplink field conformity
measurement results.

The tele-powering field conformity test and the uplink field conformity test are respec-
tively for downlink and uplink of the BTS. Based on the verification of these two aspects,
the validity and accuracy of the electromagnetic coupling model of the BTS established in
this paper can be fully affirmed.

5. Quantitative Evaluation of the Influence of Some Typical Parameters on the Balise
Uplink Signal

High-quality signal transmission is the basis for ensuring the reliability of the BTS.
The BTS involves many system parameters. Setting these parameters and matching dif-
ferent parameters is done to ensure better information transmission is not accurately
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described in the relevant specifications, standards, and previous literature, but rather
relies on engineering experience. This section provides a quantitative evaluation of the
influence of some typical parameters affecting the signal power coupled to the onboard
uplink receiving antenna.

Some typical parameters of a BTS composed of an OAU and a reduced size balise
are shown in Table 4. x0 and y0 are half of the two sides of the reduced size balise
antenna (including transmitting antenna and receiving antenna) along the OX axis and
OY axis, respectively. x1 and y1 represent half of the two sides of the OAU (the same
antenna is used for downlink transmission and uplink reception) along the OX axis and
OY axis, respectively. BTS-related standards and specifications do not put forward specific
requirements for the size of the onboard antennas. It only needs to pass the tele-powering
field conformity test and the uplink field conformity test in the test specification. The
allowable range of antenna vertical distance ∆z is 220 to 460 mm. The antenna lateral
deviation is the deviation of the OAU and the balise along the OY axis. This is usually
caused by the static installation of the OAU and balise and the steering and vibration
during dynamic train operation. The maximum allowable deviation is specified by the
manufacturer. For the balise emission current i1, i1 ∈ [Iu2, Iu3]. Iu2 and Iu3 are the minimum
and maximum currents on the transmitting antenna when the balise is working normally,
and the amplitudes are 59 and 186 mA, respectively.

Table 4. Some parameters of the BTS.

Variable Value Variable Value

x0 100 mm ∆y 0 mm
y0 195 mm i1 59 mA
x1 100 mm id 1500 mA
y1 160 mm Qr 3
∆z 340 mm Az 0.5

By calculating the parameters in Table 4, we can discuss the influence of the lateral
or longitudinal installation mode, vertical distance, lateral deviation, uplink transmitting
current intensity of active balise, and tele-powering signal current intensity of onboard
transmitting antenna on the uplink signal of the system.

Table 5 shows the definition of installation type of the OAU and the balise. The lateral
means that the long side of the OAU or balise is consistent with the X-axis direction. The
longitudinal means that the short side of the OAU or balise is consistent with the Y-axis
direction. Figure 16 shows the corresponding layout of the balise.

For the onboard receiving antenna, the uplink transmitting current of the passive
balise be calculated by (20). All parameters in Table 4 can be calculated according to (14).
Figures 17–22 show the variation of the signal power at the onboard receiving antenna
terminal with the longitudinal displacement of the antenna under different BTS parameters.

Table 5. Definition of installation type.

OAU Balise

Installation Type-1 lateral lateral
Installation Type-2 longitudinal lateral
Installation Type-3 lateral longitudinal
Installation Type-4 longitudinal longitudinal



Appl. Sci. 2021, 11, 6002 18 of 23

Figure 16. Schematic diagram of longitudinal and lateral balise.

Figure 17. Variation of uplink received signal power with different installation modes (active balise).

Figure 18. Variation of uplink received signal power at different vertical distances between the OAU
and the balise.
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Figure 19. Variation of uplink received signal power at different lateral deviation between the OAU
and the balise.

Figure 20. Variation of uplink received signal power with different uplink transmitting current
intensity (active balise).

Figure 21. Variation of uplink received signal power with different tele-powering signal current
intensity (passive balise).
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Figure 22. Variation of uplink received signal power with different installation modes (passive balise).

The influence of the lateral or longitudinal installation of the rectangular OAU and
balise on the uplink received signal power is shown in Figure 17. Since the signal power at
the onboard receiving antenna terminal is symmetrical along the OX axis, we only needed
to plot the curve of the positive half of the OX axis.

The lateral or longitudinal installation of the rectangular OAU and balise had little
effect on the main lobe and side lobe peak power of the received signal. However, the
null distance was obviously related to the installation of these antennas. When the OAU
and balise were installed longitudinal, the null distance was 88 mm longer than the null
distance when these antennas were installed lateral. Therefore, when both the OAU and the
balise were installed longitudinally, the width of the main lobe of the displacement–power
curve was the widest. This meant that under the same dynamic contact distance, the
attenuation of the received signal power with the longitudinal displacement of the antenna
was the least in this installation mode. The intensity and reliability of the received signal
could be better guaranteed.

Figure 18 shows the effect of the vertical distance between the OAU and the balise on
the uplink received signal power. The closer the vertical distance between the OAU and
the balise, the narrower the main lobe width of the displacement–power curve, but the
larger the peak power of the main lobe and the side lobe. Within the allowable range of
the functional specification, the uplink received signal power with the minimum vertical
distance was 13.85 db higher than that with the maximum vertical distance. However, the
null distance was 278 mm smaller. Therefore, many factors should be considered in setting
the vertical distance between these antennas.

The influence of the lateral deviation of the OAU on the uplink signal power is
discussed in Figure 19. According to the engineering experience, the lateral deviation
between the OAU and the balise allowed by the manufacturer was generally within
100 mm. The lateral deviation of the antennas did not affect the envelope shape of the
displacement-power curve in these ranges. During the lateral shift from 0 to 100 mm, the
signal power at each point of the curve along the OX axis decreased by about 1.5 dB. When
the lateral deviation was increased to 150 mm, the signal power decreased by about 3.2 dB.

The influence of the uplink transmitting current of the active balise on the uplink
received signal power is discussed in Figure 20. When the transmitting current on the
balise remained constant throughout the uplink signal transmission, the magnitude of the
transmitting current did not change the envelopment shape of the displacement–power
curve, but was only proportional to the power of the curve at each point along the OX axis.

Figure 21 shows the effect of the current intensity of the 27 MHz tele-powering
signal on the uplink received signal in the system composed of the OAU and passive
balise. i1 represents the displacement–power curve of the uplink received signal of the BTS
composed of active balise, and the uplink transmitting current intensity of the balise was
set to the current intensity when the passive balise represented by (20) reached a stable
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working state. According to the requirements for tele-powering field conformity test in the
specification, the current intensities of 27 MHz tele-powering signals were all within the
allowable range. The results in Figure 21 show that these four curves had the same value
of main lobe peak power. However, the side lobe peak power in the active balise mode
was the largest. The side lobe peak power in the passive balise mode decreased with the
decrease of the 27 MHz tele-powering current intensity.

In Figure 17, the influence of installation mode on the uplink received signal is
discussed in the system composed of active balise and OAU. Compared with Figure 17,
Figure 22 replaces the active balise with the passive balise, and other parameters are
the same as those in Figure 17. By comparing Figures 17 and 22, it can be seen that the
difference between passive and active balises in the received signal power caused by the
installation mode is not obvious, and the curve envelope in the main lobe zone is very
similar. However, under the passive balise condition, the signal power of the side lobe
zone was significantly reduced, which was consistent with the analysis in Figure 21.

6. Discussion and Conclusions

In this study, a DT model to quantitative analyze the electromagnetic coupling char-
acteristics of BTS was established. The sensitive factors of the electromagnetic coupling
characteristics were analyzed by using fishbone diagram method, and the suitable models
for three important links in the electromagnetic coupling process were established accord-
ing to the analysis results. By fusing these sub-models, a DT model of the electromagnetic
coupling process of BTS was obtained. The designed two experiments proved that the
proposed model had sufficient accuracy and could be used for the quantitative analysis of
the main sensitive parameters involved in the electromagnetic coupling process.

The contribution of this article was twofold. First, the DT model established in this
paper could accurately predict the electromagnetic coupling characteristics of the BTS.
Traditionally, the electromagnetic coupling characteristics of the BTS are not clear until
the uplink field conformity and the tele-powering field conformity measurements have
finished. In the process of research and development of onboard equipment, the impact
of the size structure of the OAU and the components of the matching circuit on the test
results are more dependent on the experience of the engineers. This leads to a high cost
of trial-and-error. According to the DT model proposed in this paper, how the selection
of some key parameters and the matching of these parameters affect the electromagnetic
coupling characteristics of BTS can be calculated directly, which helps to reduce the time
and capital cost of new equipment development. Second, the influence of some parameters
on the electromagnetic coupling process was quantitatively analyzed. This is not only an
important basis for quantitative analysis of the information transmission reliability of the
BTS, but also helps manufacturers and operators adjust their strategies to obtain better
information transmission quality.

However, the entire BTS model has not yet been established. The DT model developed
in this paper cannot predict whether the telegram signal can be received properly when
the BTS is subjected to electromagnetic disturbance. If we can attain the digital twin
model of the entire BTS, it would be possible to solve the problems on electromagnetic
susceptibility and reliability of the BTS, which are very important but difficult to be
analyzed by conventional methods. The authors’ next work is to build such a system level
digital twin model.

In addition, the study in this paper ignored the situation where the balise surface was
covered by foreign objects such as rain, snow, hail, and debris, which may occur under
some severe weather conditions in reality. When these conditions occur, the uplink signal
transmission performance is bound to be lost, which cannot be evaluated by the DT model
established in this paper. These issues still need further study.
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