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Abstract: In this work, a novel LAMDA (Learning Algorithm for Multivariable Data Analysis) control
strategy for trajectory tracking for an aerial manipulator is presented. Four control strategies are
developed: Kinematic, Inverse Dynamics, Sliding Mode (SMC), and LAMDA. These are compared
with each other in order to verify their performance to fulfill the control objective. Experimental tests
were also carried out to validate the developed controllers. In addition, a study of stability has been
also performed for all the controllers. The results obtained by the LAMDA controller demonstrated
the good performance of the controller in the aerial manipulator robot. To the best of our knowledge,
this is the first time a LAMDA controller has been applied to an aerial robotic manipulator.

Keywords: aerial manipulator; inverse dynamics; kinematic; LAMDA; trajectory tracking; SMC;
fuzzy; multivariable

1. Introduction

At present, the characteristics of the aerial manipulator have been used in multiple
applications, because the mobility of the hexacopter and the maneuverability of the robotic
arm make it very useful [1–3]. The first works are oriented to the development of ap-
plications considering only the kinematics of the aerial manipulator, i.e., coriolis forces,
mass inertia, etc., are not considered. In this context, several research studies on aerial
manipulators have been presented, for example, an algorithm for the control of a contact
inspection for an unmanned aerial vehicle (UAV) manipulator [4], or a trajectory-tracking
control algorithm for the parallel aerial manipulator based on the Stewart platform [5].
Guayasamín et al. [6] designed a trajectory tracking control based on the Lyapunov and
Sliding Mode Control (SMC) theory applied to a Kinematic model. In the same line,
predictive control for trajectory tracking has been included for a two-armed aerial ma-
nipulator [7]. In the work of Yarai et al. [8], the dynamics of the robotic arm is taken as
an external perturbation and a decoupling controller is proposed to guarantee that the
dynamics produced by the robotic arm to the quadrotor (and vice versa) are not part of
the quadrotor dynamics. Wang et al. [9] designed a Sliding Mode controller to track the
trajectory of the spatial manipulator, and a linear quadratic regulator (LQR) controller
of the subsystem was designed to suppress the vibration of the flexible components. A
null-space-based controller has been defined for a group of aerial manipulators [10].

The previous studies only contemplate the kinematics of the aerial manipulator. How-
ever, in real applications, it is necessary to consider the mass, inertia, friction forces,
perturbations, etc. These characteristics require other types of controllers to compensate
the dynamics of the system. Thus, several works have been developed to solve this prob-
lem, like the work of Gkountas and Tzes [11] who presented the modeling and control of
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unmanned aerial manipulators (UAM) in a leader–follower configuration that performed a
cooperative manipulation task taking into account the dynamics of the system. In the study
of Morton et al. [12] the dynamics were compensated with an inverse dynamics controller
for trajectory tracking.

Different control algorithms have been developed to improve the performance of aerial
manipulators robots. For example, a controller based on neural networks was implemented
for trajectory tracking with the dynamic model [13]. In the same context, a controller
based on null space to coordinate a group of robots was presented in [14]. An adaptive
position control was implemented by Liu and Huang [15] aimed at compensating for
certain perturbations in the modeling of the aerial manipulator, whereas a feedback control
strategy was presented by Naldi et al. [16] allowing both the position and orientation of
the end-effector to follow a desired trajectory considering the manipulator dynamics. The
abovementioned research considers the control of an aerial manipulator from the point
of view of its dynamics. In order to carry this out, the search for new controllers that
can include the dynamics of aerial manipulators robots, meet the control objectives, and
improve the performance of the task is vital for researchers.

Artificial intelligence (AI) approaches help to improve the behavior of the controllers.
Among others, the fuzzy logic allows obtaining good results when the plant model is
inaccurate or is not known in detail, which usually arises in the field of robotics. One of
these methods is LAMDA (Learning Algorithm for Multivariable Data Analysis), which
has been designed originally for classification and clustering tasks [17–20]. For example, a
LAMDA fuzzy classification technique has been implemented to interpret the behavior
of a drinking water treatment plant [21]. Recently, the use of the LAMDA features (in
the detection of functional states of systems) has been proposed to make it work as a
controller. For example, a class-based LAMDA controller was proposed and validated in
the regulation of humidity and temperature of a complex Heating, Ventilation, and Air-
Conditioning (HVAC) system in [22], obtaining excellent performance when considering
that the mathematical model of the plant was variable or inexact. In [23], an adaptive
LAMDA has been proposed and formalized for the control and modeling of systems,
modifying the LAMDA structure with the addition of layers operating similar to neural
networks, but with the advantage of having a fixed number of layers whose calibration
is not trivial. This controller has proven to be adequate where the system dynamics are
uncertain and complex. Finally, previous work [24] focuses on the formalization of a
LAMDA algorithm for control based on the fundamentals of the Lyapunov theory and the
Sliding-Mode Control (SMC), to guarantee stability and robustness of the overall system.
The method is called LAMDA-SMC (LSMC) and takes advantage of LAMDA features to
design a chattering-free controller. LSMC has been tested in the field of control of chemical
processes, demonstrating that it is stable in the control of systems with model uncertainties
and under disturbances. The results obtained by this LAMDA controller have been good
in non-robotic aerial applications.

• The originality of this article lies in the validation of the robust LAMDA controller in
aerial robotic systems whose dynamics are partially known or inaccurate. The main
features of the proposed method are the following:

• The controller is based on concepts derived from LAMDA theory: Classes or functional
states have a number of fixed layers (intrinsic feature). Therefore, the design is more
straightforward than methods where the number of internal layers must be calibrated.

• The proposed controller uses the class criteria, which allows a quick convergence
on the desired output without requiring a learning method that increases computa-
tional time.

• The design of a controller where the continuous and discontinuous control actions of
SMC schemes are computed using the LAMDA method.

• A comparative analysis between the LAMDA method that does not use the aerial
manipulator robot model is carried out with other well-known controller, which
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depend on model. Thus, obtaining a good performance of the controller without
considering of the dynamics system.

Based on the abovementioned features, the contribution of this article is the design of
an intelligent controller based on the LAMDA fuzzy algorithm for the trajectory tracking of
an aerial manipulator robot and validating the approach in this field of study. Four control
algorithms will be designed: (i) Kinematic, (ii) Inverse Dynamics, (iii) SMC Sliding Mode,
and (iv) LAMDA. Finally, experimental tests will be carried out for the four controllers
on a real aerial manipulator robot with three degrees of freedom for trajectory-tracking
purposes.

The paper is organized as follows: Section 2 presents the kinematic and dynamic
robot model, whereas Section 3 describes the design of the four controllers as well as their
stability. Experimental tests and analysis of the results are given in Section 4. Finally,
discussion and main conclusions are presented in Section 5.

2. Aerial Manipulator Robot Model

The aerial manipulator robot consists of a robotic arm on a hexacopter. These robots
can perform the most common missions of robotic systems that require both navigation
and manipulation capabilities. In the current work, an aerial manipulator robot consisting
of a hexacopter and a robotic arm is considered.

2.1. Kinematic Model

The aerial manipulator robot consists of a robotic arm located on hexacopter, as shown
in Figure 1. In the configuration of the aerial manipulator robot the position and orientation
of all its points with respect to an inertial reference system R(X ,Y ,Z) is known. The
configuration of the aerial manipulator robot is defined by a vector q(t) of n independent
coordinates, which are called the generalized coordinates of the aerial manipulator robot,
defined as q(t) =

[
qa qQ

]
where qa are the velocities of hexacopter, and qQ are velocities of

the robotic arm. The configuration of q(t) is an element of the configuration space of the
aerial manipulator robot represented by N . The position of the aerial manipulator robot
end-effector ξ(t) = [ξ1 ξ2 . . . ξm] is defined by an m-dimensional vector representing the
orientation and position of the robot’s point of interest with respect to {R}. The position of
the end-effector with respect to {R} defines the operating space of the aerial manipulator
robot, denoted byM.
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Figure 1. Aerial manipulator robot schematic.

The direct kinematics of the aerial manipulator robot defines the position and orienta-
tion of the end-effector ξ(t) as a function of the configuration of the robotic arm and the
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hexacopter (or its operational coordinates as functions of the generalized coordinates of
the robotic arm and the operational coordinates of the hexacopter).

f : NaxNQ →M (1)(
qa(t), qQ(t)

)
→ ξ(t) = f

(
qa, qQ

)
(2)

The kinematic model of the aerial manipulator robot sets the derivative of the end-
effector position as a function of the derivative of the configuration of the robotic arm and
the hexacopter (or their operational velocities as functions of their generalized velocities).

.
ξ(t) =

∂
(
qa, qQ

)
∂q

µ(t) (3)

where
.
ξ(t) = [

.
ξ1

.
ξ2 . . .

.
ξm] ∈ Rm represents the velocity vector of the end-effector with

respect to the inertial reference system {R}. Let µ(t) =
[ .
qa

.
u
]

be the maneuverability
vector of the aerial manipulator robot. Considering J(q) = ∂ f

∂q T(q) in the previous equation,
one has: .

ξ(t) = J(q)µ(t) (4)

where the Jacobian matrix J
(
qq, qQ

)
defines the linear mapping between the aerial manip-

ulator robot maneuverability vector µ(t) and the end-effector velocity vector
.
ξ(t). T(q)

is the transformation matrix relating the velocities of
.
q(t) and the velocities of the aerial

manipulator robot µ(t), in such a way that:
.
q(t) = T(q)µ(t).

It is essential to emphasize that the dimension of the operational space m is smaller
than the aerial manipulator robot degree of freedom n (m < n. ), so the aerial manipulator
robot is called a redundant system.

2.2. Dynamic Model

The dynamics of a system, as reviewed in the literature, is an important contribution
in the implementation of control algorithms. Therefore, in this section, we present the
dynamics of the aerial manipulator robot, by applying the Euler–Lagrange analysis, where

L = Ec − Ep (5)

where L is the Lagrangean, Ec is the kinetic energy, and Ep is the potential energy, and
where Ec y Ep are functions of the masses of the links of robotic arm, mass of the hexacopter,
lengths and dimensions, angular positions, and velocities of the aerial manipulator robot.
It is known that the Lagrange equation is given by:

f =
d
dt

(
dL

d
.
q(t)

)
− dL

dq(t)
(6)

By developing Equation (6), we obtain f , representing the equation of the dynamics
of the aerial manipulator robot, shown in Equation (7).

f = M(q(t))
..
q(t) + C

(
q(t),

.
q(t)

) .
q(t) + G(q(t)) (7)

M(q(t)) is the inertia matrix; C
(
q(t),

.
q(t)

)
is the matrix of centrifugal and centripetal

forces; G(q(t)) is the gravity vector; and q(t) is a generalized coordinate of the aerial
manipulator robot. Finally, Equation (7) can be expressed as a function of the velocity
vector µ(t) and we can obtain the reference velocity equation µre f (t) representing the
dynamic model of the aerial manipulator robot, defined as:

µre f (t) = M(q(t))
.
µ(t) + C

(
q(t),

.
q(t)

)
µ(t) + G(q(t)) (8)
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3. Proposed Controllers

The problem of motion control of the aerial manipulator robot is solved with the
control scheme proposed in Figure 2, which solves the problem of trajectory tracking
control in an autonomous way.
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Two cascaded subsystems are considered for the controller design:
Kinematic control: A minimum-norm control with saturation at maneuverability

velocities is considered, for which ξd(t) and
.
ξd(t) describe the desired position and velocity,

respectively, of the operating end of the aerial manipulator robot. The control error is
defined by ξ̃(t) = ξd(t)− ξ(t). Therefore, the control target is defined as

lim
t→∞

ξ̃(t) = 0 ∈ Rm (9)

Dynamic Compensation: The main objective is to compensate the dynamics of the
aerial manipulator robot, thus reducing the velocity tracking error. For this purpose, this
work considers the implementation of four control techniques: (i) Kinematic, (ii) Inverse
Dynamics; (iii) SMC Sliding Mode; and (iv) LAMDA, in order to evaluate the behavior of
the controllers. The implemented controllers receive the desired maneuverability velocities
µc(t) as inputs calculated by the kinematic controller and generates velocity references
µre f (t) or the motion control of the aerial manipulator robot. The velocity control error is
defined as µ̃(t) = µc(t)− µ(t). Therefore, the control objective is to ensure that,

lim
t→∞

µ̃(t) = 0 ∈ Rn (10)

3.1. Kinematic Controller

The kinematic controller receives the desired position and velocity of the aerial ma-
nipulator robot end-effector ξd(t) ∈ Rm and

.
ξd(t) ∈ Rm, respectively, and generates the

maneuverability velocities of the aerial manipulator µre f (t) ∈ Rn. In other words, the de-

sired operational motion of the robot is an application of
(

ξd(t)
∣∣∣t ∈ [t0, t f

])
. Therefore, the

motion control problem is to determine the maneuverability vector
(

µre f (t)
∣∣∣t ∈ [t0, t f

])
to achieve the desired operational motion of the robot. The corresponding evolution of the
entire aerial manipulator robot is given by the generalized coordinate vector of the aerial
manipulator robot

(
q(t)

∣∣∣t ∈ [t0, t f

])
.

The proposed controller is based on a minimum norm solution, which means that, at
any given time, the aerial manipulator robot will achieve its navigation and manipulation
goals with as few movements as possible. In addition, the redundancy of the aerial
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manipulator robot is used to achieve secondary control objectives, i.e., the control of the
internal configuration of the robotic arm. Therefore, the following control law is proposed,

µc(t) = J(q(t))#
(

ξ−1
d (t) + Wtanh

(
ξ̃(t)

))
+
(

Inxn − J(q(t))# J(q(t))
)

µ0(t) (11)

where J(q(t))# = J(q(t))T
(

J(q(t))J(q(t))T
)−1
∈ Rnxm represents the pseudoinverse ma-

trix; W ∈ Rnxm is a positive diagonal matrix weighing the control errors ξ̃(t). In the
proposed control law (11), the first term on the right describes the main task of the end-
effector, which minimizes the term 1

2‖µ(t)‖2
2. The second term defines the motion of

the aerial manipulator robot configuration in which the matrix
(

Inxn − J(q(t))# J(q(t))
)

projects an arbitrary vector µ0(t) onto the null space of the Jacobian matrix J(q(t)) such that
the secondary control objectives do not affect the main task of the end-effector. Therefore,
any value given to µ0(t) will affect only the internal structure of the aerial manipulator
robot, but not the final control of the end-effector. The proposed control law (12) considers
an analytical saturation of the maneuverability velocities of the aerial manipulator robot.
Therefore, the function tanh (hyperbolic tangent) bounds the control errors between [−1, 1].
The redundancy of the aerial manipulator robot can be effectively used for the achievement
of additional performances such as avoiding obstacles in the workspace and singular
configurations, or to optimize various motion criteria. In this work, it is considered to
control the internal configuration of the robotic arm so that the center of mass of the aerial
manipulator robot does not affect the motion of the robotic system. Therefore, µ0(t) is
defined as,

µ0(t) = Ktanh(qd(t)− q(t)) (12)

where qd is the desired joint positions of the robotic arm, considering that the center
of gravity is located at the center of the aerial manipulator robot, and K ∈ Rnxn is a
diagonal matrix weighing the errors of the joint positions of the robotic arm, defined as
q̃(t) = qd(t)− q(t).

3.2. Inverse Dynamics Controller

The inverse dynamics controller is applied to systems with known dynamics, for
which it is essential to obtain the system model and its dynamics be as close as possible to
the real system so that it can be controlled. In addition, it is important to mention that it
is not a robust controller because it depends directly on the changes that may exist in the
dynamics of the system. The proposed controller scheme is shown in Figure 3.
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The control law is given by:

µD(t) = M(q(t))σ + C
(
q(t),

.
q(t)

)
µ(t) + G(q(t)) (13)

where µD(t) is the control action and σ is defined as:

σ =
.
µc(t) + QDtanh

(
QD
−1 KD µ̃(t)

)
(14)

where
.
µc(t) is the derivative of the velocity of the Kinematic controller; QD and KD are the

positive definite calibration matrices; µ̃(t) = µc(t)− µ(t) represents the velocity error; µ(t)
is the velocity vector of the aerial manipulator robot, and µc(t) is the velocity vector of the
Kinematic controller.

To analyze the stability of the controller, the system is considered in a closed loop,
where it is established that

.
µ(t) = σ and replacing in Equation (14), we obtain:

0 =
.
µ̃(t) + QDtanh

(
QD
−1 KD µ̃(t)

)
(15)

From (15) it can be verified that µ̃→ 0 When t→ ∞.

3.3. Sliding Mode Controller (SMC)

The Sliding Mode algorithm considers the dynamics of a system that allows the
fulfilment of the control objective by taking the system to a state space through a sliding
surface, minimizing the disturbances that may occur. The scheme of this controller is
shown in Figure 4.
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The sliding surface s of the SMC is described below:

s = λpµ̃(t) + λi

∫
µ̃(t) dt + λd

.
µ̃(t) (16)

Thus, µ̃(t) = µc(t)− µ(t) is the error vector of velocities of the aerial manipulator
robot;

.
µ̃(t) =

.
µc(t)−

.
µ(t) is the derivative of the error with respect to time; λp, λi y λd is

the positive definite calibration matrices of the proportional, integral, and derivative part
of the controller, respectively.
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Obtaining the first derivative of the surface (16) and replacing the errors calculated
above, we obtain:

.
s = λp

( .
µc(t)−

.
µ(t)

)
+ λiµ̃(t) + λd

..
µ̃(t) (17)

where
..
µ̃(t) is the second derivative of µ̃(t). The SMC control scheme is described with

Equation (18)
uSMC(t) = ua(t) + ud(t) (18)

where ua(t). is the continuous part and ud(t) is the discontinuous part of the control action
uSMC(t).

Considering
.
s = 0 and ud(t) = 0 and replacing in Equation (17) we obtain:

ua(t) = M(q(t))
.
µc(t) + C

(
q(t),

.
q(t)

)
µ(t) + G(q(t)) + M(q(t))λiλp

−1µ̃(t) + M(q(t))λdλp
−1

..
µ̃(t) (19)

Subsequently, the discontinuous part is determined by selecting the Lyapunov candi-
date L described in Equation (20), as a function of the area s.

L =
1
2

sTs (20)

Deriving L with respect to time we obtain,

.
L = sT .

s (21)

By replacing Equations (17) and (8) in Equation (21) and developing the expressions,
we determine the derivative of L.

.
L = sT

(
−λp(M(q(t)))−1ud(t)

)
(22)

For Equation (22) to satisfy
.
L ≤ 0, ud(t) is defined by:

ud(t) = M(q(t)) k2 sig(s) (23)

where k2 is a positive defined constant. By replacing Equation (23) in Equation (22) we
obtain: .

L = sT (−λp k2 sig(s)
)

(24)

It is verified that if k2 > 0 y λd > 0, then
.
L < 0, therefore, s→ 0 with t→ ∞ , hence,

the error ṽ→ 0 with t→ ∞ . Then, the proposed controller is:

uSMC(t) = M(q(t))
.
µc(t) + C

(
q(t),

.
q(t)

)
µ(t) + G(q(t)) + M(q(t))λiλp

−1µ̃(t) + M(q(t))λdλp
−1

..
µ̃(t)

+M(q(t))k2sig(s)
(25)

To improve the chattering condition, we propose that k2 sig(s) ∼= s
|s|+δ

with δ > 0;
finally, we obtain the control law given by:

uSMC(t) = M(q(t))
.
µc(t) + C

(
q(t),

.
q(t)

)
µ(t) + G(q(t)) + M(q(t))λiλp

−1µ̃(t)

+ M(q(t))λdλp
−1

..
µ̃(t) + M(q(t))k2

s
|s|+ δ

(26)

3.4. LAMDA Controller

The LSMC is an intelligent Sliding Mode controller based on LAMDA. The sliding
surface defined in Equation (16) and its derivative defined in Equation (17) are composed
of vectors with dimensions 7 × 1, therefore s and

.
s. have the form: s = [s1 s2 . . . s7 ]

T and
s =

[ .
s1

.
s2 . . .

.
s7
]T .



Appl. Sci. 2021, 11, 5885 9 of 21

The LAMDA controller (see Figure 5) is combined with the fundamentals of SMC
for the calculation of continuous and discontinuous control actions [24]. For this purpose,
the sliding surface si and its derivative

.
si are required, which describe an object Oi, such

as: Oi =
[
si

.
si
]
; ∀i = 1, · · · , 7, for all the variables to be controlled. The predefined

classes C = {C1; · · · ; Ck; · · · ; Cm}, are used to detect the current functional state of the
system [23]. If we change the variables s1 = oi1 and

.
si = oi2, then the object Oi is defined as:

Oi = [oi1 oi2] (27)
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Now, the algorithm computes the Marginal Adequacy Degree (MAD), which is a
parameter that measures the similarity of a descriptor with the same descriptor in a class
using probability density functions, which require the average value of the descriptor j
belonging to the class (ρk,ij) and its standard deviation set as σk,ij = 0.25 [25].

MADk,ij = e
− 1

2 (
oij−ρk,ij

σk,ij
)

2

(28)

ρk,ij =
1

nk,ij
∑

nk,ij
t=1 oij(t) (29)

where nk,ij is the amount of data of the descriptor ij in the class k.
The Global Adequacy (GAD) measures the membership degree of the object to each

class and it is computed by mixing the MADs using fuzzy logic operators, and the Dombi
operator [26] has been used in this work. The GADs are linear interpolations between the
T-norm “T(a, b)” and the S-norm “S(a, b)” of the Dombi operator.

The parameters a, b are the MADs in the class k to be operated with the T-norm and
the S-norm, and p ≥ 1 is used to modify the sensitivity.

The GAD for the object Oi to each class k is computed by the combination of T-norm
and the S-norm as:

GADk,Oi (MADk,i1, MADk,i2) = αT(MADk,i1, MADk,i2) + (1− α)S(MADk,i1, MADk,i2) (30)

where α ∈ [0, 1] is the exigency parameter. If α increases, then the algorithm is stricter, and
if α decreases, then the algorithm is permissive.
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The inference method presented in [24] proposes the use of LAMDA classes to evaluate
the current state of the system and take corrective action to bring the system to the desired
state. The analytical expression that describes the decision-making process is defined as:

R(k)
i : IF oi1 is Fp

1 and oi2 is Fq
j THEN yki is Gki (31)

where R(k)
i is the rule applied for the functional state (class) k, oij; ∀j = 1, 2 is the descriptor

j of the object Oi which takes on values of the universe of discourse Uj. The output linguistic

variable yki is defined on a universe of discourse V. Fj =
{

Fq
j : q = 1, 2, . . . , Q

}
is a fuzzy

set on Uj where Q is the number of linguistic values and Gki is a fuzzy set on V.
The inference mechanism added to LAMDA is based on each GAD. The first-order

TSK (Takagi-Sugeno-Kang) inference method [27] is employed, where Gki = γki. The
parameter γki is a constant value specified for each class to bring the system to the desired
functional state, which is oi1 = 0 and oi2 = 0. Then, the crisp output is computed as
follows:

ui = ζi ∑m
k=1 γkiGADk,Oi

(32)

where ui is the controller output for the object Oi, γki is its weight applied in the k− th rule,
and ζi is the adjustment parameter for saturation of the output of the controller. The value
of ζi is computed by:

ζi =
argmax(γki)

∑m
k=1 γkiGADk,argmax(Oi)

(33)

The procedure shown in Equations (27)–(33) is used to compute the control actions
of for each variable (each controller). Now, to compute ucL and udL of the SMC control
action, the same surface defined in Equation (16) and its derivative defined in Equation (17)
are used.

Replacing Equation (8) in Equation (17) we obtain:
.
s = λp

( .
µc(t)− (M(q(t)))−1[ucL − C

(
q(t),

.
q(t)

)
µ(t)− G(q(t))

])
+ λiµ̃(t) + λd

..
µ̃(t)

.
s = λp

( .
µc(t)− (M(q(t)))−1ucL + (M(q(t)))−1C

(
q(t),

.
q(t)

)
µ(t)− (M(q(t)))−1G(q(t))

)
(34)

+ λiµ̃(t) + λd
..
µ̃(t)

M(q(t)) is defined as positive, thus, analyzing Equation (34), we can note that
.
s

decreases as ucL Now, the algorithm computes the Marginal Adequacy Degree (MAD),
which is a parameter that measures the similarity of a descriptor with the same descriptor
in a class using probability density functions, which require the average value of the
descriptor j belonging to the

.
s = 0, which is the desired condition in SMC schemes.

The number of classes defined in each descriptor depends on the knowledge of the
expert (designer). However, in the sensitivity analysis of Morales et al. [24], it is stated that
with five classes per descriptor, very good results can be obtained without affecting the
computational load. Thus, five classes are considered in this work C ∈ [−1, 1] for

.
s, as is

detailed in [28]. The fuzzy sets for the classes of
.
s are: Negative Big (NB = −1), Negative

Small (NS = −0.5), zero (ZE = 0), Positive Small (PS = 0.5), and Positive Big (PB = 1).
These classes are used to define the rules to compute the normalized continuous control
action uncL . The scaling gain kcL is used for tuning at the input

.
s, and the scaling gain kc at

the output as:

ucL = kcL uncL ⇒ ucL = kcLSMC
( .
s
)
; kcL > 0 (35)

As a practical example, we can note that in Equation (35), if
.
s is PB, then large positive

control action uc is required to decrease quickly
.
s in order to obtain

.
s = 0. If

.
s = ZE, the

desired condition is satisfied, then no control action is needed, thus ucL = ZE. The rule
table corresponding to the continuous control action is shown in Table 1.
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Table 1. Rule table of LSMC for
.
s.

.
s

NB NS ZE PS PB

M > 0 C1 = NB C2 = NS C3 = ZE C4 = PS C5 = PB

Consider that the values presented in Table 1 for each of the classes is the one corre-
sponding to the weight applied to the control output γk.

To compute the discontinuous control action udL , which is in charge of attracting the

system to the sliding surface, we use the derivative of the Lyapunov function
.
L defined in

Equation (21).
Replacing Equation (34) in Equation (21), and considering only the discontinuous

control action uLSMC = udL, we obtain:

sT .
s = sTλp

( .
µc(t)− (M(q(t)))−1uaL + (M(q(t)))−1C

(
q(t),

.
q(t)

)
µ(t)− (M(q(t)))−1G(q(t))

)
+ sTλiµ̃(t) + sTλd

..
µ̃(t) (36)

To guarantee stability, Lyapunov theory establishes to satisfy the condition
.
L< 0. Thus,

considering Equation (36), it is necessary to satisfy sT .
s < 0. As in the case of continuous

control action, five classes are set for each input
.
s and sT . Due to the normalization of the

classes that is computed undL , the scaling gain k2 is placed at the input s, and the scaling
gain kd at the discontinuous control output as:

udL = kdundL ⇒ udL = kdLSMC
(

sT ,
.
s
)

; kd > 0 (37)

The rule table for udL in which
.
s and sT is required, considering that M(q(t)) is defined

positive, is shown in Table 2. The rule definition is detailed in [24].

Table 2. Rule table of LSMC for s(t) and
.
s.

.
s

NB NS ZE PS PB

ST

PB C5 = ZE C10 = ZE C15 = PS C20 = PB C25 = PB
PS C4 = ZE C9 = ZE C14 = PS C19 = PB C24 = PB
ZE C3 = NB C8 = NS C13 = ZE C18 = PS C23 = PB
NS C2 = NB C7 = NB C12 = NS C17 = ZE C22 = ZE
NB C1 = NB C6 = NB C11 = NS C16 = ZE C21 = ZE

Consider that the values presented in Table 2 for each of the classes are the ones
corresponding to the weight applied to the control output γk. Table 2 can be analyzed
as follows: For example, in the class C1, where sT = NB and

.
s = NB, the product sT .

s
is PB. Therefore, based on Equation (36) and when sT < 0, the negative control input is
required (γ1 = NB) to quickly decrease s(t)

.
s(t) The same situation is presented in the

classes C2, C6, C7. In the class C5, where sT = PB and
.
s = NB, the product sT .

s is NB.
Therefore, no change in the control action ud is required, thus γ5 = ZE. The other classes
in which no change in the control action is required because the condition is met are
C4, C9, C10, C16, C17, C21, and C22.

As it can be seen in the controller, the sig() function used in conventional SMC
controllers (see Equation (23)) is not required, since LAMDA replaces this function, making
it a chattering-free controller. The overall control action is represented in Figure 5, and
defined as:

uLSMC = kcLSMC
( .
s
)
+ kdLSMC

(
sT ,

.
s
)

(38)
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where:

LSMC
( .
s
)
=

argmax(γk1)

∑m
k=1 γk1GADk,argmax(O)

∑m
k=1 γk1GADk,O and;

LSMC
(

sT ,
.
s
)
=

argmax(γk2)

∑m
k=1 γk2GADk,argmax(O)

∑m
k=1 γk2GADk,O (39)

The stability of the controller is guaranteed if selected:

(kc + kd) > βvc − (βA + βd) (40)

With: 
‖−(M(q(t)))−1C

(
q(t),

.
q(t)

)
‖ ≤ βA

‖ .
µc(t)‖ ≤ βvc

‖d‖ ≤ βd

(41)

where βvc, βA, and βd are the limits of the bounded functions corresponding to the change
of the reference, the state matrix, and the disturbance, respectively. The expression (40)
guarantees

.
L < 0, therefore, s→ 0 with t→ ∞ as proven in [26].

4. Experimental Results

This section presents the experimental results to validate the proposed control algo-
rithms for the aerial manipulator robot. Four experiments are described on a real aerial
manipulator robot with three degrees of freedom: (i) Experiment 1: Kinematic controller
implementation, (ii) Experiment 2: Inverse Dynamics controller implementation, (iii) Ex-
periment 3: SMC controller implementation, and (iv) Experiment 4: LAMDA controller
implementation.

The tests consisted of the tracking of a lemniscate trajectory by the aerial manipulator
robot, whose desired trajectory parameters were: ξd =

[
ξxd ξyd ξzd

]
, ξxd = 2.5 cos(0.02t) m,

ξyd = 2.5 sin(0.04t) m, ξzd = (sin(0.1t) + 0.6) m. The time derivative of the desired trajec-

tory was:
.
ξd =

[ .
ξxd

.
ξyd

.
ξzd

]
,

.
ξxd = (−2.5 ∗ 0.2 sin(0.02t)) m/s,

.
ξyd = (2.5 ∗ 0.04cos(0.04t))

m/s, ξ .zd = (0.1sin(0.1t) + 12) m/s.
The parameters of the aerial manipulator robot were length of joints 1, 2, and 3 defined

by l1 = 0.4 m, l2 = 0.26 m, l3 = 0.12 m, and r = 0.12 m, which is the height of the
hexacopter. q(t) =

[
ul um un ω

.
q1

.
q2

.
q3
]
= [ 0 0 0 0 0 0 0 0];

[
q10 q20 q30

]
= [0 0 0]◦. The

initial conditions of position of the end-effector were ξ = [−1.30− 0.05 1.70] m and the
initial conditions of position of the desired trajectory were ξd0 [2.5 2 12] m.

The following parameters were available in the kinematic controller: W = I3x3 identity
matrix, K = I3x3 identity matrix, whereas the parameters defined for the Inverse Dynamics
controller were: KD = I7x7 identity matrix, QD = 2I7x7 identity matrix. The SMC controller
parameters were as follows: λp = 1; λd = 1; λi = 1; k2 = 1; δ = 0.6. Finally, the parameters
of the LAMDA controller were stated as: kc = 0.1I7x7, kd = B7x7, a diagonal matrix whose
diagonal elements are [10 10 40 20 20 20 20], βd = 0.5, βvc = 0.1, and βA = 20.

For the implementation of the four control algorithms, the experimental tests were
carried out on the hexacopter-type aerial manipulator robot incorporating a three-degree-
of-freedom robotic arm shown in Figure 6.
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The experiments were developed in the city of Ambato, province of Tungurahua,
Ecuador, whose latitude and longitude coordinates are 1◦16′36.4” S 78◦35′19.0” W. The
experiment started at 14:32 on 20 February 2021. Wind velocity at that time and location
was 8.3 km/h, approximately, according to [29] as evidenced in Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21 
 

The experiments were developed in the city of Ambato, province of Tungurahua, 
Ecuador, whose latitude and longitude coordinates are 1°16′36.4″ S 78°35′19.0″ W. The 
experiment started at 14:32 on 20 February 2021. Wind velocity at that time and location 
was 8.3 km/h, approximately, according to [29] as evidenced in Figure 7. 

 
Figure 7. Wind velocity during experimentation. 

4.1. Experiment 1: Kinematic Controller 
In this experiment, the kinematic controller is implemented within the aerial manip-

ulator robot to track the lemniscate trajectory. Figure 8 depicts the described trajectory, 
observing that there is an expected error in the tracking, due to the fact that the dynamics 
of the aerial manipulator robot had not been considered. 

 

Figure 8. Trajectory tracking: Kinematic controller. 

Figure 7. Wind velocity during experimentation.

4.1. Experiment 1: Kinematic Controller

In this experiment, the kinematic controller is implemented within the aerial manip-
ulator robot to track the lemniscate trajectory. Figure 8 depicts the described trajectory,
observing that there is an expected error in the tracking, due to the fact that the dynamics
of the aerial manipulator robot had not been considered.
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Figure 9 depicts the position errors obtained for the Kinematic controller, showing
errors of up to 1 m of amplitude. These errors are because the dynamics of the aerial
manipulator robot is not considered. In addition, the presence of wind influences the
performance of the controller since it is considered as an external disturbance.
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4.2. Experiment 2: Inverse Dynamics Controller

In this test, the performance of the controller for trajectory tracking is observed. The
trajectory described by the aerial manipulator robot and the desired trajectory are presented
in Figure 10. We observed that the end effector of the aerial manipulator robot follows the
desired trajectory with a margin of error of approximately 0.4 m as verified in Figure 11.
Therefore, a better performance of this controller is observed in comparison with the
Kinematic controller, despite the presence of a wind of approximately 8.3 km/h.
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4.3. Experiment 3: SMC Controller

Figure 12 shows the results of the trajectory tracking performed by the aerial manip-
ulator robot for this controller, showing that it performs a lemniscate trajectory with a
margin of error similar to the Inverse Dynamics controller, since both controllers incorpo-
rate within their control law the compensation of the dynamics of the aerial manipulator
robot. Figure 13 depicts the control errors present in this experiment, reaching a maximum
value of approximately 0.4 m.
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4.4. Experiment 4: LAMDA Controller

The results of the new control strategy applied for the trajectory tracking of an aerial
manipulator robot are shown in Figures 14–17. Figure 14 shows the trajectory carried out
by the end-effector of the aerial manipulator robot, corroborating that it follows the desired
trajectory with an expected margin of error.
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Figure 15. Control errors: LAMDA controller.
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Figure 15 shows the end-effector position errors, with a maximum error of approx-
imately 0.4 m. This corroborates the good performance of the new proposed LAMDA
control system that has not been used yet for aerial manipulators robots. This type of
control even responds favorably to the presence of external disturbances such as wind
velocity of approximately 8.3 km/h.

The control signals are shown in Figure 16, where we can observe that there is a good
velocity tracking by the aerial manipulator robot, verifying that its control signals are
smooth and slightly oscillatory, which allows its actuators to not receive abrupt signals that
shorten its useful life.

The velocities of the joints of the robotic arm
.
q1,

.
q2 y

.
q3 are shown in Figure 17. We

observed that joint 3 generates an angular velocity greater than the rest of joints of robotic
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arm since it is easier for the aerial manipulator robot to move this joint of the robotic arm
to achieve the control objective. Therefore, minor movements are generated in joint 1 and 2
as verified in this figure.

Taking into account the experiments carried out, it is possible to confirm the good
behavior of the LAMDA controller, exhibiting a better performance compared to the
Kinematic controller and a similar performance in comparison to the Inverse Dynamics
and Sliding Mode control strategies for trajectory tracking.

The obtained Integral square error (ISE) factor is shown in Figure 18, verifying that
the new LAMDA control proposal can be applied to aerial manipulators robots, obtaining
a good performance that can be comparable to control techniques with dynamic compensa-
tion for these systems.
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5. Discussion and Conclusions

In this work, experimental tests were carried out for four controllers: Kinematic,
Inverse Dynamics, SMC Sliding Mode, and LAMDA, aimed at trajectory tracking by an
aerial manipulator robot. The experimental results obtained from the Kinematic controller
showed higher errors with respect to the other controllers. This fact was expected since
the Kinematic controller does not compensate the dynamics of the system. Furthermore,
the presence of wind causes the controller to not exhibit a good performance, as shown in
Figure 18. The Inverse Dynamics, SMC, and LAMDA controllers exhibited better results
with respect to the Kinematic controller, showing a good performance. The corresponding
stability analysis of the proposed controllers have also been presented. The errors obtained
in the latter controllers were as expected according to their nature. Furthermore, the
presence of wind generates errors in the trajectory tracking.

The proposed LAMDA controller applied to trajectory tracking for the aerial manipu-
lator robot demonstrated its stability in experimental tests under disturbance conditions.
Therefore, the LAMDA controller shows a better performance than the Kinematic controller
and a similar performance to the rest of the controllers developed in this work, as it can be
seen in the experimental tests through the ISE.

Although LAMDA has similar results to the Inverse Dynamics and SMC controllers,
its advantage over them is that LAMDA does not depend on the model of the aerial
manipulator robot. Thus, it is not necessary to determine and obtain the parameters of
the aerial manipulator robot for the implementation of the algorithm, which is usually
complex and requires validation prior to use in the different control algorithms that are
based on the model. Due to the nature of its structure, the LAMDA controller is based on
a set of fixed hidden layers and is considered as an artificial intelligence method, whose
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computational performance is not as high compared to similar algorithms [24], as well as
the fact that the mathematics turns out to be not so complex.

The LAMDA controller is a technique that has not been used previously for robotic
systems such as aerial manipulators robots, although this type of controller has been imple-
mented in other applications such as data analysis, data classification, system identification,
and process regulation.

LAMDA is robust against disturbances due to its design based on the fundamentals
of SMC, considering the stability of Lyapunov. LAMDA has presented good behavior
in the presence of wind whose velocity was around 8.3 km/h, so there is evidence that
promising results could be obtained with the application of this controller in the area of
robotics, specifically for aerial manipulator robots.

The objective of this work is to demonstrate that the LAMDA controller was experi-
mentally tested in applications not common to which it has been used habitually. Thus,
for the first time, it has been used in aerial manipulators robots for trajectory tracking, the
results of which confirm that LAMDA controllers can be brought into the field of robotics
with promising results. Future work deals with the implementation of this controller for
cooperative systems, as well as the application of adaptive fuzzy logic to the LAMDA
controller to compensate systems with delays or disturbances that are usually present in
robotic systems.
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