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Abstract: Fetal alcohol spectrum disorder (FASD) is an umbrella term for children’s conditions due
to their mother having consumed alcohol during pregnancy. These conditions can be mild to severe,
affecting the subject’s quality of life. An earlier diagnosis of FASD is crucial for an improved quality
of life of children by allowing a better inclusion in the educational system. New trends in computer-
based diagnosis to detect FASD include using Machine Learning (ML) tools to detect this syndrome.
However, most of these studies rely on children’s images that can be invasive and costly. Therefore,
this paper presents a study that focuses on evaluating an ANN to classify children with FASD
using non-invasive and more accessible data. This data used comes from a battery of tests obtained
from children, including psychometric, saccade eye movement, and diffusion tensor imaging (DTI).
We study the different configurations of ANN with dense layers being the psychometric data that
correctly perform the best with 75% of the outcome. The other models include a feature layer, and we
used it to predict FASD using every test individually. Model obtained obtained an accuracy of 88.46%
(psychometric, 74.07% (Antisaccadic), 72.24% (Prosaccadic), 88% (Memory guide saccade), and 75%
(DTI). These results suggest that the ANN approach is a competitive and efficient methodology to
detect FASD. These results are an improvement on Zhang’s 2019 model, which used the same data
with less accuracy level.

Keywords: fetal alcohol spectrum; artificial neural networks; machine learning

1. Introduction

The consumption of alcohol during pregnancy is an indisputable generator of mental
health problems in children [1,2]. Conditions that emerge from this consumption are
grouped under the concept of Fetal Alcohol Spectrum Disorder (FASD). This concept was
coined in Canada, and included effects may include physical, mental, behavioral, and
learning disabilities with possible lifelong implications diagnosis. The most common
conditions are Fetal Alcohol Syndrome (FAS), partial Fetal Alcohol Syndrome (pFAS),
and the Alcohol-Related Neuro-Developmental Disorder (ARND) [3,4]. Being FAS is
the most severe consequence of mother alcohol consumption since the infants would
have potential mental retardation. Most of the common outcomes include significant
hyperactivity, language delay, and school learning problems. There is an observed higher
rate of mental health problems in adolescence, as well as problematic use of alcohol and
other drugs.

An earlier diagnosis of these conditions could reduce the long-term health and psy-
chosocial outcome, especially cognitive difficulties, thus improving the quality of life of
young children and adolescents. In addition, people who are diagnosed with FASD report
higher unemployment, law-breaking, and other social behavior problems. These problems
result in a higher cost to the public welfare and society at large. In spite of the importance of
the diagnosis of FASD, there are currently no direct clinical characteristics that can be used
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to diagnose a child with FASD. The only distinct difference compared to other childhood
or adolescent conditions is the mother’s alcohol consumption during pregnancy [5–7]. If
there is no certainty about the mother’s alcohol consumption, some indirect effects are
associated with FAS, such as facial dysmorphia, growth deficiency, or central nervous
system abnormalities, can be used as proxy for the diagnosis. However, when none of
these effects are present, the diagnosis becomes challenging [8].

In the state of the art, we can find an increased effort to develop tools on specific behavior
and profiles to allow an early diagnosis of FASD, where these tools are failing to make a
specific diagnosis of FASD compared to other neurodevelopmental conditions [6,9]. Among
these tools, we find tools in Machine Learning (ML) [10,11] and Computer-Aided Detection
(CAD) [12,13]. However, there are tools to improve FASD detection [14]; therefore, this
paper addresses the use of ML techniques for an improved FASD diagnosis. Specifically,
this work focuses on developing computational algorithms based on ANN to classify
children with FASD. The research question is whether an ANN model could be used for
medical diagnosis. One important reason for testing ANN as a diagnostic tool is the easy
implementation and simplicity in applying existing data. This model will be evaluated
based on its performance, in terms of precision, completeness, and performance benchmark
to other machine learning techniques. This model will be evaluate the goodness of fitness
of using psychometric, saccadic eye movement, and diffusion tensor imaging (DTI) tests).
It is believed that techniques based on machines learning are a good tool for grouping
and comparing the clinical information obtained from a set of psychometric data, thus
expanding the possibility of detecting differences in FASD patients. To our knowledge, the
use of machine learning as FASD diagnostic tools has not been tested. However, there are
current studies that have been used them, such as Zhang et al. (2019) [15]. Nevertheless,
these authors have used support vector machine regression (SVMR) algorithms to analyze
psychometric data and DTI and a linear regression for the rest of the data

The rest of this paper is organized as follows. The next section presents the required
background to understand this study. Section 3 describes materials and methods are used to
carry out this study and additionally describes the experiment execution. Section 4 presents
the results obtained from the experiment. Section 5 discusses these results, and Section 6
provides the conclusions of this researchand other methods for the remaining tests.

Availability: The ANN algorithms and data used to carry out this study are available
at https://github.com/vjduarte/ANN_FASD (accessed on 1 May 2021).

2. Related Work

This section discusses two different approaches, Machine Learning (ML) and Computer-
Aided Detection (CAD), that could be used to detect fetal alcohol spectrum disorders.

2.1. Machine Learning

Machine Learning (ML) can be used to improve FASD detection [14], which are
computational algorithms designed to emulate human intelligence at learning from the
surrounding environment [10]. The areas of application in medicine are varied, such as
optical character recognition, face recognition, scientific image analysis, biological signal
analysis, and others. In the case of diagnosis, machine learning techniques that have been
used for medical diagnosis are: Pattern classification, [16], Principal Component Analysis
(PCA) [17], Support Vector Machines (SVMs) [18], Deep Learning [3,19,20], and, especially,
Artificial Neural Networks (ANN) [21–23]. The latter has become popular for its model
estimation transparency and has been used to diagnose diseases, such as cancer and even
FASD, from brain volume images [24]. In addition, tools has also been used to diagnose
diseases, such as cancer and even FASD, from brain volume image [24]. Unlike ANNs, we
can use diverse tools to find and detect patterns (e.g., clustering); however, most of tools
require that data satisfy conditions to carry out the operation successfully.

https://github.com/vjduarte/ANN_FASD
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2.2. Computer-Aided Detection

Computer-aided detection (CADe), and its related term computer-aided diagnosis
(CADx), focuses on the detection or classification of different pathologies (e.g., cancer)
based on the digital processing of images [13,25]. In the body of literature, a significant
number of studies discuss the precision to detect or classify different kinds of pathologies
or lesions [26–33]. For example, the authors in Reference [31] review several studies that
use CAD to detect breast cancer. Recently, some of these studies have used ML in CAD to
process digital images [25,30]; however, to the best of our knowledge, there are few studies
in the use of CAD to detect FASD. We next discuss a study about the application of CAD
in FASD.

The authors in Reference [34] use the Face2Gene software, which is based on the
the facial dysmorphology novel analysis (FDNA) technology, to detect FASD through
the analysis of digital images of children’s faces (5–9 years old). The authors conclude
that Face2Gene achieves 88% of precision compared to 86% by the manual method (i.e.,
processed by a medical doctor). The approach followed by the study differs from our study
because we do not use images; we process data obtained from several tasks applied to
children (e.g., Psychometric task).

3. Materials and Methods

In this section, we analyze the data available and evaluate the performance of the
ANN method and the configuration of the neural network with reasonable accuracy.

3.1. Data

The data used in this research is based on an open-access dataset collected by Zhang [15].
We use psychometric, saccadic eye movement, and DTI data from an open dataset collected
and analyzed by Zhang et al. (2019) [15] to address the research question. This dataset
contains children’s information, aged 3 to 18 years old, including subjects that are clinically
diagnosed with or without FASD. The subjects are from five different communities in
Canada. The data was obtained from a foundation (Kids Brain Health Network, formerly
called NeuroDevNet). We compared results with those models using Support Vector Ma-
chine Regression (SVMR) and other methods. The data were divided into two groups: a
control group and another that includes children who have been diagnosed with FASD.
The FASD patient data consists of different neurological condition diagnoses within the
FASD group, such as FAS, pFAS, and ARND.

Table 1 shows summary data for each of the test divided by FASD and Control. The
data used describes the performance of children in solving particular task. Psychometric
tests (NEPSY-II) [8] are tests designed regarding the psychosocial, intellectual behavior,
memory, and performance of children. Saccadic eye movements is a simple method to infer
structural or functional brain deficiencies, present in neurological disorders [35]. Ocular
behavior, such as fixation and saccades, are crucial for efficient visual perception. Diffusion
tensor image (DTI) is the only non-invasive method for characterizing the microstructural
organization of brain tissue [36]. It measures the white matter connectivity in the cor-
pus callosum in great detail with advanced diffusion magnetic resonance (MR) imaging
schemes [37].

Table 1. Data summary from all tests.

Test Number of Features (Input Data) Total Data FASD Control

Psychometric 20 129 58 71
Antisaccade task 15 174 68 106
Prosaccade task 18 186 71 115
Memory-guide saccade task 26 154 61 93
DTI 48 76 41 35
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Prenatal alcohol exposure causes brain damage with serious potential neuropsycho-
logical consequences. These potential issues in cognitive functions include difficulties in
planning, organization, and attention, consequential learning failures, and memory defi-
ciencies. Some subjects have experienced speech and/or language difficulties, visuospatial
functions, and spatial memory, that are increased by exposure to prenatal alcohol [38–40].
Those characteristics could be seen in the task and the evaluation. It is a vital diagnosis
based on the abnormalities founded and not only in the traditional facial characteristic [41].
The novelty of the Zhang’s dataset [15] is that it includes numeric and image data. We
used the psychometric tests, and it is noted that some of the characteristics present in
the test correctly differentiate individuals with FASD and Control (see Figure 1a). These
tests focuses on reading and math ability (Figure 1b). Moreover, studies have shown that
children with FASD possess memory and functional problems [42]. For that reason, this
data was chosen to make a preliminary algorithm for FASD detection in children.

(a) Math and reading ability scatter graph

(b) K-means math ability vs reading ability
Figure 1. Psychometric data analysis (characteristic math and reading ability).

This numerical data observes a deep learning operation, providing a novel approach
compared to the existing image-based FASD diagnosis. One advantage of this approach is
the data collection process is not invasive compared to the image-based data. In addition,
it does not require us to know whether the mother consumed alcohol during pregnancy.
The psychometric test measures the performance of the subject in skills as memory and
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mathematics, among others. The saccadic eye movement measures the response to a
visual stimulus. All these tests would be made at any age and are not invasive nor
expensive. Successful diagnosis could help the teacher and other education providers
ensure environmental modification in schools and teach children skills to monitor and
modify their behavior [38,39].

3.2. Data Analysis Using Machine Learning

Machine learning (ML) is a sub-discipline of artificial intelligence (AI). ML techniques
focus on developing algorithms that are capable of learning or adapting to their structure
based on observed data. This learning occurs when the optimization function adjusting
the weights by calculating the gradient of the loss function. This is also known as the cost
function, which tells us how good the model is [43]. Deep Learning within the ML methods
framework have a theoretical foundation centered on classical neural networks. Unlike
traditional neural networks, these have a group of hidden neurons and layers (H1 . . . Hm)
(Figure 2, green square) [20,44]. The input data (I1 . . . In) passes through the layers in a
non-linear combination of their outputs. Besides, it can approximate any arbitrary function
through a learning process to a set of parameters in output projected from input space
(O1 . . . Ow) [45,46]. The output of each neuron is described as a mathematical formula [47]
(see Equation (1)), where xi are the weights without apathetic which the weight xi inputs,
ϕ is the neuron activation function, and n is the number of neurons connected to the input
(Figure 2, blue square).

yi = ϕ

(
n

∑
i=0

wjixi

)
. (1)

Figure 2. ANN block diagram.

3.2.1. Neural Network Configuration Model

The first model used numerical data from the psychometric test. We have 20 numerical
variables and two categorical variables (FASD and Control). Then, the Keras library of
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TensorFlow was used in Python to implement the algorithm [48]. In addition, we designed
various models with dense layer connections, changing the number of neurons in each
input layer, hidden layer, and output layer. Besides, the network was configured the
optimization function with “Adam” and loss function “sparse categorical cross-entropy”
to compile the model. Finally, we added two neurons in the output layer for classifying
children with FASD or Control. We employed the dropout regularization, i.e., disabled
neurons in each iteration to prevent neuron dependency to each other, thus avoiding
overfitting. We added a dropout layer before each hidden layer with 20% of the neurons
disable, to improve the data correlation independence of the neural network. For more
information on the code, please refer to Appendix A.

Equation (2) shows the “Leaky ReLU” neurons activation function. This function im-
prove the performance of the Rectified Lineal Unit (ReLU), widely used in ANN estimation.
In this case, the psychometric data are not in the same range; some are between 1–10, and
others of 70–100, and have 58 registers of children with FASD.

f (x) =


x i f x > 0

0.01x otherwise
. (2)

Our approach introduces the use of an ANN as improved technique for FASD diagno-
sis without the need of images. This ANN would require that the prediction model should
have a improved performance compared to previous techniques without overfitting. To do
this, we made variations in the number of hidden layers and neurons per layer to improve
the model’s prediction and performance. We employed K-fold cross-validation [49] as
criteria to choose each model and estimate their potential performance. The data used was
split randomly into K-folds (K = 10) for each configuration of the net. We used nine folds
for training and one for testing, repeating the process K times with different folds per time
(group of data). The latter was used to validate the results of the K-fold cross-validation to
estimate the best configuration of the network.

Table 2 shows layered network neuron configurations. The results are the average
accuracy of ten evaluations, calculating the standard deviation, and average loss. We made
a variation in each model in terms of the number of hidden layers and the number of
neurons. Later, for each of the combinations, the accuracy was measured and compared by
the accuracy metric and loss function. The loss function is the sum of errors made for each
example in testing.

Our initial models showed a performance between 55% to 75.55%. Therefore, the
cross-validation results was analyzed to shed light of each configuration’s performance.
Combining 25 neurons in the input layer (IL) and only one hidden layer (HL) with 15 neu-
rons (0.92) or 20 neurons (0.98) presents the lower values average of loss, meaning how
well a model behaves after each iteration of optimization compares with others. Then, we
evaluated the accuracy metric to measure the model’s performance. The combination of
25 (IL), 20 (HL) performed 77.37% average with the best performance confidence level of
66.28% to 88.46%. Due to its performance, this mode was selected to be used in the data
analysis. We validated this model using same data to obtain the best performance, and it
was possible to obtain a 75.55% accuracy compared to the real data.
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Table 2. Network configuration for performance evaluation with psychometric data.

Number of Neurons Accuracy K-Fold Cross-Validation

IL a 1 HL a 2 HL a PT b PV b Avg (Accuracy) Avg (Loss)

20 15 - 80.72% 57.00% 71.22% (+– 11.23) 1.07
25 15 - 80.72% 55.00% 72.69% (+– 12.22) 0.92
25 20 - 90.24% 75.55% 77.37% (+– 11.09) 0.98
25 30 - 85.00% 65.63% 69.87% (+– 9.19) 1.68
25 20 15 88.00% 65.63% 72.82% (+– 10.01) 1.09
50 15 - 93.98% 60.00% 66.54% (+– 14.99) 1.97

100 50 25 91.00% 55.00% 73.65% (+– 10.39) 2.21
200 15 - 97.59% 64.00% 69.04% (+– 11.29) 1.79
200 50 50 97.00% 64.00% 69.74% (+– 8.79) 2.78

a (IL) Input Layer. (HL) Hidden Layer. b (PT) Accuracy in training. (PV) Accuracy in test (unobserved data).

3.2.2. Enhanced Neural Network Model

We changed the parameters to enhance the model, since the initial configuration only
included psychometric. We reduced the number of training periods (number of epoch),
loss function type, and batch size. We changed the model by using BinaryCrossentropy
loss function, activation function ReLU, and Sigmoid and dropout of 10% between layers.
The latter is a Dense feature layer with numerical columns to extract information from the
input data. This feature layer allows the network to learn directly from those characteristics
and propagate the features extracted from all the other layers [50]. The neural network
architecture involves one input layer with the number of exploratory variables to be entered
into the model, at least one hidden layer with 64 or 256 neurons per layer, and an output
layer with only one neuron for binary classification (0 Control and 1 FASD).

Our initial estimation used a simple approach of splitting the data into three chunks:
train, validation, and test sets. However, this technique does not allow us to evaluate the
performance thoroughly, especially when the amount of data is not enough (roughly less
than 100). We used a K-fold cross-validation technique with K = 10 to corroborate the
model’s performance on data not used during training (Table 3). First, we improved the
psychometric-based model by including a training period of 50 epochs with four hidden
layers with 64 and 128 neurons per layer and a batch size of 32 (see Appendix A). Following
this enhancement, we created a new model based on eye movement tests, including data
regarding sex and age, to analyze the influence of these characteristics on the likelihood to
predict FASD.

We used the same model configuration and replaced the data with the antisaccades
and memory-guided saccadic tests. In the prosaccade test data, the model was trained using
100 epochs with only two hidden layers with 64 and 128 neurons. All the models mentioned
before used the activation function rectified linear unit (ReLU) and Sigmoid [51]. DTI was
a particular case because we do not have enough data. Therefore, we used two hidden
layers with 128 neurons, activation function Leaky ReLu, and training for 200 epochs, in
this particular case, and a batch size of 16.
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Table 3. K-fold cross-validation of models.

Te
st K-Fold Cross-Validation

Method 1 2 3 4 5 6 7 8 9 10 Avg

Ps
yc

ho Accuracy (%) 76.92 84.61 84.61 84.62 61.53 76.92 69.23 69.23 69.23 75 75.19%
Loss 0.56 0.42 0.45 0.50 1.29 0.47 0.76 0.61 0.58 0.36 0.60
MAE 0.23 0.15 0.15 0.15 0.38 0.23 0.31 0.31 0.31 0.25 0.24

A
nt

is
ac

c Accuracy (%) 88.89 55.56 77.78 70.59 64.71 70.59 47.06 70.59 70.47 52.94 61.51%
Loss 0.40 0.86 0.46 0.72 0.69 0.70 0.73 0.51 0.64 0.70 0.64
MAE 0.11 0.44 0.22 0.29 0.35 0.29 0.53 0.29 0.24 0.47 0.32

Pr
os

ac
c Accuracy (%) 47.37 57.89 63.16 63.16 63.68 68.42 72.22 72.22 66.67 72.22 65.70%

Loss 0.70 1.30 0.66 1.59 0.63 0.60 0.58 0.59 0.66 0.60 0.79
MAE 0.53 0.42 0.37 0.37 0.26 0.32 0.28 0.28 0.33 0.28 0.34

M
G

-s
ac

c Accuracy (%) 68.75 56.25 68.75 81.25 66.67 73.33 60.00 66.67 26.67 53.33 62.16%
Loss 0.78 0.62 0.53 0.61 0.77 0.63 0.66 0.65 0.89 0.69 0.68
MAE 0.31 0.44 0.31 0.19 0.33 0.27 0.4 0.33 0.73 0.47 0.38

D
T

I Accuracy (%) 56.25 53.33 66.67 80.00 60.00 63.25%
Loss 0.80 0.67 0.55 0.82 0.77 0.72
MAE 0.44 0.47 0.33 0.2 0.4 0.36

The model’s prediction power depends on the data using for training and testing.
Therefore, we shuffle the dataset once splitting the dataset into K folds to avoid any issues
with the learning process. Exploratory analysis shows that the data is imbalanced in prosac-
cades, antisaccades, and memory-guided saccades. This issue may lead to unexpected
mistakes and severe consequences in the data analysis, primarily to predict children with
FASD. The skewed distribution of FASD and control may force the models described above
to obtain biased outcomes, especially in this case of the control. This issue would delay
the best treatment selection for children with FASD. Whether or not the subject constitutes
the minority class, the algorithm classifies the children as healthy. To overcome this issue,
we balanced the data by dismissing some control data observations, resulting in a more
balanced dataset.

Table 3 shows model’s loss, accuracy, and Mean Absolute Error (MAE) for bench-
marking comparison. The average MAE in all the models is below 0.4, which indicates the
generalization capacity and that the model avoided the overfitting. The models perform
better with less epochs than the first model; a possible justification is using the batch size
and feature dense layer. Almost all accuracy levels are over 50%, and the value of the losses
are below one on average. After the analysis, we used the model’s weight to show better
performance in that fold for further analysis.

4. Results

This research evaluated the performance of a ANN-based classification algorithm
to detect FASD in children using the result of psychometric, DTI, and saccade tests and
comparing the accuracy of the model with the SVMR developed in Reference [15]. The
cross-validation process showed that the psychometric data model outperformed the rest.
After this process, we saved the best model weight for each of the different data, and then
we estimated the accuracy with all the data available. Table 4 shows the the accuracy level
for each of the data type and its comparison to results obtained by Zhang’s model.
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Table 4. Accuracy model performance comparison.

Test ANN Accuracy Zhang’s Model Accuracy Difference

Psychometric 88.46 78.26 10.2
Antisaccade 74.07 65 9.07
Prosaccade 72.24 61 11.24
Memory-guided saccade 88.0 55 33
DTI 75 67.39 7.61

In the next subsection, the results of each (Psycometric, Antisaccad, Prosaccade, and
DTI) of the tests are shown and discussed.

4.1. Psychometric Data Classification

The data used for testing included psychometric tests (20 input features), associated
with analyzing social behavior, memory activities, language delay, and all altered behav-
ioral factors in FASD children. In addition, the dataset included other developmental
diseases, making the classification process more difficult. This paper used two models of
dense networks using this type of data. The first model archived an accuracy of 75.55%.
However, the model did not show significant improvements, despite the variation in the
layers and neurons in the layers. In the second model, a feature layer was added, achieving
an accuracy of 88.46%.

Once the network configuration was chosen, training and testing or validation behav-
ior are shown in the model precision and loss functions. The loss function with a high
result indicates that the neural network has a poor performance and a low result, and that
it is doing a good job. Figure 3a shows the accuracy for each of the dataset. In terms of the
number of that were aspects found and related to the number of individuals evaluated. We
attempted to find a model with no significant difference between the labeled data and the
prediction. Nonetheless, with the implemented configuration, the training data increased
accuracy. In addition, the validation data also increased in accuracy.

Figure 3a shows the loss function on the psychometric data. In this case, the loss func-
tion has a decreasing curve in both training and testing. This result suggests that the net-
work may have issues classifying some data not used during training but not significantly.

(a) Accuracy (b) Loss
Figure 3. Precision and Loss using feature dense layer on psychometric data.

The confusion matrix (Figure 4) shows the performance of the model with test data.
The model has a good performance in classifying children with FASD since the correctness
is 38.46% over 42.31% in positive hits (FASD having FASD), representing 90.9%, and it has
7.69% over 42.31% false positives (a control having FASD). It should be noted that the total
percentage of children diagnosed with FASD is 42.31%. The model allows classifying FASD
in most cases. In classifying control patients, the model classifies 51.0% over 57.69% of
control patients who are really in control (86.67% of the cases control). And it fails in 3.85%
to classify patients with FASD as controls (13.32% mistake of cases control).
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FASD Control

FASD

Control

90.9%

9.09%

42.31%

13.32%

86.67%

57.69%

46.15%

53.85%

Figure 4. Classification confusion matrix using psychometric test.

4.2. Antisaccade Data Classification

The results from the Antisaccade tasks correspond to measurements of successes be-
tween the number of tests achieved by each individual, where the failures in the automatic
saccade inhibition with a peripheral objective are measured. In this case, initially, there
were 173 records, but we evaluated the model with 136 records. The characteristics of the
Antisaccadic test are: 15 include correct and wrong trails, number of express saccades, the
interval between the target appearance, and saccade onset, velocity, amplitude, angle, and
other measurements derived from those.

The confusion matrix (Figure 5) results show a high rate of prediction of classifying
FASD compared to the amount of data evaluated (100%). However, some of the classifica-
tion characteristics tend to confuse control children with the possibility of having FASD.
These results make it necessary to evaluate the degree of FASD these children have and the
reason for this classification (33.33% subject control were classified FASD).

FASD Control

FASD

Control

100%

0.0%

22.22%

33.33%

66.66%

77.78%

48.15%

51.85%

Figure 5. Classification confusion matrix using Antisaccade task.

4.3. Prosaccade Task Data Classification

Prosaccade tests measure reaction time, performance accuracy, viability, and parame-
ters which corresponding to the main sequence. In this particular case, 18 characteristics
were measured in the study, and the data collected is similar to the antisaccades test but in-
clude duration, deceleration, acceleration, and skew. For the classification of FASD patients
with these data from the 186 records, only 38% correspond to patients were diagnosed with
FASD. This study achieved an accuracy of 72.41%.

The confusion matrix (Figure 6) for this case shows that the model predicts FASD
patients well, but only in 50% of the cases control patients being controls. This confusion
matrix allows us to observe that we just need to make some adjustments to improve the
exactness to predict control patients or verify the data. We should better understand the
present differentiating characteristics from control patients to adequately identified during
training reflected in the test data.
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FASD Control

FASD

Control

88.22%

11.77%

58.62%

50%

50%

41.38%

72.41%

27.59%

Figure 6. Classification confusion matrix using Prosaccade task.

4.4. Memory-Guided Saccade Task Classification Results

These tasks are related to following the objective order. When there are errors, the
subject cannot follow the order that initiates the saccade by the second objective more than
on the first. In these tasks, 26 characteristics are measured: correct trial, times between
movement and reactions, errors, distance, speed, and others [15]. We took 61 records by
classification, achieving 88% in test data, one of the highest in the study.

The confusion matrix (Figure 7) for this model shows a balanced measurement of
FASD and control patients greater than 80% per case. And, in the case of FASD, very few
mistakes. It is important to note that the studies that achieved the best results have an
element of the individual’s memory. This result makes us think that we must pay more
attention to this type of test, including memory issues.

FASD Control

FASD

Control

81.81%

18.18%

44.0%

7.14%

92.85%

56.0%

40.0%

60.0%

Figure 7. Classification confusion matrix using Memory-guide saccadic task.

4.5. Diffusion Tensor Imaging (DTI) Data Classification Results

This study measures the connectivity of the white matter in the corpus callosum. It
comes from a structural MRI, so it does not involve tests. This study has 76.54% records
classified as FASD and 46% control. Having little data means that this study did not achieve
a good accuracy (less than 50%). The Leaky-ReLU function was added in the intermediate
layers for improvement, managing to rise to 75% in a combination of 4 hidden layers of 64
and 128 neurons, a feature layer, and the training time was 100 epochs compared to the
other models with 50 epochs training.

The confusion matrix (Figure 8) shows that the percentage of failures to classify FASD
and control is the same. And, concerning the percentage of samples of each type, we
observed a good performance.
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Figure 8. Classification confusion matrix using DTI.

5. Discussion

This paper evaluated the usage of computational algorithms based on ANN to clas-
sify children with FASD for an improved medical diagnosis. This paper estimated the
prediction model using numerical psychometric data, DTI, and saccadic eye movement.
Unlike most of the current research that implements ML using image-based data to pre-
dict FASD, the novelty of this paper is that it uses numerical data to estimate the model.
Although Zhang et al. (2019) [15] collected and used the same data, our results show a
better performance using ANN instead of SVMR or other methods.

First, for psychometric data, a basic network configuration was obtained with cor-
rectness with test data of 75.5% with a Leaky-ReLU activation function, which did not
require data normalization. Subsequently, a change was made in the configuration of the
networks adding a feature layer. This layer allows identifying the essential characteristics
for FASD diagnosis. This feature significantly contributes to the classification, achieving
88% accuracy. It also produced the better results using the K-Fold Cross validation (K = 10)
and K-Fold Cross-Validation (K = 5), suggesting that this should be the direction for im-
proving FASD diagnosis using ANN. For the rest of the data, a network configuration
with a feature layer was used to evaluate the neural network model performance. Using
numerical origin (Saccade, Prosaccade, and DTI) data related to FASD, models achieved an
accuracy greater than 70%. Despite this higher rate obtained by all of these configurations,
it is not yet considered to be a safe prediction for a medical diagnoses.

The confusion matrices obtained demonstrate that the model predicts at least 71% of
patients diagnosed with FASD, from the around 50% that this group represents. However,
the prediction of control patients has over 77% of patients who have not been diagnosed
with FASD (except Prosaccadic task). These matrices suggest that the model must be
recalibrated or overlearned from the data of patients with FASD, or else some control
patients may have FASD but have not been diagnosed. These results are not completely
demonstrated; thus, the use of ANN as a diagnostic tool must be improved before its use
can be suggested.

Results show that the estimated models present a better performance in all cases com-
pared to the results obtained by Zhang’s research. Overall, the use of ANN outperformed
by 14.22% (S.D. 10.58) the results obtained by Zhang’s model. Unlike the model obtained
by Zhang, all the characteristics obtained from each study are included in the estimated
model. This is a distinctive feature since Zhang removed some characteristics due to their
view that they did not improve the prediction’s performance. Therefore, our results show
that the model indeed improved by including data from sex and age. In addition, we
used a feature layer that allows the algorithm to distinguish those characteristics, which
contributes to improving pathology’s prediction. In addition, the estimated model shows
that, by eliminating sex and age from the studies, the prediction decreased dramatically.
Zhang used these variable to normalize the data in Saccade, Antisaccade, and MGsaccade,
to increase model’s accuracy from an average of 60% to 70%. The latter is a key feature,
since our estimated model uses raw data, keeping the estimation process simple.

Zhang’s model utilized methods, especially SVMR, which require fewer parameters
to optimize its performance, reducing the possibility of over-tuning training data, and
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increasing actual performance. According to the training data results, unlike ANN, the
study of different configurations can change its operation and performance in general. The
increase in data allows ANN to improve its performance, without changing parameters.
Nevertheless, a new training improves the ANN model accuracy, unlike in the case of
SVMR. However, SVMR is faster and more stable than other ANNs. Therefore, implement-
ing an ML model depends on the change in data or other characteristics rather than on the
accuracy of each one.

One caveat is the occurrence of the false-positive, which is to diagnose a person with
FASD that does not have it, since the data between FASD and control patients can be
similar. It is essential to mention that some patients are not correctly diagnosed with
FASD or have some cognitive problems similar to FASD, which can also lead to many
false negatives. This result is because collecting data on alcohol consumption during
pregnancy is not accessible. Nevertheless, it requires the mother’s declaration about the
consumption. Likewise, over time, the early samples of FASD decrease and are dependent
on the time of alcohol exposure. Furthermore, the phase of gestation during which the
ingestion occurred and the amount of it. Some patients who present neuropsychological
and developmental deficits (between groups diagnosed with FASD and other pathology)
do not show significant differences, disabilities, nor behavioral problems. Therefore, the
diagnosis of FASD cannot be made lightly and should be considered aside other results,
such as magnetic resonance imaging and eye movement, among others.

Future work should be done on using these types of ANN to predict other deceases or
conditions that have cognitive development issues, such as Autism or ADHD. For instance,
some cases of autism are classified by FASD; therefore, the treatment is not the correct.
The introduction of the ANN would allow to a better diagnosis, thus improving their
quality of life. The data is currently limited and the testing process is in early stages. To
our knowledge, there are no studies that have gone in this direction.

6. Conclusions

There is currently an underestimation of people with FASD. This syndrome affects a
significant percentage of the world population. However, its diagnosis requires a certain
consumption during embryonic development. It could be undiagnosed in the control
population due to the clinical similarities with other neuro-development diseases. This
issue is a critical factor for developing a new technique for FASD diagnosis since image-
based Artificial Neural Networks (ANNs) and Computer-Aided Detection tools (CADs)
studies are invasive and cannot be repeated. For this reason, the use of numerical data
from non-invasive tests can be an excellent alternative to diagnose FASD. This paper
developed ANN algorithms to determine FASD likelihood in children using numerical
psychometric, DTI, and Saccadic eye movement data on children/young people diagnosed
with FASD. It is essential to mention that the best results were obtained using psychometric
data. It is crucial to carry out a more in-depth study of this test and even incorporate data
from children with a neuro-behavioral disorder that helps to classify better and identify
some syndromes.

In conclusion, we suggest that ANN algorithms improve their performance with
a suitable network configuration by increasing the number of neurons, hidden layers,
changing optimization functions, adding a feature layer, and the activation algorithm used
to incorporate new data into training. The combination with other data groups even allows
us to increase its performance, indicating that ANNs can be a good alternative to detect
FASD. This paper evaluated the usage of computational algorithms based on ANN to
classify children with FASD for an improved medical diagnosis. As a result, this paper
estimated the prediction model using numerical psychometric data, DTI, and saccadic eye
movement. Although other studies, like Zhang et al. (2019) [15], collect and use the same
data, our results show a better performance using ANN instead of SVMR or other methods.
However, a deeper study of the different network configurations must be undertaken to
improve performance.
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Appendix A. Appendices

Appendix A.1. ANN Used in This Study

optimizer=Adam( )
l o s s _ f u n c t i o n = s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y
num_classes=2
no_epoch=1000
v e r b o s i t y = 0

#ANN model
model = Sequent ia l ( )
model . add ( Dense ( 2 0 0 , a c t i v a t i o n =LeakyReLU ( alpha = 0 . 2 ) ,

input_shape = [ 2 0 ] ) )
model . add ( Dropout ( 0 . 2 ) )
model . add ( Dense ( 1 5 , a c t i v a t i o n =LeakyReLU ( alpha = 0 . 2 ) ) )
model . add ( Dropout ( 0 . 2 ) )
model . add ( Dense ( num_classes , a c t i v a t i o n = t f . nn . softmax ) )
# compile the model
model . compile ( opt imizer=optimizer ,

l o s s = l o s s _ f u n c t i o n ,
metr i cs =[ ’ accuracy ’ ] )

# F i t data to model
X_tra in=X . i l o c [ t r a i n , : ]
y _ t r a i n =y . i l o c [ t r a i n ]
h i s t o r y = model . f i t ( X_train , y_tra in , epochs=no_epoch ,

verbose=v e r b o s i t y )
# generate g e n e r a l i z a t i o n metr ics
X _ t e s t = X . i l o c [ t e s t , : ]
y _ t e s t = y . i l o c [ t e s t ]
s c o r e s =model . evaluate ( X_test , y_ tes t , verbose =0)
p r e d i c t =model . p r e d i c t ( X_ te s t )
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Listing A2. Model Configuration with a Feature Layer.
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Appendix A.2. Model Configuration with a Feature Layer

f o r header in [ ’ f1 ’ , ’ f2 ’ , ’ f3 ’ , ’ f4 ’ , ’ f5 ’ , ’ f6 ’ , ’ f7 ’ , ’ f8 ’ , ’ f9 ’ , ’ f10 ’ , ’ f11 ’ ,
’ f12 ’ , ’ f13 ’ , ’ f14 ’ , ’ f15 ’ , ’ f16 ’ , ’ f17 ’ , ’ f18 ’ , ’ f19 ’ , ’ f20 ’ ] :

feature_columns . append ( feature_column . numeric_column ( header ) )

f e a t u r e _ l a y e r = t f . keras . l a y e r s . DenseFeatures ( feature_columns )

b a t c h _ s i z e = 18
t r a i n _ d s = d f _ t o _ d a t a s e t ( t r a i n , b a t c h _ s i z e=b a t c h _ s i z e )
val_ds = d f _ t o _ d a t a s e t ( val , s h u f f l e =False , b a t c h _ s i z e=b a t c h _ s i z e )
t e s t _ d s = d f _ t o _ d a t a s e t ( t e s t , s h u f f l e =False , b a t c h _ s i z e=b a t c h _ s i z e )
t r a i n _ d s

model = t f . keras . Sequent ia l ( [
f e a t u r e _ l a y e r ,
l a y e r s . Dense ( 6 4 , a c t i v a t i o n = ’ relu ’ ) ,
l a y e r s . Dropout ( . 1 ) ,
l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ sigmoid ’ ) ,
l a y e r s . Dropout ( . 1 ) ,
l a y e r s . Dense ( 6 4 , a c t i v a t i o n = ’ sigmoid ’ ) ,
l a y e r s . Dropout ( . 1 ) ,
l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ relu ’ ) ,
l a y e r s . Dropout ( . 1 ) ,
l a y e r s . Dense ( 1 )

] )

model . compile ( opt imizer = ’adam ’ ,
l o s s = t f . keras . l o s s e s . BinaryCrossentropy ( f r om _ l og i t s=True ) ,
metr i cs =[ ’ accuracy ’ ] )

h i s t o r y =model . f i t ( t ra in_ds , v a l i d a t i o n _ d a t a=val_ds , epochs =50)

loss , accuracy = model . eva luate ( t e s t _ d s )
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