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Featured Application: The use of Wiener Entropy for the detection, localization, and severity as-
sessment of a multi-damaged structure is presented. The method is discussed and then verified
on the numerically simulated data of a buried steel pipeline, artificially corrupted with addi-
tive noise.

Abstract: According to recent works, entropy measures, and more specifically, spectral entropies,
are emerging as an efficient method for the damage assessment of both mechanical systems and
civil structures. Specifically, the occurrence of structural system alterations (intended in this work
as stiffness reduction) can be detected as a localized change in the signal entropy. Here, the Wiener
Entropy (also known as the Spectral Flatness) of strain measurements is proved as a viable tool
for single and multiple damage assessment, including damage detection, localization, and severity
assessment. A case study from oil & gas engineering, i.e., a finite element model of a buried steel
pipeline, is utilized for this aim.

Keywords: Wiener entropy; structural health monitoring; pipeline integrity management; damage
detection; damage localization; damage severity assessment; multiple damages; information theory;
steel pipes; oil & gas engineering

1. Introduction

By following the classic definition in information theory, entropy represents a measure
of the ignorance of the target system under investigation [1]. This is generally utilized to
define its intrinsic complexity, i.e., non-uniformity. Its application for structural health
monitoring (SHM) purposes stems from a conjecture of a possible eighth axiom of SHM, as
reported in Farrar et al. [2] a decade ago:

“The presence of damage in a structure or system usually results in increased complexity
of measured responses or features”.

In other words, the concept is that damage can be detected and assessed through statistics
and signal processing as a time- and space-defined variation in the system’s structural
complexity, as further detailed more recently in [3].

The SHM axioms [2,4] aimed to provide a framework for the principled selection of
effective damage-sensitive features (DSFs). In this regard, entropy is widely considered the
measure of diversity/complexity par excellence. For instance, the Shannon entropy has
been proved to be equivalent to the true diversity index with a Hill number of unit order
1D [5]. Therefore, it makes sense to apply entropy measurements as a DSF.
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Some entropy-based SHM approaches reported in the last years in the scientific
literature include the use of power spectral entropy [6] and multiscale cross-sample en-
tropy [7]. In [8], the authors proposed an interesting interpretation of the insurgence
and development of fatigue, corrosion, wear, radiation, and creep damage as irreversible
thermodynamics phenomena, thus from an entropic point of view.

Recently, in [9] benchmarked Shannon, Rényi, permutation, sample, approximate, and
spectral entropy for SHM purposes. The authors of [10] performed a similar comparison
between Wiener and Shannon spectral entropy for the application to mixed brick-stone
masonry structures, considering experimental evidence from three case studies damaged
from previous seismic events.

Indeed, the basic principles of the procedure reported here were set in [10,11]. In
the present paper, these principles are expanded, further detailed, and validated on a
numerically simulated case study of a buried steel pipe. This application, relevant in
the context of oil & gas engineering, presents several differences in comparison with the
masonry buildings analyzed in [10,11]. Underground structures are inherently challenging
due to:

(1) The impossibility to directly excite the structure with a controlled input; and
(2) The very stiff boundary conditions.

These aspects are shared by many geotechnical applications, such as deep foundation
piles, which are very difficult to investigate for structural integrity [12,13]. This is mainly
due to the very small amplitude of the output displacements, naturally induced by ambient
vibrations (AVs) and recorded with a grid of sensing devices. In fact, it is notoriously diffi-
cult to extract reliable DSFs from output-only recordings from weakly-excited structures
(see, e.g., a case study for cultural heritage preservation in [14]). As will be shown here,
entropy measures are instead particularly well-suited for dealing with low-amplitude,
random signals.

In this work, the potentialities of this framework were methodically investigated for
the first 2/3 main tasks of SHM, defined according to the classic Rytter’s hierarchy [15,16].

The remainder of this paper is organized as follows: Section 2 describes the theoretical
framework of the proposed approach; in Section 3, the context of this application is briefly
outlined; the numerical case study is detailed in Section 4; the results are discussed in the
following Section 5; and Section 6 (Conclusions) ends this paper.

2. Wiener Entropy Measurements for SHM Purposes

Out of the several definitions of ‘entropy’ currently reported in the scientific literature,
the Wiener entropy (WE, also known as spectral flatness) was found to be particularly
well-suited for metallic structures in previous studies [17]. The main motivation resides
in its greater sensitivity to small alterations in comparison to the more common Shannon
spectral entropy. This is relatively inconvenient for masonry or concrete structures, where
the material inhomogeneity and variability may cause damage-unrelated fluctuations. In
turn, these cause a higher risk of false-positive identifications [10], which are a common
threat to vibration-based SHM [18]. On the other hand, for more homogeneous building
materials, this greater accuracy can instead be exploited to detect small cracks in their
earlier extension phases.

The WE can be mathematically defined in a discretized fashion as:

Sw = B
B
√

∏B
i=1|H|

2
i

∑B
i=1|H|

2
i

(1)

where B represents the total number of frequency bins, that is to say, the number of discrete
measurements in the frequency domain, while |H|2 is the (discretized) power spectrum of
the recorded vibrational time history, evaluated at frequency f = f1, fi, . . . , fB.

The convenience of entropy measurements over other, more classic, approaches di-
rectly derives from the specific conditions of underground pipeline monitoring.
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The first aspect regards the amplitude of the system input and output. As hinted
above, the AV input is very low, and thus the system is only weakly excited. Due to this
minimal excitation level and the increased stiffness from the confining soil, the expected
output amplitude is even lower in amplitude. Generally, this is an inconvenient condition.

One can consider the following: the system behaves more deterministically for increas-
ing input energy. In fact, the energy of the system’s response is naturally amplified more
at the natural frequencies than at other frequencies. Thus, increasing the system energy
increases this disproportion and, therefore, inherently reduces the flatness of the frequency
spectrum. In contrast, at low energy levels, the actual response tend to become indistin-
guishable from the measurement noise, the system behaves mostly non-deterministically,
and the responses will have inherently higher entropy.

The second aspect regards the frequency content of the input. For system identi-
fication (SI) purposes, it is preferable to have a controlled input in order to excite only
specific portions of the system’s global dynamics. This is, e.g., the case of chirp or stepped
sines, which allow to isolate and follow a specific resonance frequency even in nonlinear
conditions. However, the Gaussianity of ambient dynamic loads (due to the central limit
theorem) guarantees an (almost) flat distribution of energy in the frequency domain, which
is ideal for entropy measurements [19].

Thus, these two aspects—the natural spectral flatness of the input signal and the
very low amplitude of the output response—make the use of the Wiener entropy/spectral
flatness particularly well-suited for buried metallic structures.

The rest of this discussion aims to verify the use of entropy measurements as a health
state indicator for the several tasks included in a complete SHM diagnosis. These include,
according to the classic hierarchical structure proposed by Rytter [15]:

1. (single- or multi-) Damage Detection: to identify if one or more damage(s) are present
or not in the structure;

2. (single- or multi-) Damage Localization: to define the most probable position of damage;
3. (single- or multi-) Damage Assessment: to evaluate the severity of the damage(s);
4. (single- or multi-) Damage Prediction: to establish the expected future growth of damage.

The last step is of less interest here since it will require further statistical information
concerning the expected remaining useful life (e.g., prognosis).

2.1. Uses for Damage Detection

The values of WE can be computed at any point and compared with the known
baseline computed from the pristine system. This approach is in accordance with the
classic statistical framework of pattern recognition-based SHM [20].

However, a deviation from the normality model is not necessarily an indicator of
damage per se. Such deviations could happen due to damage-unrelated confounding
influences, collectively known as environmental and operational variations (EOVs, [21,22]).
For this reason, the pipeline is here investigated only without any internal pressure to avoid
changes in the stress field induced by the changing operating conditions. The rationale is
that SHM is rarely performed online and in real-time but rather periodically, during a phase
of inactivity (e.g., at night, see for instance [23]). For unchanged external conditions, any
statistically relevant variation can be then pinpointed to a change in the internal structure
of the target system, i.e., to damage.

2.2. Uses for Damage Localisation

The effects of damage fade moving away from its location. This represents a limitation
for single-output damage detection, since the acquisition channel may be too far from the
damage to detect it correctly. However, with a properly placed array of sensors (thus, with
a multi-output acquisition system), this spatial variability can be exploited to locate the
(single or multiple) source(s) of inconsistency.
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2.3. Uses for Damage Severity Assessment

The physical, quantitative assessment of the damage severity would require some
a priori knowledge about the expected damage effects. This is not considered here as
the proposed framework is based only on data from the undamaged conditions of the
target system. Nevertheless, it is still possible to qualitatively estimate the severity of
damage by comparing the divergence between the WE values estimated from pre-and
post-damage recordings.

3. Buried Oil & Gas Pipelines

Pipelines are defined by four main factors: their external environment (i.e., the bound-
ary conditions), construction material, diameter, and thickness.

Regarding the external environment, buried pipelines are the predilected alternative
for the distribution of liquid resources over long distances. On the one hand, this is
particularly convenient to avoid interferences with other infrastructures, especially in
proximity of urbanized areas and potential incidents. Following the terminology in [24],
‘incidents’ refers in this context to both nonintentional accidents and sabotage or terroristic
events. On the other hand, this choice makes visual inspection—which still is the most
common practice for scheduled maintenance—unfeasible. This is even more evident for
subsea pipelines, which stretch below the seabed inside purposely excavated trenches.
Anyhow, even if doable, the length and ramifications of pipeline networks make man-
made visual inspection generally not cost-efficient. Thus, automated and vibration-based
approaches are preferable.

The reliability of such structural health monitoring (SHM) systems is nevertheless
of paramount importance due to the deleterious consequence of damage. This might
result in the leakage of pressurized inflammable liquids, with the potential for fire and
explosion. The costs in terms of human losses, disruption to the energy supply network,
environmental pollution, and other geohazards make the research into advanced solutions
economically convenient. Their sensitivity is relevant as well; in high-stress lines, even
small cracks can rapidly grow due to the spilling of highly pressurized fluids and lead to
abrupt rupture [25].

For these underground uses, two main categories of pipes are generally employed:
“rigid” and “flexible” pipelines. The former group is made up of the so-called pre-stressed
concrete cylinder pipes (PCCP), while the latter one consists of metallic structures. The
mechanical behavior is very different in these two options, as in PCCPs the pipe structure
carries the structural loads itself, while in steel pipes (SPs) they are supported by the
soil-structure interactions, thanks to the steel capability to deflect without breaking.

This discussion will focus on SPs, since they are overwhelmingly more widespread
for oil & gas transportations, both on- and offshore. For the industry needs, oil, gas,
and/or pressurized natural gas liquids (NGLs) are moved through these pipelines thanks
to compressor (for gas lines) or pump (for oil and NGLs) stations departing from the
production regions to distribution centers. In this sense, they represent a much more
economically convenient and safer way of transportation than by rail or road [26], with
statistics reporting only two deaths and 11 injuries on average per year between 1999 and
2001 on US territory, compared to the several thousand involved in truck crashes in the
same period [27].

SPs are generally made in carbon steel due to this material’s strength, relatively low
weight, and ease of workability. Alloy steels are also applied frequently; alloying elements
generally improve mechanical resistance but at a major economic cost, and thus they are
reserved for specific uses at extremely high temperatures and pressure. The interested
reader is referred to [28] for other relevant aspects about the design and structural analysis
of buried flexible steel pipelines.
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3.1. Typical Damages and Defects

A geometry-based classification of main damage typologies frequently encountered in
buried pipelines can be found in [29]. These include several crack shapes (circumferential,
longitudinal, spiral, or others), plus blowout holes. Some examples are represented in Figure
1.
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Figure 1. Some examples of typical damages in SPs (modified from https://www.linkedin.com/in/daniellukeberesford/
?originalSubdomain=uk, Accessed on 14 June 2021).

The most commonly occurring types of damage can be further classified according to
the different failure mechanisms from which they originate. These typically include pitting
corrosion, pipeline thinning, and pipe bursts. These latter ones are caused by sudden
transient pressures of the carried liquid (e.g., the “water hammer” phenomenon). The
pipeline thinning, generally, derives from steel corrosion, graphitization, or other material-
related degradation phenomena which result in metal loss. These are all time-dependent
and intensified by the exposition to a chemically aggressive environment, both externally
(i.e., in the surrounding soil) and/or internally (i.e., in the transported fluid).

Apart from mechanical fatigue and corrosion, other damaging factors include manufacturing-
related defects, which are known to cause internal cavities which coalesce into larger cracks
under mechanical stress [30], and defective welding. This latter case may result in localized
damages or larger coupling failures. Rapid (e.g., landslides) or slow (e.g., long-term
subsidence) large land movements of the nearby and underneath soil are two other frequent
issues, as well as weather-related and natural phenomena. Due to their long extension,
pipelines are also strongly vulnerable to seismic events and other large natural disasters
(this aspect is analyzed in-depth in [31]).

Finally, mechanical damages (voluntary or involuntary, such as vandalism, impacts,
incorrect operations) constitute a significant cause of instantaneous, immediate failure.
Mechanical damages caused by third-party excavation are widely considered as the main
cause of pipeline failure.

In their less severe form, these generally result in dent and gouge defects. More rarely,
these may cause latent weak points, very difficult to detect due to their limited area and
severity, until they lead to rapid collapse even after years.

Plain dents, which may occur due to small ground movements, rock impingement,
poor installation, or limited buckling phenomena, are not of great interest here since they
usually are not harmful, provided they are not excessively large [32]. Thus, they have not
been considered for this study.

https://www.linkedin.com/in/daniellukeberesford/?originalSubdomain=uk
https://www.linkedin.com/in/daniellukeberesford/?originalSubdomain=uk
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For the sake of this study, two different typologies of damage have been considered
and numerically modeled. In the first case, localized reductions in the material stiffness
are representative of dents or manufacturing defects (for low damage severity), pitting
corrosion (at intermediate/high damage level), or any through-thickness crack (for higher
damage intensity). In the second case, the stiffness is uniformly reduced over a narrow
ring-like cross-section of the pipe. This is intended to replicate, e.g., the loosening of bolts
at joints. More details about the modelling of these two damage cases will be provided
throughout Section 4.

3.2. Typical Approaches for Pipeline Monitoring

There are several best practices reported in the scientific literature regarding pipeline
integrity management (PIM; see, e.g., [33]). These can be categorized between maintenance
surveys, which can potentially include some non-destructive testing (NDT) techniques, and
long-term SHM apparatuses, which apply embedded sensors. Techniques and approaches
for both categories have been extensively reviewed, e.g., in [34,35].

Regarding NDTs, some approaches worthy of note include ultrasonic techniques
(reviewed by [36]), acoustic emissions (AE, [37]), eddy currents, etc. These point-wise,
localized approaches require, however, a nearby (robotic or human) operator. In this sense,
for scheduled maintenance and surveys, the use of instrumented pipeline inspection gauge
(PIG) [38] represents one of the main options for unmanned inspections to date. However,
pipelines dedicated to the transportations of explosive fluids are generally deemed as
“unpiggable” due to safety reasons. For these and other reasons, man- or robot-made
periodical inspections are not cost-efficient. Thus, output-only, vibration-based approaches
are preferable from a practical and economical point of view.

The procedure proposed in this work falls in this latter group, utilizing optical fibers
deployed along the pipe length for strain measurements. In this regard, a concise yet quite
complete review of sensors for vibration-based and non-vibrational SHM in buried pipes
can be found in [39] (the specific application is for underground water supply systems, but
the differences are irrelevant for what concerns the sensing technologies).

4. The Finite Element Models

In this research, two sets of finite elements (FE) were considered. Both sets were made
up of a pristine SP and its damaged counterparts.

Firstly, to better investigate the feature (Wiener entropy of axial strains) performance,
all unnecessary sources of uncertainties—such as material inhomogeneities—were omitted
in this first set of tests. Measurement noise was artificially added to corrupt the signals.

On the other hand, initial flaws on the SP and uneven distribution of the soil material
properties in the surrounding areas were included in the second case (being already in-
cluded in the first model the non-uniform distribution of the soil stiffness due to the location
of the pipeline in the depth). This point will be better addressed later in a dedicated Section.

All the FE models were built on Ansys® Mechanical APDL™. Here in this section,
only the first model will be discussed in detail. The differences between the first and the
second numerical case study will be detailed in the dedicated Section 6.

The structure consists of a 20 m-long section of steel pipeline. The SP was realized
with 4-node, 6-DoFs-per-node finite elements. Linear-elastic spring-like elements were
used to simulate the presence of the surrounding soil in the three directions (see Figure 2).
Each spring has a different stiffness value depending on the model geometry. The specific
details of this modeling choice will be discussed in the next subsections.
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The mass participation of the soil was considered with an additional term in the SP
density by minimizing the difference between the fundamental natural frequency of the
plane strain model of soil and SP (Figure 2b) and the fundamental natural frequency of a
local model of the SP surrounded by springs (Figure 2c) with stiffness obtained by the FE
model of the soil.

The global reference system was located at the centroid of the SP on one end, with
the z-axis oriented along the main pipe axis, the y-axis perfectly vertical and pointing
upward, and the x-axis perfectly horizontal to form a right-handed triad. The stiffness of
the springs in the z-direction was assumed to equal the one in the horizontal direction.
This multi-modeling approach was needed to consider the effect of the soil in the dynamics
of the SP in an way needing less computational effort, allowing the simulation of several
damage scenarios.

4.1. Cross-Sectional Geometry of the Pipe

The geometry of the pipeline cross-section was designed as follows. A relatively large
diameter (100 cm) was considered. The choice was made considering that the nominal
diameter for underground subsea pipelines generally ranges from a minimum diameter
of 6” (~15.2 cm) to a maximum of 48” (~121.9 cm) [40]. The uniform thickness was thus
computed according to ASME code B31.3, considering an allowable tensile stress equal
to 16,000 psi (110.32 MPa), quality factor for piping material equal to 0.8, wall thickness
coefficient equal to 0.4. To simulate operating conditions, a liquid pressure of about 600 psi
wwas assumed, i.e., ~4.14 MPa. This resulted in 22 mm-thick walls. Thus, the pipeline
cross-section is defined by an inner diameter of 98.9 cm and an outer diameter of 101.1 cm,



Appl. Sci. 2021, 11, 5773 8 of 27

with a uniform thickness. The pipe centroid was located at −200 cm (below ground level)
for all cross-sections. A consistent mass matrix was applied.

4.2. Material Properties

The parameters of standard carbon steel type 235 have been considered for the con-
struction material (see the second column of Table 1), as retrieved from [41] and following
the current European regulations [42]. Type 235 is commonly used in piping systems with
minimum design temperature ≥−15 ◦C and pipe thickness <3 cm [43]. A linear elastic
behavior was assumed for the steel; this assumption is justified by the small strains during
operating conditions.

Table 1. Mechanical properties of the FE models.

Carbon Steel Type 235 (EN 1993-1-1 [42])

Density 7850 (SP) + 1060 * kg/m3

Young’s modulus 210.7 GPa
Poisson’s ratio 0.30 −

*: to account for the equivalent soil contribution.

4.3. Boundary Conditions and Soil-Structure Interactions

The boundary conditions for the steel pipeline can be divided between the internal
and the external boundaries. On the inside, the pipeline was assumed to be empty and
have no internal pressure due to the reasons discussed in Section 2.1.

Concerning the soil-structure interactions, the following assumptions have been made:

− The mass and stiffening effects of the surrounding soil volume are emulated by a set
of spring elements;

− The SP boundaries are connected to these springs, and the edges of the springs
opposite to those connected to the SP are fully restrained, i.e., they do not vibrate
independently;

− The random noise forces transmitted by the surrounding soil are directly applied on
the SP external edge;

− A Rayleigh damping model is assumed, with mass and stiffness multipliers equal to
2.954362 and 0.000304, respectively, which corresponds to 3% damping ratio on the
first two modes of the SP.

Indeed, the FE model aimed to reproduce the soil effects in a realistic yet simplified
way without explicitly modeling the ground surrounding the pipeline. The rationale,
as introduced before, was that the focus of this research was on the structural, and not
geotechnical, vibrational response of the model. To this goal, a set of properly calibrated
springs can effectively reproduce the static and dynamic soil-structure interactions (SSIs)
of underground structures (see e.g., [44] for an example of a wind turbine mono-pile
foundation). Specifically, 21,600 spring elements were utilized.

The stiffness coefficients of the springs were obtained by static analyzing a dedicated
plane strain model of the soil surrounding the SP. Specifically, the spring calibration
procedure followed four modeling phases:

(1) The whole soil was modeled with 4-node, 2-DoFs-per-node plane elements (as can
be seen in Figure 2a), considering a cylindric volume of radius R and centered on
the pipeline centroid. To avoid edge effects, R was increased until Re = 10 m, which
was found to be large enough to eliminate any effect of the external boundaries at
the soil-structure interface. This procedure followed the current standard practices
in the geotechnical analysis of ground excavations. Values of R < Re caused the
strain field close to the pipe hole to be biased from boundary conditions. Clean sand
was assumed for the soil, with a single layer for the whole volume and linear elastic
behavior. The mechanical parameters, retrieved from [41], were: density 1850 kg/m3,
Young’s modulus 24 MPa, and Poisson’s ratio 0.20. No water table was considered.
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The external boundaries of the soil volume were defined with no external loads
or constraints applied on the flat, perfectly horizontal ground surface. Fixed (zero
displacements) constraints were set on the remaining sides. This model was used to
define the stiffness of the soil affecting the response of the SP, which has been modeled
with independent springs in the third and fourth FE models.

(2) The second model is identical to the first, except for the presence of the SP (Figure 2b)
(3) The third (yet plane) model added to the SP the presence of the springs. Together

with the second FE model, this model was used to calibrate the mass participation of
the soil to the dynamics of the soil-SP system.

(4) Finally, the fourth reference, the FE model, is constituted by a 3D representation of the
pipelines (20 m long), which was modeled with shell elements. A series of springs,
calibrated in the previous steps, were used to simulate the contribution of the soil to
the dynamics of the soil-SP system in the 3 spatial directions effortlessly.

4.4. Input Definition and Simulation Settings

The AVs are generally classified as microseismicity, induced by natural sources, pre-
dominantly between the 0~1 Hz range, and microtremors, generated by nearby human
activities such as pedestrian, traffic, and machinery [45]. These latter ones cover the higher
frequencies (1 to 10 ÷ 20 Hz) and are more subject to intra- and inter-day variability [46].

For the former group, for regions not too far inland, as in the Italian peninsula,
the main natural phenomena originating the natural AVs are the waves impacting the
coast (in the range 0.05–0.1 Hz according to [47], 0.5–1.2 Hz according to [48]), large scale
meteorological perturbation on site (0.1–0.25 Hz [47], 0.16–0.5 Hz [48]), and large scale
meteorological events on nearby seas/oceans (0.3–1 Hz [47], 0.5–3 Hz [48]). However,
the current expert consensus indicates the range of engineering interest between 0.5 and
20 Hz [49], i.e., the frequency range is mainly affected by anthropic activities [50]. Thus,
the following assumptions and considerations have been made:

1. The AVs are applied as independent point-like sources of white Gaussian noise (WGN)
time histories of forces;

2. The AVs are applied at each node of the boundaries of the SP;
3. The frequency and amplitude content of the AVs is stationary (i.e., not time-dependent);
4. In each direction, the WGN is assumed with zero mean and unit variance;
5. At each point-like source, the AVs are applied in the three main directions (x-, y-,

and z-axes).

Concerning the first assumption, the Gaussian distribution of independent random
point-like sources is derived from the state of the art in AV numerical modeling [49].

The application of the forces on the edges of the SP is intended to mimic the random
vibration of the surrounding soil.

Concerning the third assumption, it is assumed that the measurements are performed
in absence of abrupt variations during recording. This is assured for the small portion of
microseismic noise in these interferences. Even for the larger anthropogenic portion, this is
reasonable due to its slow variation rate, generally corresponding to the day/night and
seasonal cycles (as experimentally validated in [23]). These timescales are much larger than
the average acquisition duration.

Concerning the amount of variance of the external force, it is worth stating that its
definition is arbitrary and does not affect the results of the proposed approach.

Indeed, it is well known that the standard deviation σY of a linear transformation Y
(with zero intercepts) of a random variable X, i.e., Y = kX (with k constant of proportionality)
is proportional to the standard deviation σX of the reference random variable X, i.e.,
σY = kσX (in the present work, X is a Gaussian distribution with unit variance or standard
deviation, i.e., σX = 1, and σY = k).

Thus, being a linear model, the structural response will vary linearly for a uniform
linear variation of the external force vector x. In this case, the external force vector is made
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up of the realization of the random variable X. Then, since (i) the Fourier Transform is a
linear operator, and thus: ∣∣∣H(r)

∣∣∣2 = k2
∣∣∣H(u)

∣∣∣2 (2)

where
∣∣∣H(r)

∣∣∣2 and
∣∣∣H(u)

∣∣∣2 are generic power spectra of the components of r and u (with
r and u two generic proportional response displacement fields) and since (ii) the WE is
scale-invariant, i.e.,:

Sw,(u) = B

B

√
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∣∣∣H(u)

∣∣∣2
i

= Sw,(u) (3b)

Thus, for any value of the chosen variance or standard deviation σY = k of the external
force vector x, the WE will remain unchanged.

Therefore, a transient dynamic analysis was performed on the baseline (undamaged)
model and for all the investigated damage scenarios (see Section 4.6) for a total duration of
20 + 20 s (to obtain a frequency resolution of ∆f = 0.05 Hz). The readings at the 800 output
channels were sampled at fs = 1000 Hz.

The resulting time series of axial strains have been then artificially corrupted by
adding Gaussian noise with zero mean and standard deviation proportional to the standard
deviation of the uncorrupted output signals. This is intended to simulate measurement
noise during acquisition. Specifically, the robustness to noise has been addressed by
considering three levels of noise to signal ratio (NSR) (in terms of noise and signal standard
deviation): 0% (ideally noise-free), 5%, and 10%.

4.5. Simulated Sensor Layout

The pipeline is assumed to be instrumented with a set of four optic fibers arranged
as depicted in Figure 3. This is compatible with state of the art practices in the field;
e.g., a system of distributed fiber optic sensors was used, e.g., in [51] to perform strain
measurements. The four optic fibers are labeled according to their angular coordinate,
as expressed in the legend of Figure 2. We considered 200 measurement points per fiber,
totaling 800 output channels. These were equally spaced from each other by steps of
∆z = 0.10 m along a 20 m-long tract of the pipeline length. To emulate the readings from
Fiber Bragg grating (FBG) sensors [52], the axial strains (along the z-direction in the model)
were considered as the quantity of interest.
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4.6. Damaged FE Models

Considering the two typologies of damage described in Section 3.1, the occurrence of
damage was simulated by reducing the stiffness in specific elements of the FE model. This
is a classic model choice [53], frequently applied also in geometrically complex models [54].
The location of the damaged area is described in Table 2 and graphically portrayed in
Figure 4.

Table 2. The location and extension of the damaged areas.

Damage ID # zc [m] θc [◦] size (z × θ) [m] × [◦]

Damage #1 8 90◦ 0.20 × 20◦

Damage #2 10 0 ÷ 360◦ (whole
circumference) 0.20 × 360◦

Damage #3 12 0◦ 0.20 × 20◦
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In Table 2, zc and θc represent the cylindrical coordinates of the centroid for the
damaged area (the damage extends symmetrically from it along both z and θ). C indicates
the pipeline circumference (3.14 m). Damages #1 and #3 occupy an area of 0.0314 m2,
encompassing about 5% of the whole circumference. These are intended to represent
localized damages, which are inherently more difficult to defect. For the same damage
length along the z-axis, damage #2 covers 100% C, resulting in a much larger surface
(0.628 m2). This second typology can be seen as both a weakened or degraded girth weld
or a loose bolted joint.

Several combinations of damage intensity levels have been considered. From here-
inafter, these will be indicated by their percentage of reduction with respect to the pristine
Young’s modulus. For instance, 80%/20%/0% will indicate an 80% reduction for damage
#1, 20% for damage #2, and no damage at θc = 0◦ and zc = 12 m. Damage growth was
emulated as well, increasing step-by-step the damage intensity in the selected areas. This
procedure mimics the natural progression of damage, even if at a discrete pace.
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5. Results

To demonstrate the WE variations at different damage states (location and severity),
the following health state indicator was assumed:

DWE(z, θ) =
Sw(z, θ)− S∗w(z, θ)

S∗w(z, θ)
(4)

where S∗w(z, θ) is the reference, initial, WE measured over the system, while Sw(z, θ) is the
WE at a generic structural state. The results of the numerical simulations were addressed
in light of the classic Rytter’s hierarchy, considering both basic (damage detection) and
more advanced (damage localization and severity assessment) tasks for SHM.

5.1. Multiple Damage Detection and Localisation

Four damage scenarios are here reported: 80%/20%/0% and its specular 0%/20%/80%,
plus 80%/0%/40% and its specular 40%/0%/80%. In the first two cases, one localized
and one large-spread damaged area were considered. In the latter pair, the two smaller
damaged areas were included, with alternating severity, while the ring-like damage was
deactivated. These two sets are reported, respectively, in Figures 5 and 6. Both figures
report the noise-free results for the optic fibers deployed at θ = 0◦ and θ = 90◦ in the upper
row (left and right plots, respectively) and for θ = 180◦ and θ = 270◦ in the lower row (in
the same order).
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As expected, the insertion of the damage caused a localized decrease of the Wiener
entropy. This confirms the findings of previous studies [10,11,17].

As can be seen, the variation in the measured WE depended both on the z- and the
θ-coordinate. This allowed us to locate the damaged portion(s) in cylindrical coordinates.

In both Figure 5a,b, the ring-like damage #2 is visible in all four fibers (θ = 0◦, 90◦, 180◦,
and 270◦). It is possible to infer from this the existence of one large example of damage
and therefore to evaluate its large spatial extension (although, potentially, the same results
might be due to four distinct damages located at the same z coordinates; this ambiguity
cannot be solved with the spatial resolution applied in this case study, i.e., 0.10 m). On the
other hand, the two smaller examples of damage are only detected by their closest sensor
(θ = 90◦ and θ = 0◦, respectively).

In noise-free conditions, the insertion of perfectly identical damage at different loca-
tions returned identical changes in the spatial distribution of the spectral flatness index.
This can be easily visualized in the second set of results as well (Figure 6).
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Effects of Artificially Added Noise

Figure 7 reports the results for the damage scenarios with an artificially added 10%
noise. The two cases portrayed there represent the two combinations, with 80%/20%/0%
and 40%/0%/80%. These can be directly compared with Figures 5a and 6b, respectively.
One can see that the presence of noise causes the effects of damage to decay more rapidly,
moving away from the damage location. In the exact damage location, the inhomogeneity
effects are noticeable and even increased significantly in their absolute value. However, this
behavior is reached with a contextual absolute value increase of the health state indicator
far from the damaged area.
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5.2. Multiple Damage Severity Assessment

Figures 8–10 report the results for increasing damage level in damage #1, #2, and #3
(in the same order), with and without added noise.
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limited between 7 m and 13 m to show the increase of the intensity of damage for increasing stiffness reduction.
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are limited between 7 m and 13 m to show the increase of the intensity of damage for increasing stiffness reduction.



Appl. Sci. 2021, 11, 5773 18 of 27

It is possible to notice how the entropy-based health state indicator increases mono-
tonically for an increasing damage level, showing thus a correlation between the stiffness
reduction and the entropy variation. In contrast, far from the damage, the variability
induced by the noise affects the baseline and the damaged structure in a similar fashion. In
this way, the two effects cancel each other out, resulting in a near-zero variation. For this
reason, the proposed damage indicator is robust to noise in terms of avoided false positives.

The noise affects the sensibility of the indicator, similarly to what is seen in the
previous subsection. The same remarks can be applied here: while the damage becomes
less detectable from a longer distance, its short-range effects seem to be positively affected
by the additional noise, making it more pronounced.

5.3. Single and Multiple Damage Intensity Tracking

The potentialities of the proposed approach have been tested as well for single and
multi-damage tracking. Indeed, buried structures might not always be easily accessible for
maintenance and reparation. Furthermore, a certain degree of damage tolerance is always
considered at the design stage (see, e.g., [55]). Thus, it is possible that, due to practical
or economic constraints, one or more examples of damage detected are not immediately
repaired but rather put under surveillance. These examples of damage are then expected to
extend over time, with an increase in their severity. Furthermore, other unrelated damage
may occur nearby, compromising the already endangered situation.

Figure 11 reports a damage pattern with 40%/60%/80% stiffness reduction. This can
be considered as a scenario where, following the already damaged conditions portrayed
in Figure 6b, a joint failure suddenly happens in the pipe section in-between the two
pre-existent damages. By comparing these two cases (with and without artificial noise),
one can see that the effects of damage #2 combine with the effects of the previous damages
in θ = 0◦ and 90◦, while also being detectable elsewhere as expected. Adding artificial noise
to the measurement does not significantly affect the results.

Similarly, Figure 12a,b depict a damage increase from 50%/0%/50% to 60%/0%/60%
and 80%/0%/80% (for the noise-free and noise = 10% cases, respectively), emulating, e.g.,
uniform crack growth or corrosion progress at both locations. In this case, it is possible to
note that the increase in the absolute value of the health state indicator can be perceived
already by moving from 50%/0%/50% to 60%/0%/60% of stiffness reduction. Then,
the increase is even more pronounced moving from the damage case 60%/0%/60% to
80%/0%/80%. The results are also quite consistent in the presence of a relatively high level
of noise (i.e., 10%).

In conclusion, comparing the different damage steps allows detecting the increasing
reduction of WE after each subsequent additional damage. This does not allow precise
estimates, yet permits some qualitative assessment of the worsening of the pipeline’s
structural integrity at those points already damaged.
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with Figure 7b).
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5.4. Applications for Unsupervised Learning

The results presented so far demonstrate how Wiener entropy can define a reliable
damage-sensible feature. Its feasibility for machine learning-based SHM can be demon-
strated by using it as a training dataset for a pattern recognition technique. Specifically, a
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simple method for detecting and localizing damage based on outlier detection analysis has
been chosen for this aim. The 3-sigma method defines a threshold value for the ‘normal-
ity’ model at 3σ, i.e., corresponding to a 99.73% confidence interval if data are Gaussian
distributed. This classic approach is commonly used to test newly-proposed DSFs (as
done, e.g., in [56]) due to both its simplicity, its statistically principled bases, but also its
well-known limitations. It is known that the 3-sigma rule is an empirical method [57];
in addition, if data deviate from a Gaussian distribution, the basic assumption of this
method is lost. Thus, any valid result obtained by training a damage detection/localization
algorithm with the proposed feature can only be improved by applying more recent, so-
phisticated options. This, however, falls beyond the aim of this paper, that instead takes
advantage of the use of non-robust outlier classification methods (i.e., 3-sigma method),
which intrinsically define the robustness and the noise rejection capability of the WE as a
damage-sensitive feature, estimated starting from random ambient vibrations data.

The results are here statistically described in terms of precision and recall, calculated
from the total numbers of false positives and negatives (fp and fn) and true positives tp
as follows:

Precision = tp/(tp + fp) (5a)

Recall = tp/(tp + fn) (5b)

It is possible to note from the results that all of the damage scenarios have relatively
high precision and recall. For the precision it is worth underling that the results are
quite variable based on the meaning that is given to the class “False positive”, as can
be perceived by Table 3. This is mainly because all of the false positives automatically
detected are associated with a point located close to a damaged area. For example, when
the damage occurs at z = 8 m (θ = 90◦), and z = 12 m (θ = 0◦), the false positives are related
to the effect of damage that occurs at z = 12 m (θ = 0◦), which is perceived by sensors
located at z = 12 m, and θ = 90◦, 180◦, 270◦, or vice versa. The same applies to damage at
z = 8 m. This was found not only in the damage scenario 40%/60%/80% but also for all the
investigated damage scenarios, as shown in Figure 13. In fact, in a real SHM scenario, such
“false positives” could be a benefit as they should help to strengthen the localization of the
damage thanks to considerations on the amplitude of variation of WE. This because all of
the “false positives” have a value of the health state indicator DWE that is very close to zero.
If the damage detected by the sensors placed near to the damaged area is not considered
as a “false positive”, then the number of false positives is zero (with the 3-sigma outliers
detection method), as reported in Table 3. Regarding the recall, it is possible to conclude
that a relatively high value, 90.69%, is obtained by considering all damage scenarios.

Table 3. Results of the automatic detection and localization of the severity of damage (noise = 5%).

Damage Scenario (on the Right) 40%/60%/80% 0%/20%/80% 40%/0%/80% Total

Ideal number of true positive 600 500 200 1300
True positive 577 402 200 1179

False positive * 20/0 163/0 132/0 315/0
False negative 23 98 0 121
Precision * [%] 96.65/100 71.15/100 60.24/100 78.92/100

Recall [%] 96.17 80.40 100 90.69
* For “False positive” and “Precision”, two indicators have been calculated based on the meaning that is attributed
to the class “False positive” for the SHM of pipelines.
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Figure 13. Automatic detection and localization of the severity of damage (noise = 5%). The highlighted bars (in red
for negative values, blue for positives ones) are related to points that fall outside ∓3 times the standard deviation of
data (i.e., 3-sigma method): (a) damage scenario 40%/60%/80%; (b) damage scenario 0%/20%/80%; (c) damage scenario
40%/0%/80%.

5.5. Potential Applications for Supervised Learning

To conclude this investigation, it might be useful to say that, if available, a catalog
of expected entropy changes caused by different damage typologies (such as the ones
described in Section 3) could be used for supervised learning, providing a machine learning
(ML) system with some damage classification (or even damage prognosis) capabilities.
However, these aspects will require further studies.

6. Accounting for Uncertainties

To conclude this research, a last set of tests were reserved for a more realistic FE model
(shown in Figure 14).

Specifically, having validated the algorithm under ideal conditions, this further test
included more realistic assumptions about the material properties. Since the second FE
model shares most of the mechanical and geometrical properties of the first case study,
only the major differences will be commented on hereafter.

A random perturbation of the soil parameters over all the springs of the FE model
resulted in a random deviation from the nominal value of the first model of about 20%
(+-10%). This was intended to emulate the inhomogeneity of the surrounding material soil.

A reduction of 10% of Young’s modulus of 75 randomly selected finite elements of the
SP model was assumed to simulate the presence of manufacturing defects. At the same
time, a reduction of stiffness of 20%, 40%, and 60% was assumed to simulate damage on
the girth weld, located at 10 m (at the center of the analyzed SP) from 0◦ to 90◦; while
a reduction of stiffness of 40%, 60%, and 80% was assumed to simulate damage on two
long seam welds, located at 0◦ (from 9.5 to 10 m) and 90◦ (from 10 to 9.20 m). This was
intended to simulate an S-shaped crack on the pipeline similar to the one shown previously
in Figure 1 at the intersection between the girth and two consecutive long seam welds. A
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constant width of 0.16 m was applied for the damage in the two long seam welds, while a
width of 0.20 m was considered for the damage in the girth weld.
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Figure 14. The second FE model with damage locations, inhomogeneity of the soil material, and
manufacturing defects.

To summarize, three steps of increasing damage were introduced, considering the
following stiffness reduction on the circumferential tract and the two longitudinal ones
(in the same order): 20% and 40%; 40% and 60%; 60% and 80%. As for the previous case
study, artificial WGN between 5% and 20% of the standard deviation of the output signals
was added to the simulated output responses. For brevity, only results for 5% noise are
reported in Figure 15, as was already done for the first model.
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Figure 15. Increasing stiffness reduction (20–40%, 40–60%, and 60–80%) for damage in the girth weld and the long seam
welds, respectively. Graphs are limited between 7 m and 13 m to show the increase of the intensity of damage for increasing
stiffness reduction.
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From Figure 15 it is possible to conclude that also in presence of inhomogeneity of
the surrounding soil and manufacturing defects the Wiener entropy of axial strains was
able to detect and locate quite well the damage. The same considerations can be performed
for other percentages of noise, while an instability was observed in the absence of noise
in data, for the damage at 0◦. However, as concluded in [10], this is a known behavior of
Wiener entropy, which needs the addition of numerical noise to stabilize the health state
indicator estimate.

7. Conclusions

This paper described the use of Wiener entropy for pipeline integrity management
and structural health monitoring of buried steel pipes.

In general terms, the undergoing establishment of an entropic framework for SHM
strongly supports the main concepts of entropy measurements as an indicator for health
state development. A quantifiable decrease in the WE signal entropy in operational
conditions can be directly linked to a localized decrease of material stiffness when strain
measurements are used as a structural sensing response.

For unchanged boundary conditions, this can be further linked to developing one or
more damages in the structure under investigation.

Regarding the specific case study discussed here, the motivations for using the pro-
posed procedure to underground metallic structures have been highlighted. As long as
the input spectral flatness is guaranteed by the use of ambient vibrations, the use of a
spectral flatness measurement on the system output is entirely logical. This allows for
precise assessment for very low amplitude output signals, where traditional techniques
struggle or completely fail, thanks to the non-deterministic behavior of the target system.
Two FE models were employed and several damage patterns were applied to them.

The WE-based procedure was applied for several SHM tasks, defined accordingly to
the classic Rytter’s hierarchy. The main findings can be summarized as follows:

− The small extension and severity of some cases highlighted the capabilities of the
proposed indicator to detect stiffness reduction at an early stage, thus avoiding the
insurgence of latent damages;

− The proposed approach can detect and assess multiple damages of different sizes
and severities;

− The simple health state indicator proved the robustness of the monitoring of WE of
strain also in the presence of artificially added measurement noise;

− The proposed approach performed well both under ideal (yet unrealistic) conditions
and with initial flaws and soil inhomogeneities.

As expected, it was noted that the WE of the simulated output signals (axial strains)
locally decreases for local stiffness reductions. It was also noticed that it increases immedi-
ately outside the damaged area; this becomes more pronounced as the damage increases.
This aspect will be further addressed in future works. Further studies will be needed to
better address specific tasks, such as damage classification, which strictly requires pattern
recognition techniques in a supervised learning fashion. Nevertheless, this study proved
the feasibility of Wiener entropy as a damage-sensitive feature for vibration-based inspec-
tion, particularly well-suited for output-only measurements of underground structures.
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