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Abstract: Solvent-free aerosol jet printing has been investigated for fabricating metallic and semi-
conductor (gas-sensitive) microstructures based on copper nanoparticles on alumina, borosilicate
glass, and silicon substrates. The synthesis of nanoparticles was carried out using a spark discharge
directly in the printing process without the stage of preparing nano-ink. Printed lines with a width of
100–150 µm and a height of 5–7 µm were formed from submicron agglomerates consisting of primary
nanoparticles 10.8 ± 4.9 nm in size with an amorphous oxide shell. The electrical resistivity, surface
morphology, and shrinkage of printed lines were investigated depending on the reduction sintering
temperature. Sintering of copper oxides of nanoparticles began at a temperature of 450 ◦C in a
hydrogen atmosphere with shrinkage at the level of 45–60%. Moreover, aerosol heat treatment was
used to obtain highly conductive lines by increasing the packing density of deposited nanoparticles,
providing in-situ transformation of submicron agglomerates into spherical nanoparticles with a size
of 20–50 nm. Copper lines of spherical nanoparticles demonstrated excellent resistivity at 5 µΩ·cm,
about three times higher than that of bulk copper. In turn, semiconductor microstructures based on
unsintered agglomerates of oxidized copper have a fairly high sensitivity to NH3 and CO. Values of
response of the sensor based on non-sintered oxidized copper nanoparticles to ammonia and carbon
monoxide concentration of 40 ppm were about 20% and 80%, respectively.

Keywords: dry aerosol jet printing; copper nanoparticles; spark discharge; conductive lines; gas-
sensitive microstructure

1. Introduction

Currently, printing technologies are actively developing for the manufacture of sen-
sors [1], antennas [2], fuel cells [3], flexible displays [4], and other electronic devices. The
key advantages of printing technologies over silicon electronics are low manufacturing
costs, rapid prototyping, and multi-substrate compatibility, including polymer materi-
als [5,6]. Thus, various methods of direct printing with nanoparticles have been developed
in recent decades. Among them are the following: inkjet [7], aerosol jet [8], screen [9],
microplotter [10] and electrohydrodynamic [11] printing, focusing of aerosol nanoparticles
using aerodynamic lenses [12], electrostatic masks [13], micro-nozzles [14], and others.
However, one can note the technology of “dry” aerosol jet printing (AJP) [15,16]. This
technology does not require the preparation of nano-ink, and aerosol nanoparticles are
synthesized as a result of electrical erosion of electrodes directly during the printing pro-
cess [17]. In this regard, “dry” AJP has a high versatility in the range of used materials
(metals and their oxides, semiconductors and carbon) [18]. Wherein, there is not required
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additional time for the development and optimization of the composition of nano-ink and
pastes in comparison, for example, with inkjet or screen printing.

At the same time, “dry” AJP is a relatively new and insufficiently researched tech-
nology. Currently, there are no works devoted to studies of the compatibility of this
technology with various substrate materials. For this reason, this paper investigates the
“dry” AJP of functional (current-carrying and gas-sensitive) microstructures on common
substrates made of alumina, borosilicate glass, and silicon. These materials are widely
used in printed electronics due to their heat resistance, mechanical and dielectric strength.
The compatibility of printed microstructures on various substrates is studied using the
example of copper nanoparticles synthesized in a spark discharge during electrical erosion
of copper electrodes. Printed lines based on copper nanoparticles are promising as current-
carrying contacts in solar cells [19], thin film transistors [20], flexible antennas [21], and
RFID tags [2,22]. Copper nanoparticles are competitive alternative to noble metals (Ag, Au,
Pt, etc.) due to their low cost (several times less than Ag) and high electrical conductivity
(6% less than Ag) [23]. However, copper nanoparticles are subject to significant oxidation
under ambient conditions. For this reason, the synthesis and thermal sintering of copper
nanoparticles were carried out in a reducing atmosphere of hydrogen.

In this study, we have successfully printed current-carrying and gas-sensitive mi-
crostructures based on metallic and oxidized copper nanoparticles using “dry” aerosol jet
printing without the use of organic solvents and nano-ink. Based on the results of the work,
the effect of the sintering temperature and the type of substrate material on the electrical
resistivity of the formed lines from copper-based nanoparticles was determined. Moreover,
the initial unsintered lines based on oxidized copper nanoparticles were investigated for
the detection of gaseous impurities of ammonia and carbon monoxide.

2. Materials and Methods

Figure 1 shows experiment scheme on the formation and thermal sintering of printed
lines from nanoparticles on various substrates for fabricating current-carrying and gas-
sensitive microstructures. The formation of printed lines with a width of 100–150 µm and a
length of 1.5–2.0 mm was carried out due to the focused deposition of aerosol nanoparticles
on moving substrates. Common materials in printed electronics, such as alumina Al2O3
(VK-100 ceramic, C-Component Ltd., Moscow, Russia), borosilicate glass BG (GETECH,
Shenzhen, China), and silicon Si (Si-CZ, Microchemicals GmbH, Ulm, Germany), were used
as substrates. Alumina and borosilicate glass are dielectrics and silicon has a resistivity
equal to 1–10 Ω·cm, which is several orders higher than the resistance of copper lines.
Silicon also contained a natural dielectric layer of SiO2 on the surface with a thickness
of several nanometers. In the experiments, the electrical and gas-sensitive characteristics
of printed lines made of nanoparticles were investigated. Thermal sintering of lines to
obtain conductive microstructures was carried out using a tube furnace in a hydrogen
atmosphere. In turn, gas-sensitive microstructures, which are the original unsintered lines,
were tested in the experimental setup “Mikrogaz-F” [24] for the detection of ammonia
(NH3) and carbon monoxide (CO).

In the process of “dry” aerosol jet printing, nanoparticles were synthesized directly in
a spark discharge due to electrical erosion of copper electrodes (Cu ≥ 99.90%, KUZOCM,
JSC, Kamensk-Uralsky, Russia) in an argon-hydrogen flow (Ar 95% + H2 5%). This gas
mixture was used as a reducing agent to limit the oxidation of nanoparticles during their
synthesis. An optimized process for the synthesis of nanoparticles using a spark discharge
was previously reported in works [25,26]. The size, morphology, and crystal structure of
the synthesized nanoparticles were investigated using a transmission electron microscope
(JEM-2100, JEOL Ltd., Tokyo, Japan). Real-time particle size distribution was measured
using an aerosol spectrometer (SMPS 3936, TSI Inc., Shoreview, MN, USA). Further, aerosol
nanoparticles were focused and deposited on substrates through a coaxial micro nozzle
with an outlet diameter of 100 µm. Aerosol nanoparticles collided with the substrate
at high speed (50–150 m/s) and attached to its surface due to the van der Waals force.
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The width of the nanoparticle beam was controlled by the flow rates of the carrier gas
Qa and the sheath flow Qsh, respectively. At the same time, the sheath flow Qsh limited
the expansion of the nanoparticle beam and protected the nozzle clogging. The focusing
process of aerosol nanoparticles was described in more detail in the works [15,27,28]. In
the presented experiments, Qa and Qsh were equal to 50 and 20 sccm, respectively. The
distance from the nozzle to the substrate and the speed of substrate were 0.3 mm and
0.42 mm/min, respectively. The number of print layers varied from 2 to 5.

Figure 1. Scheme of the formation of printed lines from nanoparticles on various substrates, including (a) generation,
(b) focused deposition, and (c) thermal sintering processes.

Thermal sintering of lines was used to reduce oxidized copper nanoparticles and
obtain conductive copper microstructures. The printed lines were sintered at various
temperatures ranging from 350 to 650 ◦C for 60 min using a tube furnace using H2 as a
reducing agent at a flow rate of about 50 sccm. The length and internal diameter of the
tube furnace chamber were 560 and 30 mm, respectively. The sample-heating rate was
5 ◦C/min with natural cooling in a controlled atmosphere. The electrical resistivity ρ of
current-carrying microstructures was investigated depending on the sintering temperature
Tsint and the type of substrate material. There were 5 lines on each type of substrate
formed for each temperature sintering to define the accuracy. The electrical resistivity was
determined by the following Equation (1):

ρ =
R·A

L
(1)

where R—electrical resistance; A—cross-sectional area; L—length.
Contact pads were formed at both ends of the lines using silver paste PELCO® (prod-

uct No. 16031, Ted Pella, Inc., Redding, CA, USA) to measure their resistance after the
sintering process. Silver paste solidified at room temperature, which excluded further
heating of the sintered lines. The electrical resistance of the line R was measured using a
multimeter (U1272A, Agilent Technologies Inc., Santa Clara, CA, USA). The cross-sectional
area A and the length L of each of the five lines formed on the same type of substrate
and sintered at the same temperature were independently measured by an optical 3D
profilometer (S neox, Sensofar, Terrassa, Spain).

Wherein, the initial unsintered lines of nanoparticles were investigated as gas-sensitive
microstructures. These lines were formed on a special alumina substrate containing a plat-
inum heater and built-in electrodes for measuring the resistance of the gas-sensitive layer.
The resistance of the gas-sensitive layer to the action of the target gases CO and NH3 mixed
with air was measured using a controlled gas mixer “Mikrogaz-F” [24]. Synthetic air con-
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sisting of oxygen and nitrogen of high purity (99.999%) was used in the experiments. The
“Mikrogaz-F” unit fed into the gas chamber the content of target gases in the concentration
range from 1 to 50 ppm with controlled humidity in the air of 50% RH. The investigated
range captured the threshold limits of values according to Russian Hygiene Norm [29]. For
example, the threshold limit value of CO and NH3 is 17 ppm and 28 ppm, respectively.
The mode of measuring the gas-sensitive characteristics of the original unsintered lines is
presented in Table 1.

Table 1. The mode of measuring the gas-sensitive characteristics of the initial unsintered lines using
the “Mikrogaz-F” gas mixing system.

Working
Temperature, ◦C Target Gas Concentration, ppm Relative Humidity, %

270
CO 8.5, 17 and 40

50NH3 7, 14, 28 and 40

The microstructure and elemental composition of the printed lines were investigated
using a scanning electron microscope SEM (JSM-7001F, JEOL Ltd., Tokyo, Japan) with
an attachment for energy-dispersive X-ray (EDX) spectroscopy. The EDX analysis was
performed by XFlash detector (6-30, Bruker Corporation, Billerica, MA, USA).

3. Results and Discussion

In the process of “dry” AJP, the synthesis of nanoparticles was carried out continuously
as a result of a spark discharge between the electrodes. Thus, copper-based nanoparticles
were obtained in the process of evaporation-condensation of electrodes in a controlled gas
atmosphere [30]. Figure 2a,b shows the corresponding transmission electron microscopy
(TEM) images of nanoparticles synthesized in a spark discharge by erosion of copper
electrodes in an argon-hydrogen atmosphere (Ar 95% + H2 5%).

The figures show that the resulting nanoparticles are fractal-like agglomerates con-
sisting of separate near-spherical primary nanoparticles [31]. The average size of primary
nanoparticles is 10.8 ± 4.9 nm, according to the analysis of TEM images, see Figure 2c.
In this case, according to measurements on an aerosol spectrometer, the mode size of the
agglomerates is 98 ± 9 nm (Figure A2, Appendix A). These dimensions are typical for the
synthesis of nanoparticles using a spark discharge [32]. Based on the results of the analysis
of TEM images and the electron diffraction pattern, it was determined that the resulting
nanoparticles have a crystalline structure with a small fraction of an amorphous oxide shell
on the surface. The high-resolution TEM image (Figure 2b) shows that the thickness of the
amorphous layer on the surface of the recently obtained nanoparticles is approximately
3–5 nm. The formation of an amorphous layer on the surface of nanoparticles can be
associated with the process of oxidation of the samples during their exposure and storage
in air. Earlier it was reported that copper nanoparticles synthesized by other gas-phase
methods [33], also inevitably consist of an oxide shell layer that affects the conductivity of
microstructures. The crystal structure of copper nanoparticles was determined by analyz-
ing the electron diffraction pattern. As shown in Figure 2d, the electron diffraction pattern
consists of rings corresponding to interplanar spacings of 2.06, 1.83, 1.26, and 1.09 Å. These
values are in good agreement with the values characteristic of the (111), (200), (220), and
(311) planes of pure copper without any impurities with a cubic face-centered unit cell and
space group Fm3m [34].
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Figure 2. (a,b) TEM images of nanoparticles synthesized in a spark discharge by erosion of copper electrodes in an
argon atmosphere with hydrogen (Ar 95% + H2 5%) and the corresponding (c) particle size distribution and (d) electron
diffraction pattern.

Figure 3a–c shows the cross-sectional profiles of printed lines of copper-based nanopar-
ticles formed on alumina, borosilicate glass, and silicon substrates, respectively. This figure
shows that the line profiles have a similar Gaussian shape, a width of 100–150 µm and a
height of 5–7 µm, regardless of the substrate material and the degree of their roughness. In
this case, the broadening effect of the deposited material does not significantly appear, as,
for example, in the case of inkjet or microplotter printing [35], since in the process of “dry”
AJP, the formation of lines is carried out due to the direct deposition of nanoparticles on the
substrate without the use of inks and solvents. This feature can be a key advantage when
forming functional lines on different substrates over traditional “wet” printing processes.

As known, copper nanoparticles tend to oxidize easily under environmental condi-
tions [33,34]. Printed lines based on copper nanoparticles synthesized in a spark discharge
are no exception. From the analysis of the EDX spectra, it was found that the initial un-
sintered lines, stored in air for several days, have noticeable oxygen peaks at the level
of 3–4 wt%, see Figure 3d. Due to the oxidation of nanoparticles, the initial lines had a
high resistance at room temperature of 25 ± 5 ◦C equal to >300 MΩ, which is above the
measurement limit by the multimeter used. In this case, the presence of zinc impurities
in the samples is explained by the evaporation of brass holders during the synthesis of
nanoparticles. Zinc impurity is also observed in platinum nanoparticles produced using a
similar spark discharge generator with brass holders [36].
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Figure 3. Cross-sectional profiles of printed lines from nanoparticle formed on substrates of (a) alumina, (b) borosilicate
glass, and (c) silicon, (d) typical energy-dispersive X-ray spectroscopy EDX-spectrum of presented lines measured by
SEM JSM-7001F.

Based on the results of measurements of the temperature dependence of the resistance,
it was determined that the initial lines of nanoparticles exhibit a semiconductor type of
conductivity. Thus, the resistance of the samples decreased monotonically with an increase
in their temperature in the range from room temperature to 300 ◦C (573 K) (Figure A1,
Appendix A). This semiconducting character of conductivity indirectly indicates the pres-
ence of oxidized nanoparticles in the composition of printed lines, for example, CuO or
Cu2O, which are typical metal oxide semiconductors [37]. Moreover, based on the results
of gas-sensitive measurements, it was determined that unsintered lines demonstrate p-type
conductivity, characteristic of CuO [37]. This type of conductivity is indirectly confirmed
by an increase in the resistance of the unsintered line in the presence of a gas impurity
(carbon monoxide and ammonia). It is known that the resistance increase in a concentrated
gas environment occurs due to the formation of surface-active radicals exhibited by the
dissociation of gas impurity molecules at heated oxide surfaces [10]. This leads to the
formation of free electrons. The excessive free electrons appearing because of the surface
reactions recombine with holes at p-type oxides reduces a free carrier concentration and
thus increasing the resistance of the oxide [10].
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It is known that the presence of surface oxides can be reduced by sintering nanoparti-
cles in a reducing atmosphere [38]. Thus, with the aim of producing conductive microstruc-
tures, reductive sintering of the formed lines was performed. Sintering was carried out
in a tube furnace with the length and internal diameter of the chamber 560 and 30 mm,
respectively, in a hydrogen atmosphere with a gas flow rate of about 50 sccm. The gas flow
was controlled at the inlet to the tube furnace using a mass gas flow regulator. The heating
rate of the samples was 5 ◦C/min with holding at a given temperature of 350–650 ◦C for
60 min. Sintering of the lines at the furnace temperature of ≥750 ◦C led to the destruction
of the lines and an increase in the resistivity, respectively. Based on the results of these
experiments, the effect of the sintering temperature on the electrical resistivity, morphology,
and elemental composition of printed lines was determined.

Figure 4 shows the change in the electrical resistivity of the lines ρ on various substrates
depending on the sintering temperature Tsint, as well as their corresponding optical images.
As the sintering temperature increases, the electrical resistivity of the lines decreases
noticeably, and then reaches saturation, see Figure 4a. For example, the electrical resistivity
approached its minimum value of 35–45 µΩ·cm at a sintering temperature of about 650 ◦C.

Figure 4. (a) Values of electrical resistivity and (b) corresponding optical images of printed lines on
substrates of Al2O3, BG, and Si, depending on the reduction sintering temperature of 350–650 ◦C.

Figure 4 also shows that reductive sintering of oxidized copper nanoparticles begins
to be noticeable at sintering temperatures above 450 ◦C. At these temperatures, the lines
become conductive (Figure 4a), and their color changes from black to red-orange (Figure 4b).
Moreover, the oxygen concentration decreases from 3.0 to 0.5 wt% when the temperature
Tsint increases from 350 ◦C to 450 ◦C, respectively. For example, the oxygen concentration
in the unsintered lines was 3–5 wt%. The oxygen concentration is totally removed only at
sintering temperatures above 550 ◦C according to EDX analysis. Thus, it was experimentally
found that a temperature of 450 ◦C becomes sufficient to activate the chemical reaction
of copper oxide reduction, according to the following expression: CuxO + H2(g)→ xCu
+ H2O(g). The high temperature of reductive sintering of 450 ◦C is probably associated
with a rather thick 3–5 nm oxide shell on the surface of the synthesized nanoparticles (see
Figure 2b), since copper oxides have a higher melting point than metallic copper [39]. High
sintering temperatures can limit the use of thermosensitive polymer substrates such as
polyimide, polyethylene naphthalate, and others.

To explain the changes in electrical resistivity during reductive sintering, we addi-
tionally performed a microstructural analysis of the surface of lines sintered at different
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temperatures, the results of which are shown in Figure 5. Samples sintered at 350 ◦C were
a typical fine-grained structure formed by a network of oxidized copper nanoparticles,
see Figure 5a. Thereby, these samples had a high electrical resistivity, much more than
400 µΩ·cm (see Figure 4a).

Figure 5. Scanning electron microscope (SEM) images of the surface of printed lines made of
nanoparticles on alumina, borosilicate glass, and silicon substrates sintered in a reducing atmosphere
at temperatures equal to (a) 350, (b) 450, (c) 550, and (d) 650 ◦C, respectively.

Figure 5b shows that the reduction sintering of the lines began at a temperature
of 450 ◦C as a result of the coarsening of grains and a decrease in the porosity of the
microstructure. Further compaction of the microstructure accelerated with an increase in
temperature to 550 ◦C, as shown in Figure 5c. This condensation of the microstructure
resulted in a sharp decrease in the electrical resistivity from 275 to 100 µΩ·cm, see Figure 4a.
At the same time, with an increase in the sintering temperature to 650 ◦C, the growth of
microstructure compaction became less noticeable, and the sintered lines reached the
minimum electrical resistivity at the level of 35–45 µΩ·cm. It should be noted that high
sintering temperatures of 650 ◦C could also lead to cracking and partial peeling of lines
due to differences in the coefficients of thermal expansion of the particle and substrate
materials. In this connection, it was experimentally found that the recommended sintering
temperature should be reduced to 550 ◦C. At this temperature, the sintered lines have good
adhesive strength and acceptable electrical resistivity.

From the results of elemental analysis (Figure 6a), measured by SEM, it was found that
with an increase in the sintering temperature from 350 ◦C to 650 ◦C, there is a significant
increase in the mass fraction of copper from 78.4 to 99.7 wt%, respectively. This increase
is indicative of effective copper reduction with complete removal of oxides from sintered
microstructures. Figure 6a shows that there is a zinc impurity in the samples. It is known
that zinc oxide is also effectively reduced with hydrogen ZnO + H2 (g)→ Zn (g) + H2O
(g) [40] followed by complete evaporation of Zn at the temperature of 700 ◦C [41]. Probably,
similar processes take place in our experiments.
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Figure 6. (a) Changes in the elemental composition (results of EDX analysis) and (b) the cross-sectional profile of lines
based on copper nanoparticles with the temperature of reductive on alumina substrate as an example.

However, despite the high proportion of copper, the electrical resistivity of the sintered
lines is 10–15 times higher than the electrical resistivity of the bulk material ~1.7 µΩ·cm.
The main reason for this low resistance may be the large number of pores in the sintered
lines. In the case of the presence of pores in the volume of the line, it can be difficult to
understand the quality of their sintering, examining only the surface morphology. For
this reason, additional studies on the degree of shrinkage S of the line depending on
the sintering temperature were performed. The degree of shrinkage S of the line, which
is responsible for the change in the cross-sectional area before and after sintering, was
determined using the following Equation (2):

S =
A0 − A

A0
(2)

where S, A0 and A are the shrinkage, cross-sectional areas of the initial and sintered lines,
respectively.

Figure 6b shows, as an example, the change in the cross-sectional profile of a line on
an alumina substrate at different reductive sintering temperatures. The general result of
determining the degree of shrinkage of lines on substrates of Al2O3, BG, and Si, depending
on the sintering temperature, is presented in Table 2 as the average value of measurements
of five lines on one type of substrate for each sintering temperature.

Table 2. Shrinkage of printed lines as a function of sintering temperature on various substrates.

Sintering Temperature
Tsint, ◦C

Alumina (Al2O3) Borosilicate Glass (BG) Silicon (Si)

Shrinkage S, %

350 15 ± 7 12 ± 7 14 ± 7
450 45 ± 8 59 ± 8 54 ± 6
550 48 ± 5 65 ± 7 61 ± 7
650 59 ± 6 69 ± 9 63 ± 8

The Table 2 shows that the degree of shrinkage of the lines after sintering at 350 ◦C
is insignificant and amounts to 12–15%. At the same time, a significant shrinkage of the
printed lines equal to 45–59% is observed with an increase in the sintering temperature
to 450 ◦C, and reaches a maximum value of about 70% at a temperature of 650 ◦C. In
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this regard, it can be seen that the degree of shrinkage (Table 2) and electrical resistivity
(Figure 4a) of the lines correlate with each other. Thus, incomplete shrinkage or high
residual porosity of the samples can be the reason for their high electrical resistivity.

It is known from sintering theory that sintered agglomerate structures contain a large
number of closed pores [42]. Considering this, additional experiments were performed
on the formation and sintering of lines from spherical nanoparticles instead of fractal-like
agglomerates in order to obtain denser and highly conductive microstructures. Spherical
nanoparticles were produced using a spark discharge as shown in Figure 1, but the aerosol
nanoparticles were additionally passed through a tube furnace prior to deposition onto
a substrate. As a result of this heat treatment at 1000 ◦C for 6 s, the shape of aerosol
particles was transformed from fractal-like agglomerates to spherical nanoparticles with
a size of 20–50 nm, according to transmission electron microscopy, see Figure 7a–c. The
transformation of the shape and size of aerosol nanoparticles using a tube furnace is
described in detail in works [43].

Figure 7. (a,b) TEM image of spherical nanoparticles obtained during heat treatment of agglomerates;
and (c) corresponding electron diffraction pattern. (d) SEM images of printed lines of spherical nanopar-
ticles on Al2O3, BG, and Si substrates sintered in a reducing hydrogen atmosphere at Tsint = 550 ◦C.

After focused deposition and thermal sintering, the electrical resistivity, morphology,
elemental composition and shrinkage of printed lines were also investigated. SEM images
(Figure 7d) of lines from spherical nanoparticles sintered at Tsint = 550 ◦C show that they
have a denser microstructure and fewer cracks, in contrast to lines from sintered agglomer-
ates (Figure 5b). At the same time, the degree of shrinkage and the elemental composition
of these lines were similar to structures of fractal-like agglomerates, see Tables 2 and 3.
The aspects related to the influence of agglomeration on the sintering result have been
previously investigated in various works [42,44]. It is known that the agglomeration of
nanoparticles, in general, reduces the density of the sintered microstructure [42]. Ag-
glomeration refers to the assemblage of two or more primary nanoparticles held together
by the van der Waals force [45]. The presence of bonds between nanoparticles prevents
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their displacement during the compaction process, and as a result, dense packing of the
microstructure is not achieved. Moreover, the packing density decreases with decreasing
nanoparticle size due to an increase in interparticle interaction [42].

Table 3. Electrical resistivity, shrinkage, and elemental composition of sintered lines made of spherical
copper-based nanoparticles.

Alumina (Al2O3) Borosilicate Glass (BG) Silicon (Si)

Electrical resistivity ρ,
µΩ·cm 5.1 ± 0.6 5.3 ± 0.7 5.1 ± 0.8

Shrinkage S, % 44 ± 10 38 ± 9 32 ± 8

Elemental composition of
sintered lines, wt.%

Cu—98.6
Ag—1.0
O—0.4

It can be seen from the results of TEM images that the initial aerosol nanoparticles
are highly agglomerated, since they consist of many primary nanoparticles (Figure 2a). At
the same time, aerosol nanoparticles passed through the tube furnace are mainly single
spherical nanoparticles (Figure 7a). According to the results of measurements on an aerosol
spectrometer, it can be seen that the modal sizes of the initial agglomerates are larger
than the sizes of nanoparticles that have passed through the tube furnace—98 ± 9 nm
and 62 ± 7 nm, respectively (Figure A2, Appendix A). Based on early research [44], it is
expected that sintered lines formed from non-agglomerated spherical nanoparticles will
have lower porosity (high density), and low resistivity compared to structures formed from
the initial agglomerates. This assumption is confirmed by the results of measurements of
the surface morphology and electrical resistivity of the sintered lines. Figures 7d and 5c
of the surfaces of sintered lines show qualitatively that lines from spherical nanoparticles
have lower porosity than lines from initial agglomerates. Moreover, the resistivity of lines
from spherical nanoparticles ~5 µΩ·cm (Table 3) is noticeably lower than the resistivity
of lines from initial agglomerates 70–100 µΩ·cm (Figure 4), sintered at 550 ◦C. High
residual porosity and high electrical resistivity of printed lines from initial agglomerates
are associated with their high degree of agglomeration. It is known that agglomeration is
the cause of the appearance of a bimodal porous structure with large inter-agglomerate and
small intra-agglomerate pores [46], respectively. During sintering, small intra-agglomerate
pores shrink faster than larger ones due to the higher local curvature. Thus, large inter-
agglomerate pores are more difficult to remove [46]. Consequently, agglomeration leads to
residual voids and inhomogeneous microstructure during the sintering process.

The electrical resistivity of the lines made of spherical nanoparticles was minimal and
amounted to 5 µΩ·cm (Table 3), which is approximately three times higher than that of
bulk copper. These printed lines also showed long-term stability up to 2 months of storage
in the environment without any significant reduction in electrical resistivity. At the same
time, the achieved values of resistances of printed lines are comparable with competing
methods based on the use of nano-ink. For example, at work [33] it was reported that arc
discharge inkjet nano-ink had a resistivity of 5.4 ± 0.6 µΩ·cm at a sintering temperature
of 300 ◦C. Thus, it has been experimentally shown that the method of “dry” aerosol jet
printing followed by sintering can be used to create conductive copper lines from spherical
nanoparticles with excellent electrical properties on various substrates.

As defined above, the high porosity of loose agglomerate printed lines is an obstacle to
the fabrication of highly conductive microstructures. In turn, highly porous microstructures
from agglomerates can be promising for gas sensor applications, where a high specific
surface area of a gas sensitive material is important. Thus, in this work, using the method
of “dry” AJP, a gas-sensitive layer was formed on a measuring substrate made of alumina.
The gas-sensitive layer based on copper nanoparticles was a low (less than 5 µm) printed
line with a width of about 150 µm, deposited on the measuring electrodes, heated from
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below using a platinum heater in the form of a meander, see Figure 8a. Further, the formed
structure was tested using the “Mikrogaz-F” gas-mixing system for the detection of gaseous
impurities of ammonia and carbon monoxide, see Table 1. Based on the test results, the
dependences of the resistance of the gas-sensitive layer on the concentration of NH3 and
CO were determined; see Figure 8b–d.

Figure 8. (a) Photo of a microstructure in the form of a printed line based on nanoparticles of copper oxide formed on
alumina substrate for gas sensor testing. (b) Dependence of the relative changes in resistance and (c,d) the corresponding
time responses of the gas sensitive layer on the concentration of NH3 and CO.

The resistance of the sensors is decreased with increase of the working tempera-
ture, suggesting that the gas-sensitive layer possess characteristics of semiconductors.
Figure 8c,d show the sensor response to NH3 and CO, correspondingly, at the working
temperature of 270 ◦C. The increase of resistance under influence of the target gases is
related to the sensing mechanism of p-type metal oxide semiconductors [47]. The chemical
reaction between the target gases and surface oxygen removes the chemisorbed oxygen
molecules releasing free electrons. In case of p-type copper oxide, release of electrons leads
to recombination between holes and electrons, decrease of number of free holes, increase of
potential barriers between nanoparticles and the corresponding increase in the resistance.
The dependences of the relative change of resistance on the concentration of NH3 and
CO gases are shown in Figure 8b. These dependencies can be fitted by a power law as
usual for metal oxide sensors [48]. Figure 8c,d presents the resistance transients upon
exposure to NH3 and carbon oxide. The observed response and recovery times (250–300 s)
agree well with those reported in [37]. Response of the sensor fabricated based on non-
sintered oxidized copper nanoparticles to ammonia and carbon monoxide concentration of
40 ppm is about 20% and 80%, respectively. Thus, the applicability of printed lines made
of loose agglomerates based on oxidized copper as a sensitive layer of a gas sensor has
been demonstrated.
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4. Conclusions

The new method of “dry” aerosol jet printing, including the synthesis of nanoparticles
by spark discharge, has prospects in the production of printed electronics products due to
the absence of the need to prepare nano-ink, the simplicity, and versatility of the spectrum
of the obtained nanomaterials (metals and their oxides, semiconductors and carbon). In
this work, we have demonstrated the compatibility of this method with substrates made of
various inorganic materials, such as alumina, borosilicate glass, and silicon. It was found
that the broadening effect of the formed lines on various substrates practically does not
appear in comparison with traditional approaches of “wet” printing. Depending on the
conditions of post-printed heat treatment, both metallic and semiconducting (gas-sensitive)
microstructures based on copper nanoparticles can be easily obtained. Sintering of copper
oxide nanoparticles begins at the temperature of 450 ◦C in hydrogen atmosphere with the
shrinkage of 45–60%. Copper lines based on spherical nanoparticles show a low electrical
resistivity of 5 µΩ·cm after reduction sintering at 550 ◦C for 60 min. In turn, semiconductor
micro-structures based on unsintered agglomerates of oxidized copper have a fairly high
sensitivity to NH3 and CO. Response of the sensor fabricated based on non-sintered
oxidized copper nanoparticles to ammonia and carbon monoxide concentration of 40 ppm
is about 20% and 80%, respectively.

Author Contributions: Conceptualization, A.A.E.; methodology, D.V.K. and A.I.B.; investigation,
E.I.K., N.B.P., A.V.N., and A.E.V.; data curation, A.I.B., D.V.K., and P.V.A.; writing—original draft
preparation, D.V.K.; writing—review and editing, A.A.E.; visualization, A.A.L.; project administra-
tion, A.A.E. and V.V.I. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Russian Science Foundation (project no. 19-79-00375).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Temperature dependence on resistance of the unsintered line for determination of type
conductivity.
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Figure A2. Particle size distributions of agglomerates and spherical NPs measured at the outlet of
the coaxial micro nozzle by the aerosol spectrometer (SMPS 3936, TSI Inc., Shoreview, MN, USA).
FWHM is the full width at half maximum.
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