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Abstract: Occurrence of microplastics in the environment has become a serious problem with too
many variables and unknowns regarding their relationship not only with human health but also
with other parts of the environment. The toxic and ecotoxic properties are still a subject of interest
and the scientific attitude to their threat is not unified. There are numerous review papers which
report on microplastic particles occurrence in water, but similarly complex reviews on methods of
their removal are not that frequent. This paper aims to provide a brief overview summarizing the
most tested methods of microplastics removal and intends to critically evaluate them accordingly
and advert to their discrepancies.
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1. Introduction

Over 350 billion tons of various plastic materials are annually produced worldwide [1].
The most abundant plastics (manufactured and used) include polypropylene (PP), polyethylene
(PE), polystyrene (PS), polyethylene terephthalate (PET) and polyvinyl chloride (PVC) [2]. Even
the definition of microplastic particles seems to be very problematic, as they are often referred
to as particles with dimensions less than 5 mm, of various shapes [3]. Cole et al. broadened
the definition due to main dimensions inconsistences and also defined “mesoplastics”, to
differentiate between particles visible to the human eye and those visible via microscopes, but it
can be assumed that such definition might bring further incongruities [4]. Particles smaller than
100 nm are defined as nanoplastics [5]. However, accurate definitions of micro- and nanoplastic
particles are still the subject of speculations [6].

Depending on their origin, microplastics can be primary or secondary:

• The primary ones were already produced in small dimensions for a specific purpose,
most often as small particles in cosmetics [4].

• The secondary ones are formed by fragmentation of larger plastics through the action
of UV radiation, mechanical forces, hydrolysis, or microbial processes that can happen
in the aquatic environment [7].

Frias and Nash (2019) then provided their definition coming from broad inconsisten-
cies in this topic: “Microplastics are any synthetic solid particle or polymeric matrix, with
regular or irregular shape and with size ranging from 1 µm to 5 mm, of either primary or
secondary manufacturing origin, which are insoluble in water.”

Various views on microplastics in the environment are currently very popular among
the scientific and even non-scientific public. It is very tough to be well versed in such a
topic, as numerous studies on the occurrence of microplastics, which can be contradictory,
have already been published (181 references on “microplastics in water”, as entered, 2397
references on “microplastics” and “water”, closely associated with one another, and 5059
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references on “microplastics” and “water” were present anywhere in the reference; Scifinder
25 May 2021). However, published data are not consistent and, thus, difficult to compare
amongst themselves. It is then very problematic to compare processes for microplastics
removal, because methods feasible for removal of 5 mm particles are different from those
applied on 5 µm particles.

Microplastics are considered inert and non-toxic to humans, or the effects on human health,
have not been determined yet [8]. However, a toxic effect to aquatic organisms has already been
proved [9,10]. The additives play a serious role as harmful products, when released from plastics
during their degradation. This has been very well described for “macroparticles” and, in the
case of microplastics degradation, the issue becomes more important again. The most discussed
representatives might be Bisphenol A (BPA) and phthalates, which were being added as
plasticizers to PVC [11]. In addition, microplastics might possess a surface area to which a wide
range of contaminants may be adsorbed [12,13]. This aspect must be thoroughly investigated in
order to confirm or exclude the possibility, but it can be assumed that microparticles of a certain
weight would have larger surface area than macroparticles of the same weight. Mechanisms of
contaminant adsorption were described by Joo et al., e.g., electrostatic repulsion, electrostatic
interaction, hydrophobic interaction on the example of per-/poly-fluoralkylsubstances [14].

These include polycyclic aromatic hydrocarbons (PAHs), which are toxic and readily
available for aquatic organisms and can further accumulate in food chains. Others may be
persistent organic pollutants (POPs), pharmaceutical residues, pesticides, heavy metals and
other potentially toxic substances from the surrounding aquatic environment [15]. Some of
the released substances may act as endocrine disruptors [16,17]. Joo et al. also reported that
microplastics may adsorb bacteria (antibiotic resistant bacteria) and viruses (coronavirus).

In recent years, microplastics occurrence in water and their removal has come to
the forefront of research interest [17–25]. To give an example, three local drinking water
treatment plants were tested for the presence of microplastic particles in water before and
after treatment, with no special technologies for microplastics removal [26,27]. It has been
pointed out that 95% of all microplastics in water are smaller than 10 µm (the particles were
divided into six fractions by total count: 0.2–1 µm; 1–5 µm; 5–10 µm; 10–50 µm; 50–100 µm;
>100 µm). The most dominating representatives were PET, PP and PE and the dominating
forms were fragments of undefined shapes and fibres. The removal efficiency of treatment
processes in monitored drinking water treatment plants was 83% on average. According to
absolute concentrations of microplastics before and after treatment (3605 ± 497 particles
L−1; 628 ± 28 particles L−1) and considering no specialised method for their removal, a
significant decrease was observed. However, space for improvement still exists.

Another study of the same research group investigated the influence of the size and
shape of microplastics on their removal efficacy at various stages of water treatment in two
drinking water treatment plants [28]. It was determined that coagulation/flocculation was
not influenced by the size and shape of particles, while consecutive filtration through clay
material improved removal of particles larger than 50 µm and granular activated carbon
improved removal of particles larger than 10 µm. The influence of their shape is yet to
be determined. It was also shown that the most prevailing shape of microplastics was
undefined fragment.

One of the important sources of microplastic particles in water is the washing of syn-
thetic materials in households. This wastewater is further treated in wastewater treatment
plants from where they can enter watercourses in nature [29–31]. All possible sources
of microplastics in the environment are presented by Xu et al. in a well arranged way.
The authors compare distribution of microplastics in different urban environments around
the world and they conclude that microplastic may form an internal circulation, where
human beings and aquatic organisms are continuously exposed to them [32].

Talvitie et al. (2017) have investigated how many microplastics can be captured by
different wastewater treatment plant processes (membrane bioreactor as representative of
primary stage treatment; filtrations and flotation as representatives of tertiary treatments).
The device containing the membrane bioreactor was able to remove up to 99% of microplas-
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tics, the rapid sand filter 97%, flotation removed 95% of particles and the disc filter 40–98%
of contained microplastics [29]. This is seemingly a very nice result; however, the major
drawback of this study was the range of detected microparticles—particles smaller than
20 µm were not detected. Mintenig et al. [33] studied the presence of microplastics in
drinking water originating from groundwater and determined the content of microplastics
was only 0.7 particles per m3. However, this may be due to the fact that, again, the lower
limit of the measurements was 20 µm. Oßmann et al. [34] determined microplastic particles
in more than 30 samples of bottled water. Samples in glass bottles contained 2649–2857 par-
ticles L−1 and samples in PET bottles 6292–10,521 particles L−1. The authors also identified
additives, such as pigment (from bottle labelling) or tris(2,4-di-tertbutylphenyl)phosphite
(from the bottle material itself). Both in PET and glass bottles they found out that 90%
of microplastic particles were smaller than 5 µm and 40% were smaller than 1.5 µm [34].
The authors correctly pointed out that a thoroughgoing analysis of particles smaller than
1 µm is crucial in order to evaluate the number of particles that can be ingested and to
determine their possible toxicological effect.

One can expect that what is suitable for microparticles with mm dimensions is not ap-
plicable for particles with nm dimensions. A simple comparison between published studies
is therefore hardly feasible and a more complex approach is needed. This manuscript
summarizes the most important methods applied for microplastic particles removal and
evaluates them.

2. Considerations

Microplastics in the environment are a complex problem with no simple solution.
The best way to eliminate their impact on the environment is to prevent their release into it.
The sources of microplastics can be found in different areas of life and there are many types
of plastics in many applications. Figure 1 summarizes the origin of microplastics according
to their polymer type, use and percentage of total amounts.

Figure 1. Percentual share of polymer types contributing to microplastic formation [35].

As already mentioned above, there is a broad spectrum of methods (classical and
special) that could be tested and used for their removal. The text summarizes the most in-
vestigated methods applied for microplastics elimination. It is shown that literature data are
quite problematic, because microplastic is a term with broad definition. Studies are focused
on various dimensions of particles, thus generalization of results is rather problematic.

Filtration might be one of the most effective methods of microplastic particles removal
due to its simple experimental arrangement, requirement of no special apparatuses and
simple practicability. Of course, it cannot be used for all sizes of microparticles—especially
nm dimensions would cause serious troubles with a pressure drop, the filtration barrier
can be easily clogged and the need for replacement would occur quite often. Its fouling
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due to quick blockage and inability to be reused can also play an important role. These
reasons may impede wider extension of microplastic filtration in practice, because the size
of microparticles differs a lot.

Large particles (mm) would undergo mechanical surface abrasion, making them
different from smooth surface. This can result in an increase of hydrophobicity of surface,
which enables adsorption of organic micropollutants. Such effect was observed during
ozonation of PE particles [22]. In addition, the effect of their shape on their removal must
be properly addressed, as mentioned by Pivokonský et al. (i.e., filtration of fibres would
be more feasible than filtration of spheres, etc.) [28]. Another problem connected with
microplastic particles is their inability to be settled; zeta potential would help with this
respect, because this parameter provides comparable results in a dispersed environment
and it is easily reproducible and such results could be comparable between various case
studies. An observable decrease in microparticles in volume would result in an observable
change in zeta potential value [36].

Another aspect is the determination of acceptable concentration of microparticles in
water. Their toxic properties are still a big unknown; on the other hand, surface morpholog-
ical changes may increase ability of organic micropollutants adsorption. With such aspect,
it would be very difficult to estimate the safe concentration of microparticles in water.

The microplastic problem should be considered a complex issue, where prevention is
much more relevant than solution of consequences. If we consider that microplastic origin
lies in a PET bottle floating on the sea surface, there is still long pathway from the bottle to
micro-particles. It is therefore advantageous to collect large particles, or, even better, not
to throw them away. This is, however, a problem of the human population that does not
have simple solution in prevention. As a result, these methods of microparticles removal
have to be developed and investigated. The idea of this communication is to provide an
overview on the most used methods and assess them.

3. Microplastics Removal from Water

The text below focuses on methods (destructive and non-destructive) of microplastic
removal. All methods are assessed according to their particular use. The generalized
simplified summary of methods is provided in Table 1. It must be noted that a simple
comparison of the methods in the table is almost impossible. Every method has many
special modifications that can take advantage over its basic variant.

Table 1. Groups of methods applicable on microplastics removal.

Energetically
Expensive

Applicable on
Particle Size

Removal via
Separation

Removal via
Destruction

Coagulation/flocculation No mm-µm Yes No
Degradation (e.g., photo) Yes nm No Yes

Separation/flotation No mm-µm Yes No
Separation/filtration No mm-µm Yes No

3.1. Coagulation/Flocculation

Coagulation/flocculation is a chemical-based water treatment method used for the
removal of dissolved or colloidal particles from water before phase separation (sedimen-
tation, filtration). Coagulation is a process based on charge neutralization (the negative
charge of suspended particles is neutralized by a positively charged coagulant), leading to
the formation of insoluble aggregates (flocs). Flocculation is a process stage of coagulation
at which gentle agitation is applied to boost the particles aggregation. This leads to the
formation of large agglomerates that can already be well separated via sedimentation or
filtration [37].

Several studies have focused on microplastic particles removal from water via coagula-
tion. Ma et al. investigated coagulation of PE microparticles combining with ultrafiltration
(FeCl3·6H2O and AlCl3·6H2O used as coagulating agents). It was observed that aluminium
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salts were more suitable for the removal of PE particles. The smaller the PE particles, the
higher the removal efficiency. This was explained via the zeta potential values of flocs
and PE microparticles—zeta potential of Al flocs was at positive values (0.52 ± 0.14 mV),
while zeta potential of PE microplastic particles was negative, at pH ≥ 4. Therefore, easier
capture of smaller microparticles in coagulated flocs and their consequent removal with
separated sludge occurred. The highest removal efficiency achieved was 37% for particles
smaller than 0.5 mm. However, this efficiency was increased to 61% after the addition of
15 mg/L of anionic PAM (polyacrylamide) [38]. At neutral pH, positively charged flocs
were formed; anionic PAM therefore increased removal efficiency via charge neutralization.
The removal efficiency increase caused by the addition of PAM was attributed to denser
flocs formation, compared to the flocs formed without the addition of PAM. It resulted
in increased adsorption capacity via stronger bridging effects and stronger sweep floc-
culation. The same phenomenon was observed in another study by the same research
group [39]. Subsequently, the PE particles were completely removed by ultrafiltration
through a membrane (pore size of 30 nm), where the particles coagulated with aluminium
salts slightly clogged the membrane. Another positive effect was observed by Skaf et al.,
where microplastics removal was enhanced by the presence of an anionic surfactant, but
nonionic surfactant lead to worse removal efficiency [36]. In addition, a negative effect of
nonionic surfactants was observed by Xia et al. The authors determined that the presence
of nonionic surfactants helps microplastic particles to “stealth” before aluminum flocs
during the coagulation process [40].

Coagulation processes are often combined with sand filters and other water treatment
techniques that enhance microplastics removal efficiency [28,41]. It was described that
coagulation/flocculation methods might be sufficiently efficient in microplastics removal;
however, no model solution studies are presented. These cases described real effluents
treated in WWTPs (wastewater treatment plants). Membrane filtrations might be a very
efficient method with absolute removals, but they have very limited capacity; further, the
cost of membranes operation would be unbearably high. In addition, a mutual compar-
ison between two studies is impracticable, because each WWTP treats wastewater with
different physical–chemical properties and the concentration of contaminants (including
microplastics) is “unique” for every one of them.

Rajala et al. investigated removal of microplastic particles via coagulation followed
by sedimentation with spherical polystyrene particles of two diameters, 1 µm and 6.3
µm. Ferric chloride, polyaluminium chloride and polyamine were compared and the
highest removal efficiency was achieved with ferric chloride and polyaluminium chloride
(up to 99%) [42]. Hidayaturrahman and Lee tested the removal of microplastic (<65 µm)
particles at different stages of tertiary treatment in WWTPs and the results were compared
with the primary and secondary treatment stages. It was determined that the primary
and secondary stages were able to remove 75–92% of microplastic particles. However,
considering the scale of water treated in WWTPs, a large number of microplastics was
still present in water [43]. Aluminum coagulation was combined with different tertiary
treatment technologies (ozonation, membrane disc-filter and rapid sand filter) and it was
found out that such combination helped to increase the removal efficiency exceeding 99%.
Without application of additional tertiary treatment technologies, removal efficiency via
coagulation was up to 95%.

The positive effect of coagulant dosing enhancing microplastic particles removal was
also confirmed [44]. It was reported that weathered microparticles revealed higher removal
efficiency via coagulation and flocculation than fresh particles, due to changes on their
surface roughness [45]. Aluminum coagulation is reported to be more efficient and studies
on iron coagulation are not as intensively reported as aluminum coagulation. The reason
might be in the different character of the sludge. Aluminum sludge contains more water
than Fe sludge and that may be the reason why microplastic particles are better removed
(not only adsorption on sludge surface but also water volume capture).
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Perren, Wojtasik and Cai focused on the removal of PE beads (300−355 µm) from fresh
water using electrocoagulation with aluminum electrodes. The authors tested various process
parameters for the best performance of electrocoagulation and they achieved more than 99%
removal efficiency at a pH of 7.5, NaCl concentration of 2 g/L, current density = 11 A/m2

and time of reaction of 60 min [46]. The authors do not report on coagulant dose, as this is
the crucial parameter during coagulation studies. They put dose of coagulant in relation with
current density, but it must be given in relation with current intensity. Current intensity is the
parameter to be calculated with Faraday’s Law. Another study that focused on the removal of
microplastic particles via electrocoagulation as a consecutive step of sewage water treatment
plants was made by Kim and Park. They focused on the removal of various types of PTFE
plastics using an aluminum electrode. The authors achieved more than 90% removal efficacy by
electrocoagulation of particles that could not be removed with other methods [47].

Electrocoagulation is considered an alternative to standard chemical coagulation with
significantly reduced use of chemicals, because the coagulating chemical is replaced by an
electrochemical substitute in the form of a sacrificial electrode [48].

3.2. Degradation

Degradation is defined as a process that leads to the deterioration of some of the
physical properties of polymers. It may affect thermal stability, optical and mechanical
properties, or crystallinity [49,50]. In the marine environment, mechanical degradation
processes are facilitated by the action of waves, sand or other sediments [51]. Particles
floating on the surface are exposed to sunlight and are subject to change due to UV radiation
and oxidizing conditions of the atmosphere. In contrast, in deeper waters, where there
is less radiation and oxygen, these abiotic processes are slower [52]. Biological activity is
also rather negligible in deep oceans with reduced biodiversity. In less deep waters, many
autotrophic, heterotrophic and symbiotic organisms have been found on the surface of
microparticles, which play an important role in the degradation of these materials [53].
It could be presumed that biodegradability of microplastics depends on their material the
same way as large plastic particles [54].

Not only a model solution in fresh water is missing, but seawater is a completely
different environment and it is very problematic to predict the course of the process.
The irradiation intensity changes with depth and the amount of dissolved oxygen also
differs with depth, therefore simulation of such phenomena in laboratory conditions is
crucial and necessary to conduct.

Additionally, there are studies that deal with various degradation ways of macroparti-
cles of plastics. The main types include photo-oxidative degradation (photochemical and
photocatalytic). There are also other techniques, such as thermal and mechanical–chemical
degradation, ozone degradation, catalytic degradation and biodegradation. Partial change
in their chemical structure, surface aging, weathering, surface properties change and loss
of molecular weight have been proved, but complete removal via degradation is still a
subject of research [45,55–58]. The first study on the complete mineralization of polystyrene
microparticles appeared very recently, thus potential for their complete removal from water
exists. The degradation was confirmed using in situ DRIFTS and mass spectrophotometry
via formation of hydroxyl, carbonyl and carbon-hydrogen groups. Their presence was
understood as evidence of polystyrene degradation [59].

The paper focuses on the photochemical, photocatalytic and ozonation degradation
methods. They do not require special treatment and can be applied directly in water
streams. Furthermore, they can be sequentially placed right after common water treatment
methods. Thermal degradation requires the collection and separation of microparticles
from water and their consequent transfer to a degradation reactor. Biodegradation does not
seem to be an appropriate option, as biodegradation of plastic microparticles is reported to
last days and weeks [60–65].
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3.2.1. Photochemical Degradation

Photochemical degradation is a process in which the material undergoes degradation
induced by UV light. UV radiation can cause photooxidative breaking of molecule chains
and production of radical species, leading to change in mechanical and chemical properties
of the irradiated material [66].

Photochemical degradation of plastic materials is a well described process [49,67,68].
It is considered to be one of the most efficient ways of degrading polymers. It takes
place under the influence of irradiation of different wavelengths, where each polymer is
most sensitive to a different wavelength [69]. During degradation, polymers change their
mechanical and optical properties, they become more brittle and less elastic. There is also
often a change in colour, when plastics begin to turn yellow.

Some authors investigated the effect of UV radiation on the thermoplastic polyester
elastomer in an aqueous environment and in a water-free environment. Wavelengths
shorter than 310 nm proved to be the most effective, because these wavelengths have
enough energy to cause scission of polymer chains, forming esters and aldehydes. The pres-
ence of water caused the formation of a gel mass from the original polymers [70]. Further-
more, changes in the behaviour of low-density polyethylene (LDPE) under UV radiation
were studied. Changes in the extensibility of LDPE in two environments—seawater and
air—were monitored for one year. The study showed that photodegradation in the aquatic
environment is much slower, which was explained by lower average temperatures [71].

Tribedi and Dey investigated the effect of LDPE pre-oxidation in soil induced by
UV radiation in order to promote its biodegradation. It has been shown that UV-treated
LDPE revealed better degradation efficiency than the ones that were not UV-treated [72].
The problematic comparison of different environments influencing the degradation of
plastics is insufficient—there are just two environments to be compared (freshwater-air or
seawater-air). Directly comparable data are unavailable and a proper comparison study
should contain seawater- and freshwater-air environments. L. Zhu et al. observed the
degradation of PE, PP and PS in seawater upon simulated sunlight (see Figure 2) [73].
The degradation was proved via surface changes (fragmentation, surface changes and
alteration of the colour) and the increase in dissolved organic carbon (DOC) concentration
in treated seawater. DOC is quantified as the organic carbon that passes through a sub-
micron filter [74]. Releasing DOC consequently affected microbial activity in seawater.

Figure 2. Pictures of investigated microparticles (L. Zhu et al. (2020)). Copyright available.
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Other studies mostly dealt with the degradation of PVC [75,76], which constitutes the
most commonly used plastics in everyday life. The aim of these studies was to find out
how polymers were degraded upon external influences (temperature, radiation, air and
humidity) and whether these influences shorten their durability. The authors concluded
that better reproduction of natural weathering in laboratory conditions is achieved during
experiments where water is periodically sprayed on exposed material (this simulates
natural air humidity).

Mackul’ak et al. investigated PVC granules (diameter 4 ± 2 mm) degradation by
Fenton reaction. It was demonstrated that Fenton treatment enhanced the formation of
PVC degradation products (lower molecular weight fragments) that were further degraded
by anaerobic digestion [77]. The effects of UV radiation are not much studied in the aquatic
environment, but rather in the atmospheric environment. The future approach must be
focused on the aquatic environment.

3.2.2. Photocatalytic Degradation

In the context of this communication, photocatalytic degradation is similar to photo-
chemical degradation. Under certain conditions, it may result in the deterioration of some
of the physical properties of polymers. However, for an effective process, a photocatalyst
has to be employed. A photocatalyst is defined as “a material which absorbs light to bring
it to higher energy level and provides the energy to a reacting substance to make a chemical
reaction occur” [78]. In general, a photocatalyst yields reactive species upon UV irradiation,
causing degradation of illuminated material.

A study on high-density polyethylene (HDPE) microparticles (0.7–1 mm) degradation
using a protein-based porous N-TiO2 semiconductor was performed and implicated that
a potential for microplastic photocatalytic elimination exists. The advantage of protein-
based catalysts is the reduction of the TiO2 bandgap from 3.3 eV to 2.9 eV. This bandgap
drop enhances catalyst utilization upon visible light, absorbing photons at 427 nm [79].
This was followed by a study using a protein-derived C,N-TiO2 semiconductor in form
of colloidal nanoparticles in aqueous environment and the combined effect of pH and
temperature was investigated, in order to find optimal conditions. A low pH improved the
interaction between the colloidal nanoparticles of the catalyst and microplastic particles; a
low temperature increased the surface area via fragmentation, enhancing the interaction
with catalyst nanoparticles [80]. These results were supported by an upcoming study
performed by a similar research group [81].

Another study was focused on the degradation of LDPE in a water environment
utilizing visible light and ZnO nanorods as a catalyst. The degradation of microplastic
particles was monitored by FTIR and the formation of lower molecular weight compounds
was detected [82]. This study provides valuable observations; it shows that such method
can be an ideal way to follow the degradation mechanism, due to its high effectivity and
reliability. The degradation was indicated by the formation of carbonyl and vinyl groups.
Xu et al. also tested a ZnO-based photocatalyst for microplastic polyethylene degrada-
tion. They also combined the method with coagulation as a “mainstream technology”
for microplastics removal [32]. They concluded that none of these methods are capable
of complete microplastics removal themselves, however, their combination may become
a future development trend. ZnO photocatalytic abilities upon visible light in surface
degradation changes of LDPE was confirmed by Tofa et al. ZnO was supported by Pt
nanorods which were reported as efficient photocatalysts for LDPE degradation in a water
environment [83].

A comparative study on degradation and mineralization of C14-PS nanoparticles
(<1 µm) in water and air was performed upon UV-C irradiation. The authors found out
that mineralization in water was significantly more efficient than mineralization in air.
The phenomena were attributed to the water environment that enabled the formation of
alkyl radicals at 254 nm and their further transformation towards peroxy- and alkoxy-
radicals, due to the presence of dissolved oxygen. They were further transformed via
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acetophenone and ketones towards ending products (CO2 and H2O). Proposed mechanism
is given on Figure 3 [84]. This study provides a mechanism of PS degradation based on its
chemical nature and, due to lack of such studies, provides one of the first theories of such
nanoparticles degradation. It must also be noted that such mechanisms probably would
not work for microparticles with units of hundreds and thousands µm dimensions.

Figure 3. Proposed pathway of PS nanoplastics UV degradation in water (adapted from Tian et al.
2019, copyright available).

It must be also pointed out that such scenario with polystyrene particles is very likely
to happen. PS is widely used as insulation of buildings and the use of such material is
therefore very broadened. Cutting PS in compact blocks on site causes the release of a high
number of PS spheres that can partially degrade upon sunlight, wash away with rainwater
and, thus, spread in the environment.

The toxicity of by-products formed during photochemical and photocatalytic oxidation
strongly depends on the polymer origin. For example, it was reported that products of
photochemical oxidation of PP microplastics reveal low toxicity to humans and to the living
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species in the aquatic environment [85]. The issue of the formation of toxic by-products
occurring during microplastic degradation has not been adequately treated yet. Serious
attention is needed, here, in future [65]. However, some clear evidence is already available.
Schiavo et al. attributed the toxicity increase to the release of heavy metals from the surface
during microplastic degradation [86]. Adsorption of heavy metals and other common
pollutants on the microplastics surface has been already described [87–92]. The negative
role of the release of toxic elements and substances during microparticles degradation can
be considered indisputable [93].

3.2.3. Ozonation

Ozonation is defined as a method leading to the degradation of the exposed material
via ozone formation. Ozone molecules act as a reactive species, attacking bonds in organic
molecules [49].

Ozonation is often applied on various pollutants removal from water [94–96]. How-
ever, these and other studies have a major drawback—they only study the effect of ozone as
gas on the surface of plastic material. On the other hand, it is expected that plastic materials
will undergo degradation using the ozonation process [97], but an aquatic environment
will reflect a different behaviour, compared to an atmospheric environment.

Eitzen et al. [98] studied ozonation for the preparation of a model microplastic solution
(PS, 1–200 µm), because, when a solution of microplastics in water is being prepared, mi-
croparticles tend to aggregate and ozone dissolution helps to separate them. However, an
increase in DOC (dissolved organic carbon) in the tested solution was observed, due to the
partial oxidation of the PS surface yielding water-soluble oxidation products. Hidayatur-
rahman and Lee reported on the successful removal of microplastics (particles smaller than
1.2 µm) by ozonation on the tertiary stage of WWTPs and the efficiency was nearly 90%,
compared to removal by disc-filtration (79%), or rapid sand filtration (74%). The main dis-
advantages associated with ozone utilization are high energy consumption and formation
of oxidizing organic by-products, which may reveal significant toxicity properties, e.g., car-
boxylic acids, or aldehydes [21]. Another recent study focused on pre-oxidative treatment
of PE particles (<0.5 mm) by ozonation, hypochlorite and permanganate. It was shown
that such pre-oxidation did not enhance the removal of microparticles by conventional
drinking water treatment methods. On the other hand, the change in surface properties
resulted in an increase in hydrophobicity; this resulted in better adsorption of hydrophobic
organic micropollutants, which might cause a significant increase in particles toxicity [99].

Ozonation itself affects the surface properties of microparticles; however, very often,
it contributes to an increase in toxic properties of the treated effluent. The size of micropar-
ticles also varies a lot (as for other methods), thus further research for better understanding
is desired. On the other hand, for the preparation of a model solution, ozonation might
help in disabling microparticles aggregation.

3.3. Separation

There are also methods that do not attempt to eliminate microplastic pollutants but
intend to concentrate them and separate them from the effluent. Separated particles can be
collected and transported to a municipal waste incineration plant.

Separation methods comprise density separation, vacuum filtration through a porous
filter preceded by a sieve and sieving through a series of sieves with decreasing mesh sizes
down towards 50 µm [100]. Due to its relatively simple experimental arrangement, it can
be considered a dominating method. However, nanoparticles would require very fine
sieves, which can exhibit high pressure drop, quick clogging and requirement of frequent
replacement and cleaning. Density separation might thus provide a more meaningful way.

Density separation was further developed (various extraction liquids, leaching in
H2O2, flowing liquid, stirred–shaken sediment in gravitational or centrifugal field, in
counter-current gas = foam flotation or elutriation) and high separation efficiency was
achieved using a drum separator [101], or by electromagnetic density separation in a ferro
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liquid, which can change its density according to EM radiation (Kress and Franchetti [102]).
Some of the plastics may have very similar density to water and that could be a major
drawback of the practical application of such method.

The most often used separation technique, flotation, can be divided into three sub-
groups: selective flotation, froth flotation and hydrodynamic flotation [103].

Selective flotation in a standing liquid practically corresponds to density separation
(the particles are divided according to different densities; sink–float method). The method
is based on the separation of one kind of microplastic from a mixture of two or more.
Separation is most often performed from sediments [104,105].

However, these methods reveal poor efficiency with particles smaller than 200 µm [106].
HDPE particles (100–850 µm) were tested for flotation in salty solutions in yields above 90%
for high concentration samples and about 80% for low particle concentration samples [107].
The content of salt (NaCl, NaI) enhances the flotation of microparticles, because salt
increases the difference between the density of water and microplastic particles. That pro-
vides an indication that the method would be feasible for salt water; however, not all
types of microplastics would be possible to separate in practice—it would have to be
carefully chosen materials with appropriate density, which would be different enough from
water density.

High flotation yields were obtained using potassium ferrate; almost 100% yield was
obtained for PC and PS particles of 2–4 mm [108]. Treatment with K2FeO4 changes sur-
face properties and makes particles more floatable, due to increasing surface wettability.
The question is, why particles of such size were not just filtered. Moreover, another aspect
is that the water must be treated from K2FeO4. Selective flotation might be a very useful
tool in the area of microplastic removal. The method is able to remove particles larger
than 0.2 mm and, therefore, it can serve as the first significant method of microplastic
reduction in the environment. These particles are easy to remove because they can still be
visible to the human eye and, therefore, do not require a complicated membrane separation
(membrane surface can be easily clogged and fouled by particles of smaller dimensions).

Froth flotation, where the particles are divided according to densities and air bubbles,
uses the different hydrophobicity of the particle surfaces for their separation. Very high
efficiency was achieved for removal of PC, PVC and PMMA particles in a solution contain-
ing potassium permanganate [109]. However, removal of potassium permanganate must
be consequently dealt with.

Hydrodynamic flotation (elutriation) is a method where the distribution of particles
according to density is supported by hydrodynamic flow. Initially, this method was used
for the separation of microplastics from sediment by directing an ascending stream of water
through the column, thereby inducing sediment fluidization. This technique was finally
used for pretreatment to reduce the sample volume before density separation with sodium
iodide solution and demonstrated great removal efficiency of PVC particles (100%) and
PVC fibers (98%) [110]. Elutriation was also the basis of the air-induced overflow (AIO)
technique, which involved fluidizing the sediment in an NaCl solution. Lighter particles
moved faster to the top layer of the solution, which caused an 80% weight reduction of
sediment right before density flotation in an NaI solution. Removal efficiency for 1 mm
particles of PP, PVC, PET, PES and PUR varied between 91 and 99% [111].

3.4. Filtration

Various types of filtration are the most widespread methods used in water treatment.
Some of them may comprise rapid sand filtration, membrane filtration, activated carbon
filtration, disc filtration, etc. There were also several studies focusing on removal of
microplastic from water using filtration technologies and some of them were tested in real
conditions in WWTPs.

Various tertiary treatment stage technologies in WWTPs were studied for the removal
of microplastics from water. Two types of filtration, disc-filter and rapid sand filtration,
were compared with membrane photoreactor on removal of particles of different material
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(PE, PES, etc., size > 20 µm) with more than 95% removal efficiency. The major drawback
of this study is the size of microplastic particles, because only particles larger than 20 µm
were determined [112]. Another study focused on smaller microplastic particles (size > 10
µm) and tested removal efficiency via disc filtration. The results were evaluated in terms of
number and mass of particles in WWTPs. It has been shown that disc filtration was able to
remove almost 90% of microparticles [113].

Filtration is often part of coagulation/flocculation experiments (see Section 3.1) and Y.
Zhang et al. [114] compared removal of microplastic particles (180 nm–125 µm, PE, PS) via
filtration and combined coagulation/flocculation/filtration process. The largest particles, in
this study, were removed with almost absolute efficiency (106–125 µm with >99% removal
efficiency) and it was shown that the size of microplastic particles does not affect removal
efficiency linearly; 180 nm particles were removed with nearly 99% efficiency, but particles
with sizes of 10–20 µm were removed with less than 90% efficiency. This is explained by the
possibility of smaller particles being more likely retained in filtration grains through particle
attachment or diffusion. Ziheng Wang, Sedighi and Lea-Langton [115] compared rapid
sand filtration (silica sand) with biochar filtration for removal of PS spherical microparticles
(10 µm) in a model solution. Two biochars of different origins (corn straw and hardwood),
produced via a slow pyrolysis process at three temperatures (300 ◦C, 400 ◦C and 500 ◦C),
revealed higher removal efficiencies than sand filtration (more than 95% for biochars,
compared to 60–80% for sand filter). It has also been reported that different mechanisms of
immobilisation occur (biochars re-release less than 1% of retained microplastics by leaching,
compared to 7% for sand filter).

Bayo, López-Castellanos and Olmos [116] investigated membrane bioreactor and rapid
sand filtration for the removal of 14 different microplastics in the WWTP final effluent and
studied removal efficiencies of different forms of microplastics (fibres, films, fragments and
beads; 6.3–210 µm). The removal efficiencies of 79% for membrane reactor and 75% for
rapid sand filtration were achieved. Based on these observations, the authors concluded
that membrane bioreactor and rapid sand filtration are not better than conventional ones.
Again, the main disadvantage of this study is the relative high dimensions of microplastic
particles (>6 µm). The influence of shape was not discussed. On the other hand, membrane
bioreactor (pore size < 0.1 µm) was successfully used for the removal of PVC (<5 µm)
in a model solution, however, the presence of microplastic led to irreversible membrane
fouling [117]. It has also been reported that PE microplastic particles can effectively be
removed from water via membrane filtrations using PVDF with an average pore size of 30
nm [118]. Problems with membranes fouling were also described by Enfrin et al. [119]. Due
to high pressure drop and immense price, it is unlikely that membrane filtrations would be
applied in practice.

Separation via various filters may be driven by different mechanisms and not only the
large surface area enhanced adsorption must occur. Detailed studies on mechanisms of
particle/biochar filter interaction have been performed recently [115,120]. Three types of
interactions were introduced: “stuck”, “trapped” and “entangled”. The first is described
as a sieve, “microplastic particles are retailed in the gaps between the filter particles
which are smaller than the particle size”. The removal efficacy thus depends on the
size of microplastic particles and filter particles (this mechanism is described for sand
filter) [112,115]. The second is described for filters with highly porous structure, such as
biochar or activated carbons. The microplastic particle enters slightly larger pores and
remains there. The third is described for particles caught in microscopic holes on the
surface of the filter material [115]. Sembiring et al. report on possible Van der Waals forces
and physical interactions between microplastic particles and cloth filter, which is made of
synthetic fibres [121].

Interactions of microplastic particles with membrane filters are usually described as
size exclusion, hydrophobic interaction, biofilm formation and electrostatic interaction.
At size exclusion, the size of pores is the dominating parameter—larger contaminants sim-
ply do not flow through and membrane fouling can easily occur [119]. Another mechanism
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is the hydrophobic interaction—it is described as the noncovalent force forming clusters
of non-polar species on the non-polar surface of the membrane [14]. Biofilm formation
is described as the interaction between microplastic particles and aquatic species (phyto-
plankton, microalgae) [122,123]. Electrostatic repulsion is defined as “a result of interaction
between the electrical double layers surrounding particles or droplet” [124]. This phenom-
ena can be influenced for removal efficiency and does not necessarily lead to membrane
fouling—it can be controlled via pH of treated solution and adsorbed contaminants on
the surface of microparticles [125]. Deeper discussions of such phenomena are beyond the
scope of the paper.

4. Conclusions

Microplastic particles and methods of their removal from water are a challenging
issue that will have to be solved in the near future. It has been shown that methods on
removal of microplastics involve both separation and degradation. This communication
summarized the most common published methods of microplastics removal and it assessed
their applicability.

• Coagulation/flocculation provide promising results regarding microplastics removal
from water. It has been shown the method is capable to remove particles with di-
mensions of 1 µm and higher and can be applied directly in WWTPs, which is their
real advantage.

• Degradation is a process that may lead to complete removal of microplastics from
water via total decomposition. Photochemical, photocatalytic and ozone degrada-
tions were discussed. These methods trigger changes in the mechanical/chemical
properties of microparticles that may ease their degradation. The size of treated
particles does not seem to be limited—the reported removed dimensions were even
below 1 µm. The most important drawback is the potential increase in treated ef-
fluent toxicity during the degradation process, as the surface can contain adsorbed
contaminants of emerging concern that can be released from the surface during the
degradation process.

• Separation methods, such as density separations or various types of flotation, often
require the addition of other chemicals to the process. The reported treated size was
limited to 50 µm and higher.

• The advantage of filtration is its diversity, as many types of filtrations may be applied
(sand filtration, biochar/activated carbon filtration, or membrane filtration). This
method is also standardly applied directly in WWTPs. It seems that current versions
of filters would not require special modification for microplastics removal. The main
disadvantage of membrane filtration is its fast fouling with particles of nm dimensons.
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Abbreviations

AIO Air Induced Overflow
BPA Bisphenol A
DOC Dissolved Organic Carbon
DRIFTS Diffuse Reflectance Infrared Fourier Transform Spectroscopy
EM Electromagnetic (radiation)
FTIR Fourier-Transform Infrared Spectroscopy
HDPE High Density Polyethylene
LDPE Low Density Polyethylene
PAHs Polyaromatic hydrocarbons
PAM Polyacrylamide
PE Polyethylene
PES Polyester
PET Polyethylene terephthalate
PMMA Polymethylmethacrylate
POPs Persistent organic pollutants
PS Polystyrene
PUR Polyurethane
PVC Polyvinylchloride
PVDF Polyvinylidenefluoride
UV Ultraviolet
WWTP Waste Water Treatment Plant
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