
applied  
sciences

Article

Novel Data-Driven Models Applied to Short-Term Electric Load
Forecasting

Manuel Lopez-Martin 1,* , Antonio Sanchez-Esguevillas 1, Luis Hernandez-Callejo 2,* ,
Juan Ignacio Arribas 1,3 and Belen Carro 1

����������
�������

Citation: Lopez-Martin, M.;

Sanchez-Esguevillas, A.;

Hernandez-Callejo, L.; Arribas, J.I.;

Carro, B. Novel Data-Driven Models

Applied to Short-Term Electric Load

Forecasting. Appl. Sci. 2021, 11, 5708.

https://doi.org/10.3390/

app11125708

Academic Editors: Matti Lehtonen

and Mohsen Soltani

Received: 23 April 2021

Accepted: 18 June 2021

Published: 20 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department TSyCeIT, ETSIT, University of Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain;
antoniojavier.sanchez@uva.es (A.S.-E.); jarribas@tel.uva.es (J.I.A.); belcar@tel.uva.es (B.C.)

2 Department EiFAB, University of Valladolid, Campus Universitario Duques de Soria, 42004 Soria, Spain
3 Castilla-Leon Neuroscience Institute, University of Salamanca, 37007 Salamanca, Spain
* Correspondence: manuel.lopezm@uva.es (M.L.-M.); luis.hernandez.callejo@uva.es (L.H.-C.)

Abstract: This work brings together and applies a large representation of the most novel forecasting
techniques, with origins and applications in other fields, to the short-term electric load forecasting
problem. We present a comparison study between different classic machine learning and deep
learning techniques and recent methods for data-driven analysis of dynamical models (dynamic
mode decomposition) and deep learning ensemble models applied to short-term load forecasting.
This work explores the influence of critical parameters when performing time-series forecasting,
such as rolling window length, k-step ahead forecast length, and number/nature of features used to
characterize the information used as predictors. The deep learning architectures considered include
1D/2D convolutional and recurrent neural networks and their combination, Seq2seq with and
without attention mechanisms, and recent ensemble models based on gradient boosting principles.
Three groups of models stand out from the rest according to the forecast scenario: (a) deep learning
ensemble models for average results, (b) simple linear regression and Seq2seq models for very
short-term forecasts, and (c) combinations of convolutional/recurrent models and deep learning
ensemble models for longer-term forecasts.

Keywords: short-term electric load forecasting; deep learning; machine learning; dynamic mode
decomposition; deep learning ensemble model

1. Introduction

Short-term load forecasting (STLF) is of vital importance to utility companies in many
areas, such as maintenance, operations, and reliability. Achieving accurate load forecasts is
a difficult task due to the highly non-linear nature of the underlying model. Forecasts in
this area have been historically treated with time-series statistical analysis methods, e.g.,
autoregressive integrated moving average (ARIMA) [1], with a clear trend towards the use
of machine learning techniques in current times [2].

STLF is a solid area of research with a significant body of literature exploring the
application of specific techniques to specific datasets or the review of techniques applied in
different research works to different datasets. Meanwhile, the number of papers propos-
ing new forecasting methods in the areas of dynamic modeling and machine learning
(and more specifically deep learning) continues to grow, which makes it very interesting
to have a systematic comparison, based on a single dataset, of a significant number of
novel techniques.

In this work, we propose a comprehensive study of STLF with a significant num-
ber of data-driven forecasting models that are novel or rarely applied to STLF, such as:
(a) dynamic mode decomposition (DMD) [3–5], (b) deep learning (DL) models based
on specific combinations of convolutional neural networks (CNN) and recurrent neural
networks (RNN) [6,7], (c) sequence to sequence (Seq2seq) models with and without soft
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attention [8–10], and (d) deep learning ensemble models specially targeted for time-series
forecasting [11]; and a set of well-known forecasting models, such as: (e) classic machine
learning (ML) models: linear regression, random forest, gradient boosting, k-nearest neigh-
bors, support vector regression and AdaBoost [12–15], (f) multi-layer perceptron [2], and (g)
deep learning models based on separate CNN and RNN networks [13,14]. By jointly eval-
uating the novel or less used techniques with the best known, we can compare their
performance in different scenarios.

We carried out the study by applying the different models to a real dataset of power
consumption from a Spanish utility for the province capital of Soria (Spain). This dataset
has been extensively studied previously [16–23].

This work is different from other studies: (a) by applicability, not being a reference to
other studies and applying all the models to the same dataset which allows comparison
of results, (b) by novelty, by including, in the same study, the results from DMD [5], new
DL ensemble models based on gradient boosting principles [11], specific configurations of
CNN/RNN [6,7], and Seq2seq models [8–10], and (c) by extension, by considering a large
number of different models under different scenarios.

STLF needs a previous preparation of the load values used as predictors. The prepa-
ration consists of aggregating these values in discrete time intervals (time-slots) that can
be seconds, minutes, or hours, and the forecast can be based on a different number of
previous values (predictors) that are obtained with a rolling window process applied
to the past values. The length of the rolling window defines the number of predictors.
With these predictors, the forecast can be extended to the following time-slot or to several
time-ahead time-slots (k-step ahead forecast). Finally, the value of the predictors can be a
scalar (load value), or a vector composed of the load value plus additional information,
such as date/time or weather data. Considering the scenario with vector predictors and
multiple time-ahead forecasts, we arrive at a challenging multivariate multi-output regres-
sion problem. The influence of these parameters: (a) length of rolling window, (b) length
of time-ahead forecast, and (c) features used to form the predictors, is analyzed in this
research in combination with the different natures exposed by the models.

Time-series statistical analysis algorithms (e.g., ARIMA) have not been contemplated
as they are trained to specific past values, while our goal is to have a single algorithm
that can be trained once and generalizes to new past values. In addition, they are mainly
intended for single-output forecasts and their extension to multi-output scenarios (i.e.,
forecasting k future values) generates complex models (e.g., VARIMA).

To appraise different possible evaluation objectives associated with STLF, we have
obtained six different metrics to assess the forecasting performance of the models: mean
square error (MSE), mean absolute error (MAE), median absolute error (MAD), coefficient
of determination (R2), relative root mean squared error (RRMSE), and symmetric mean
absolute percentage error (sMAPE). We also analyze the influence of the time-ahead forecast
interval and the rolling window length on these metrics.

Results are presented following three different forecast objectives: very short-term
forecasts (immediate time-slots in the forecast time horizon), longer-term forecasts (last
time-slots in the forecast time horizon), and forecast average (average of all time-slots
in the forecast time horizon). Considering these three scenarios, we have obtained the
three best groups of models according to the different forecast objectives: (a) deep learning
ensemble models for average results, (b) simple linear regression and Seq2seq models for
very short-term forecasts, and (c) combinations of convolutional/recurrent models and
deep learning ensemble models for longer-term forecasts.

We have explored the use of deep learning blocks based on the ensemble model
presented in [11], called gaNet. The gaNet architecture has been used for IoT traffic predic-
tion [11] and classification [24]. This is the first time that this architecture has been applied
to STLF. A gaNet architecture is made up of small deep learning networks formed by a
few Convolutional (Conv) and/or RNN layers. These networks are organized as repeating
blocks whose outputs are combined (after an aggregation function) into a final output.
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The input to the architecture is shared by all the blocks. This architecture is connected to
gradient boosting models, stacked models [25], and residual networks [26].

It is worth noting the excellent results of the proposed deep learning ensemble model
(gaNet) and how it excels in average results and in longer-term (most difficult) forecasts.
This good behavior can be connected with having a repeating set of randomly initialized
deep learning blocks, in line with other studies that connect the importance of a rich set of
random initializations with the behavior of deep learning models [27]. Deep ensembles can
also provide an improvement in uncertainty estimates for samples outside the expected
data distribution, through appropriate data selection and a specific loss function that
maximizes model diversity [28]. This work contributes to provide additional results that
confirm the good behavior of deep ensembles under an additional perspective provided by
gaNet. In previous works [11,24], gaNet has been applied to time-series forecasts with a
panel data structure (a list of entities, each with an associated time-series), whereas this
work applies it to a single time-series with different requirements for data preparation and
the validation/testing process.

An additional objective of the study is to put forward the availability of accurate
forecast results as a valuable tool for identifying new applications, such as: (a) identification
of anomalous consumption patterns due to excessive deviations from the forecasts, which
can be used as alarms for security or fraud situations and, (b) simulation of what-if non-
standard load scenarios and their consequences. These two applications are important for
smart grids and their convergence with the IoT (Internet of Things) infrastructure with
higher cybersecurity and fraud risks [29,30].

As a summary, the contributions of this work are: (1) Extend an ensemble deep
learning model (i.e., gaNet) based on the gradient boosting architecture to the particular
needs of STLF. (2) Present a thorough analysis of STLF models with a special emphasis
on novel methods, e.g., gaNet, DMD, Seq2seq, and combinations of CNN/RNN models.
(3) Apply all the models to a previously well-studied dataset of real electricity consumption,
allowing comparisons to be made on a single dataset in a homogeneous and structured
way, which allows comparison of results and drawing conclusions on common bases.
(4) Analyze the impact on forecasts due to: (a) length of rolling window, (b) length of
time-ahead forecast, and (c) features used to form the predictors. (5) Present the best
groups of models according to different forecast objectives. (6) Apply to STLF, for the first
time, as far as we know, the gaNet model and the specific configurations that combine
convolutional and recurrent layers as proposed here [6,7].

The organization of the paper is as follows: Section 2 summarizes related works.
Section 3 describes the dataset and the forecast models. Section 4 provides the results and
Section 5 presents the conclusions.

2. Related Works

There is a large body of recent work on STLF applying many different techniques
which show that even when it may be seen as a well-known area of study, it is still an
important area of research due to its technical difficulty and economic impact of having an
accurate load forecast. The intention of this work is to contribute to this area by providing
practical results on the application of some of the newest methods for time-series forecasting
applied to STFL in an extensive and homogeneous way.

We will present related works considering the applied methods, global review stud-
ies, and some of the anticipated applications that result from having accurate forecasts.
The presentation will focus more on adopted methods and processes than on performance
metric comparison, since the diversity of datasets, the difference in load magnitudes,
the differences in the implementation of the metrics, and the various test/validation proce-
dures make it very difficult to perform a homogeneous comparison of results.

Review of current techniques: The work in [2] presents a comprehensive review of
the techniques used to forecast electricity demand, analyzing the different types of forecasts,
parameters affected, and techniques used, together with a literature review and a taxonomy
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of the main variables involved in the problem. The work in [13] presents a detailed review
of recent literature and techniques applied for building energy consumption modeling
and forecasting.

A complete review of machine learning for load prediction is given in [31] with
emphasis on the following methods: tree-based methods and random forest, support
vector regression (SVR), neural networks, ensemble learning, statistical methods (ARMA,
ARIMA, . . . ), gaussian processes, k-nearest neighbors regressor (KNN), and fuzzy time-
series algorithms. An alternative review is given in [32] highlighting the following models:
linear regression, artificial neural networks (ANN), SVR, statistical methods, restricted
Boltzmann machine, and deep learning (CNN and LSTM). A recent review of machine
learning models applied to load forecasting focusing on performance metrics results is
proposed in [33]. This study presented the following methods as the most frequently
implemented in electric power forecasting: statistical methods, artificial neural networks
(ANNs), support vector machines (SVMs), decision trees (DTs), adaptive neuro fuzzy
inference systems (ANFISs), and recurrent neural networks (RNNs).

The work in [34] presents the application of five machine learning models for STLF:
multiple linear regression, KNN, SVR, and gradient boosting. The best performance is
obtained for gradient boosting. Authors in [35] present a recent and systematic review of
techniques applied to load forecasting with an emphasis on neural networks and hybrid
models. The main models presented are: SVM, GBM, random forest (RF), KNN, neural
networks, decision trees, statistical methods, CNN, LSTM, and the adaptive neuro-fuzzy
inference system (ANFIS). The authors in [36,37] provide an study of methods to use
in load forecasting considering different forecasting problems and objectives. The main
methods discussed are: statistical methods, AdaBoost, GBM, random forest, generalized
additive models (GAM), gaussian processes, KNN, linear regression, and support vector
regression. The work in [38] presents an extensive literature review with no mention
of dynamical systems modeling or deep learning or ensemble deep learning models.
The methods mentioned are: multioutput linear regression, generalized additive models,
statistical models, neural networks, support vector machines, gradient boosting, and fuzzy
regression. The review in [39] favors the use of artificial neural networks, support vector
regression, and fuzzy logic models.

Dynamical systems modeling: There is a growing current interest in the application
of dynamical systems analysis tools based on reduced-order models and, in particular,
in the use of dynamic mode decomposition to STLF. The work in [5] provides a DMD
study applied to electric load data from a utility operator in Queensland, Australia. In this
work, the DMD algorithm presents better forecasting results than classic time-series au-
toregressive approaches. They offer a one day ahead forecast based on the load values of
the previous 4 days, presenting a MAPE result of 2.13. A similar application of DMD is
carried out in [40] but applying DMD to predict forecast errors followed by an extreme
value constraint method to further correct the forecasts. The algorithm is applied to actual
load demand data from the grid in Tianjin, China, and the results obtained with DMD are
compared with a series of additional techniques (autoregressive moving average, neural
networks, support vector machines, extreme learning machines, etc.). According to the
authors, the proposed method shows greater accuracy and stability than alternative ones,
with a best average root mean squared error (RMSE) of 476.17. In [41], the authors employ
an empirical mode decomposition technique to extract different modes from the load
signal, and apply an independent deep belief network for each mode prediction, with
a subsequent aggregation of results (ensemble) to obtain the final load forecast. More
classic ensemble techniques for forecasting electricity consumption in office buildings are
investigated in [42], comparing gradient tree boosting (GTB), random forests (RF), and a
specifically adapted AdaBoost model that presents the best results.

Classic machine learning: A substantial number of works have presented several
classic machine learning models to STLF. A feed-forward artificial neural network (FF-
ANN) is used in [43] to forecast the electricity consumption for residential buildings for
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24 h. The results are compared with other models including GTB and RF, selecting the best
model at each forecast iteration. The best average result for the different test iterations
is obtained for the ANN with an RMSE of 2.48. The work in [44] presented a theoretical
review of the most commonly used ML methods for STLF, including ANN and a support
vector for regression. The work in [45] presents an interesting pipeline method based on
combining a feature transformation using a clustering approach followed by a support
vector regression. The authors in [46] introduce an additive regression model for STLF.

Statistical analysis methods: Time-series statistical analysis models for STLF are
discussed in detail in [1] with forecasts at an hourly interval applied to load data from
the Electric Reliability Council of Texas (ERCOT). They present results applying ARIMA
and Seasonal Autoregressive Integrated Moving Average (SARIMA) models achieving an
average mean absolute percentage error (MAPE) between 4.36% to 12.41%.

Sequence to sequence models: The sequence to sequence (Seq2seq) architecture
that originated in the field of natural language processing (NLP) has been applied in
recent works to STLF. The authors in [47] apply different Seq2seq architectures, comparing
them with other DL models based on recurrent and convolutional layers. The models are
applied to two different datasets (scenarios): one for an individual household electric
power consumption data set (IHEPC) located in Sceaux, France, and the other for the
GEFCom2014 public dataset made available for the global energy forecasting competition
2014. The best results (RMSE between 17.2 and 0.75 depending on the scenario) are obtained
with convolutional and recurrent architectures together with deep neural networks with
dense layers. Considering average results, the Seq2seq models do not provide the best
results. The conclusions obtained in this work are consistent with the results obtained
by the present study. A similar study is presented in [48], where research was conducted
comparing a Seq2seq model (with and without attention) with alternative DL models based
exclusively on different types of recurrent networks, such as long short-term memory
network (LSTM) and gated recurrent unit (GRU). In this case, the Seq2seq model presents
the best results for short-term forecasting, also in accordance with the results obtained
in the present work. A generic Seq2seq with a specific attention mechanism is proposed
in [49] for multivariate time-series forecasting.

Deep learning models: Using the same dataset proposed for this work, [16] presents
an ANN model that works on a 24 h day-ahead forecasting of electric loads previously
aggregated into clusters by consumption patterns. The patterns are obtained with a self-
organizing map (SOM) followed by a k-means clustering algorithm. The work in [50]
introduces a deep learning architecture based on an ensemble of convolutional blocks
acting on segregated subsets of the input data. The model is applied for day-ahead
forecasting of individual residential loads with data obtained from a smart metering
electricity customer behavior trial (CBTs) in Ireland. The work focuses on achieving low
training time and high accuracy, the proposed model being the best in both aspects with an
MAE of 0.3469. The authors in [51] present a simple MLP regressor with a sophisticated
selection of features based on previous consumptions and weather data. The work in [52]
introduces a combined model of CNN and LSTM layers for STLF. A comparison between
recurrent neural networks (LSTM) and support vector regression (SVR) is provided in [53],
showing that the bidirectional LSTM model outperforms both the unidirectional LSTM
and the SVR models.

3. Materials and Methods

This section presents the dataset and forecast models (Sections 3.1 and 3.2, respectively)
used for the experiments.

3.1. Selected Dataset

The dataset employed in this research corresponds to real data from a Spanish util-
ity over a period of three years. The load distribution presents similarities to that of a
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microgrid [16], with a value range between 7370 and 39,550 kW. The values have annual
periodicity, also with strongly defined daily and weekly periodicity (Figure 1).
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Figure 1. Chart showing the load values for a period of 30 days and time-slots of 1 h. The vertical
red lines indicate a 24 h period (1 day). We can observe the strong daily and weekly periodicity.

Load values were aggregated in time-slots of one hour. The total number of time-slots
corresponded to 26,302 h. Additional exogenous features were also considered: (a) Date/time
features: month, time, day of the week, and weekend indicator. (b) Weather features: mean
and standard deviations for the atmospheric pressure, wind speed, wind direction (degrees),
humidity, and solar radiation. Continuous features were scaled in the range [0,1]. Categorical
features were one-hot-encoded. We considered four different sets of features out of the many
possible feature combinations: (a) 1 feature: electricity load, (b) 45 features: date/time (day of
week, weekend, hour, month) and load, (c) 57 features: date/time, weather and load, and
(d) 76 features: date/time, load, plus day of the month (one-hot-encoded). The number of
features for the different feature sets is denoted by f (Figure 2). The weather and day of
the month features did not provide a clear improvement in the forecast metrics.
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Figure 2. Division of the original dataset into training, validation, and test sets with a data proportion
of 64, 16, and 20%, respectively. A rolling window process was used to extract the predictors sequence
(p time-slots used as predictors) and the real time-ahead load values (k time-ahead forecast length). Each
time-slot is represented by a vector of predictors with f components (load value, date/time features, etc.).
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Figure 2 presents how the original dataset was divided into training, validation,
and test sets with a data proportion of 64, 16, and 20%, respectively. Figure 2 also presents
the rolling window process used to extract the predictors sequence (p time-slots used as
predictors) and the real time-ahead values (k time-ahead forecast length). The validation
data were used to assess model performance during training. The test set was used to
provide all final results in Section 4. As a summary, we consider the following ranges of
values for the parameters p, k, and f : (a) p: 24 (using the previous day of data—24 h),
168 (previous week of data—168 h), or 720 (previous month of data—720 h); (b) k: 24
(1-day forecast horizon), 168 (1-week horizon), or 720 (1-month horizon); and (c) f : 1, 45,
or 57. The forecast results for different combination for these values ( f , p, k) are reported
separately in Section 4 and the Appendix A.

3.2. Models Description

This section presents the different models used in our research. The models have been
grouped according to their characteristics. The presentation of results in Section 4 will
follow the groups described here. The groups were the following:

- Classic machine learning models: We considered the following models: linear regres-
sion, random forest, gradient boosting, k-nearest neighbors, support vector regression,
and AdaBoost. These models provide a good selection of machine learning models
widely applied to STLF.

- Deep learning models: As already mentioned, deep learning models are currently
the main trend in STLF. We applied various configurations of convolutional neural
networks (CNN) and long short-term memory (LSTM) networks, a type of recurrent
neural networks (RNN). The combination of CNN and LSTM networks has provided
some of the best results, in accordance with the results obtained in other works
applying the same configurations in other fields (network traffic analysis, video
quality of experience, etc.) [6,7].

- Deep learning ensemble models: It is well-known that aggregating the capabilities of
various estimators can increase their effectiveness in reducing errors and avoiding
overfitting. There are several aggregation strategies, and boosting is one of the most
important and provides state-of-the-art estimators. Bringing together boosting and
deep learning has shown very good results in other forecasting problems [11]. The DL
ensemble models included in this work follow the gaNet architecture [11], which is a
deep learning boosting ensemble model specifically intended for time-series forecasting.

- Seq2seq models: The sequence to sequence model had its origins in the field of NLP,
but it has been extended to many time-series prediction problems. It has rarely been
used in STLF even when it provides good results when applied [48].

- Dynamic mode decomposition (DMD) models: These models attempt to approximate
the non-linear latent drivers of a system by a linear transformation [4]. They are mainly
applied in finance and fluid dynamics for both prediction and characterization of
system behavior [3,54]. These models provide important information about the
principal modes of the signal and their behavior. DMD is a technique that is currently
attracting interest in STLF [5,55].

Figures 3–5 show different instances of the generic regression algorithm needed to
transform the input sequence of p predictors into the output forecast sequence of length
k. Figure 3 presents details of the models: classic ML, dynamic mode decomposition
(DMD) and DL architectures. Figure 4 presents the details for the Seq2seq model with
and without attention. Figure 5 presents the details for the ensemble models based on
the gaNet architecture [11], which are deep learning ensemble configurations based on
gradient boosting principles and are particularly suitable for time-series forecasting. These
were the ensemble models used in this work.
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Figure 3 presents a schematic view of the ML, DL, and DMD models with an emphasis
on showing the inputs received by the models and the generated outputs. We can observe
how the inputs for the ML and DMD models are different to the inputs for the DL models,
the reason being that DL models can receive vector-valued inputs, i.e., both LSTM [48] and
1D/2D CNN [47] models can receive a vector-valued sequence (with length p) where each
timestep is represented by a vector of values. However, the ML and DMD models expect a
sequence of scalar values (longitudinal data) as input; the way to transform the input data
for these models is to flatten the vectors over all time-steps.

The DMD model [3,4] is different from the rest of the models since it has its origin in
the study of dynamical systems, exploring the construction of a linear approximation to the
dynamics of the system. It is a data-driven method based on approximating the temporal
evolution of the system by a linear transformation given by a matrix (A). The eigenvectors
and eigenvalues of this matrix define the dynamic modes of the system and their temporal
evolution. The matrix A that defines the mapping between past ( xt) and future (xt+1)
snapshots of the system follows Equation (1). This expression can be extended to a com-
plete set of snapshots obtained using the rolling window method presented in Figure 2.
The snapshots set can be arranged in a matrix X ∈ Rp×N , where p is the length of the
snapshots and N is the number of snapshots obtained with the rolling window process.
Likewise, a new matrix X̂ is created by selecting the same columns of X with a lag, i.e.,
if X̂i is the i column of matrix X̂, then X̂i = Xi+1. Once X and X̂ are defined, we obtain
Equations (2) and (3), where X† is the pseudo inverse of X. The eigenvectors of X define the
dynamic modes of the system. The problem with Equation (3) is that the matrices involved
are large and their computation is difficult. The DMD method provides a solution to obtain
the eigenvectors of A by computing the singular value decomposition of X (Equation (4))
and the matrix Ã (Equation (5)). The matrix Ã can be considered as the linear best fit
for our original system. The matrix Ã has a much lower dimensionality than A, which
allows us to easily obtain its eigenvalues (Λ) and eigenvectors (W) (Equation (6)). Finally,
the eigenvalues of A are the same as the eigenvalues of Ã [3] and the eigenvectors of A
(denoted as Φ) can be obtained from the previously obtained elements and computed
following Equation (7).

xt+1 = A xt (1)

X̂ = A X (2)

A = X̂ X† (3)

X = UΣV∗ ; X̂ = AUΣV∗ (4)

U∗X̂ VΣ−1 = U∗AU = Ã (5)
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ÃW = WΛ (6)

Φ = X̂ VΣ−1W (7)

The previous presentation of DMD corresponds to a complete deployment of the algo-
rithm. To further reduce computational needs, we can keep just the leading eigenvalues (Λ)
and eigenvectors (W) of Ã while preserving most of the decomposition energy [3,4]. In this
way, we reduce the dynamics of the system to its main eigenvalues and its corresponding
eigenvectors (Φ). In Section 4, we present the main eigenvectors of the DMD decomposition
for our data set for different rolling window lengths (p).

DMD allows us to implement forecasts [3,4] using Equation (8), where xt is a forecast
for time t, Λt is the power t of the diagonal matrix Λ, which is easily computed, and b0 is
an initial condition obtained by multiplying the inverse of the matrix Φ with the initial
snapshot (first column) ( X0) of the matrix X:

b0 = Φ−1 X0; xt = ΦΛtb0 (8)

As shown in Section 4, the DMD algorithm is not particularly efficient at forecasting,
but it is very useful for identifying the fundamental modes and temporal behavior of a
time series.

The classic ML models with best combined performance results, considering both
the forecasting metrics and execution times, are: linear regression (LR) and random forest
(RF) [13]. They are well-known ML models. They are robust, fast and do not require
intensive hyperparameter tuning and are good at preventing overfitting. These models are
particularly interesting for very short-term forecasts (Section 4). However, they experience
problems with large values of the parameters p and f that produce large input vectors,
since the inputs of these models are the predictors arranged as a flat vector. This has an
impact on memory problems and computational times. Furthermore, these models allow a
single prediction output, thus requiring as many regressors as outputs with a significant
impact on training times for multi-step ahead forecasts, as is our case.

The DL models considered follow two configurations, depicted in Figure 3: (a) re-
current networks formed by one LSTM layer or two stacked LSTM layers plus a fully
connected (FC) final layer, or (b) networks formed by a combination of 1D-Convolutional
(1D-Conv) layers (between one to three) followed by one or two LSTM layers and a final
FC layer. These two configurations have shown very good classification and regression
performance in other fields [6,7], as well as other time-series forecasting problems [11].
We also explored the use of 2D-Conv layers instead of the 1D-Conv (common for time-
series) layers by transforming the input sequence of vectors into a matrix that is interpreted
as a pseudo-image, following the approach in [7]. Contrary to the good performance of
this approach in other fields, in this case the results obtained by the architecture 2D-CNN +
LSTM were not as good as expected (Figure A1—Appendix A).

The number of epochs used for training all models was 100, with an early-stop criteria
established in 10 epochs without improvements. The batch size was 20 samples. We used
a ReLU activation function for all layers, except the last layer with a linear activation.
The loss function used was the mean squared error. There is a growing interest in the
automatic hyperparameter optimization using AutoML techniques [56–58]. The extensive
search of deep learning architectures proposed in this work could be applied to these new
techniques and be the object of possible future research. The high demands for time and
computational resources of these techniques must be considered to evaluate their suitability
in each case. For this research, we opted for the selection of values based on heuristics and
previous experience.

Sequence-to-sequence models (Seq2seq) (Figure 4) [8] originated in the NLP field to
handle sequences of categorical values (words). They consist of two blocks: encoder and
decoder. The encoder creates a latent representation (embedding) of the input, and the
decoder uses the embedding to construct the forecast. The forecast is generally done in an
iterative process where the values of the successive forecasts are entered as input for the
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next forecast. The structure of the encoder and decoder layers is usually (but not necessarily)
similar and employs a recurrent (LSTM) and fully connected layer. The addition of other
types of layers is also possible to facilitate representation learning, such as convolutional
layers. An attention mechanism [9,10] can be added to the Seq2seq model. The “attention”
consists of a distance (similarity) comparison between the forecast and intermediate values
connected to the past inputs, that is, the previous p predictor values. When the similarity
operation is differentiable, we name it soft attention, and hard attention when it is not.
In our case, we used soft attention with a softmax applied to the dot product between
the forecast and the p intermediate values produced by the encoder (associated with the
p values used as predictors). The result of this dot product plus softmax operation was
applied to a fully connected layer that produced the final forecast.

The DL ensemble model used in this work follows the gaNet architecture [11] which is
based on the creation of an estimator by aggregating blocks formed by small DL networks
(Figure 5). All blocks are arranged in sequence, all sharing the same input. The output
from the first block is aggregated to the output from the following blocks until the final
output is produced. The aggregation process begins with a fixed value (usually an average
of the expected results). The aggregation function used is the sum, but other functions such
as the mean or maximum value can also be used. It is important to note that all blocks are
trained together end-to-end using gradient descent.

In the basic gaNet model, all blocks have the same layer configuration (architecture)
and all blocks in the sequence are similar, but not identical, as random initialization of
their weights and end-to-end training will induce different weights in each of the blocks.
There are also variants on this basic configuration by allowing different block architectures
as well as other training options. In [11], the gaNet model is presented in detail with
several variants (types), according to whether: the blocks architecture are all identical or
not, if they share their weights, or if the loss function is a unique function or is formed
by adding the loss functions of the intermediate outputs. Considering all the variants
in [11], we chose only two that we named ensemble Type I and II, and that corresponded
to types III and IV in [11]. The ensemble model Type I is made up of identical blocks
where each block is formed by small DL networks consisting of 1D-Conv, LSTM, and FCN
layers. We also differentiated a subgroup of Type I models when all the blocks shared their
weights. In this case, we had blocks not only with identical architecture but with identical
weights. It is interesting to investigate this specific subgroup because they are models
with very few weights, which can be important to avoid overfitting. In the ensemble
Type II model, blocks are separated into groups where each group can have a different
architecture, with all blocks in the same groups sharing the same architecture. For this
model, we indicate separately the number of repetitions of identical blocks per group.
There is freedom in the number of groups and blocks per group. In this case, blocks with
similar architectures could also share weights, but it is a possibility that has not been explored.

We deviated from the original Type II models presented in [11] where all blocks shared
the same inputs, by allowing blocks with different architectures to receive different inputs.
In this case, we used three different types of inputs: (a) a sequence of scalars formed
exclusively by the load values that corresponds to a value of the parameter f equal to
1, (b) a sequence of vectors formed by the load values plus the date/time features that
corresponds to a value of the parameter f equal to 45, and (c) a sequence of vectors formed
by the load values plus the date/time and weather features that corresponds to a value of
the parameter f equal to 57. All these options are presented in the results tables in Section 4
and Figure A1 (Appendix A), and, in those cases where there are different inputs per block,
we have marked that in the tables by an NA in the f column, reporting the type of input
associated with each block by an additional letter within a parenthesis and immediately
after the layer type. Possible values for these additional letters are: an (L) for inputs formed
exclusively by the load values, a (D) for inputs formed by the load plus the date/time
features, and a (A) for inputs formed by the load plus the date/time and weather features.



Appl. Sci. 2021, 11, 5708 12 of 29

4. Results and Discussion

The objective of this work was to assess the suitability of the different models for
STLF. In this section, we present in detail the forecast performance metrics obtained by the
different models considered for this research. An additional aim was to present together
(and under homogeneous evaluation criteria) the results obtained by classic ML models
and new time-series forecasting methods, with an emphasis on novel techniques, which
originated in other fields and which have not been applied, or have rarely been applied,
to STLF, i.e., models that integrate ideas from deep learning with gradient boosting and
ensemble architectures (gaNet) [11], and models based on dynamical systems analysis
techniques (DMD) [3–5]. The analyzed models are presented in detail in Section 3.2.

Several forecast performance metrics were considered: mean square error (MSE),
mean absolute error (MAE), median absolute error (MAD), coefficient of determination
(R2), relative root mean squared error (RRMSE), and symmetric mean absolute percentage
error (sMAPE). The definition of the performance metrics were based on the following
definitions (Equations (9)–(12)), where: Y corresponds to the ground-truth values, Ŷ is the
predicted values, Y is the mean values of Y, Yi represents each particular ground-truth
value and Ŷi represents each particular predicted value, and N is the number of samples:

MSE = Mean
((

Y− Ŷ
)2
)

; MAE = Mean
(∣∣Y− Ŷ

∣∣); MAD = Median
(∣∣Y− Ŷ

∣∣) (9)

RRMSE =

√
∑N

i=0
(
Yi − Ŷi

)2√
∑N

i=0( Yi )
2

(10)

R2 = 1− ∑N
i=0
(
Yi − Ŷi

)2

∑N
i=0
(

Yi −Y
)2 (11)

sMAPE =
100
N

N

∑
i=0

2

∣∣Yi − Ŷi
∣∣

|Yi|+
∣∣Ŷi
∣∣ % (12)

All metrics have values greater than zero with no upper limit, except R2 that has
an upper limit of 1 with no lower limit, and sMAPE which has an upper limit of 200%.
In all cases, the smaller the value, the better the result, except the R2 metric, where the
relationship is the opposite. R2 provides an indication of the variance explained by the
model. A value of 1 corresponds to a perfect fit of the model to the real data, a value of zero
indicates a dummy prediction always using the mean value, and a negative value a worse
prediction than always choosing the mean. The other metrics (MSE, MAE, MAD, sMAPE,
and RRMSE) are error metrics, and they are always positive, with the best result for a value
of zero. We considered especially important the metrics R2, RRMSE and SMAPE, since
they are metrics representing a ratio between the error and the actual values.

All results provided in this section were obtained with the test set presented in
Section 3.1. The results are given after inverting the scale (in the range [0,1]) performed for
training. Therefore, the results are based on unscaled load values, which can be especially
important for metrics based on actual values and not on ratios (e.g., MSE, MAE, MAD). We
provide an extensive analysis of results for different values of the parameters: k (number
of forecast values), p (number of predictor time-slots), and f (length of features used as
predictors).

Figures 6–8 show the forecast metrics for the different models (Section 3.2), and for
different values of the parameters f , p , and k. They present the data in two sections,
with the upper section presenting the raw data with a color-code format, and the lower
section showing a subset of the data in a bar chart format. The bar charts below the tables
present the sMAPE metrics (average, T-0 and T-23) for some of the best performing models
in the corresponding table. These tables present the metrics using a color code to easily
show where the best values are. Color coding uses a color palette where the greenest color
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is for the best result and the reddest is for the worst. Color coding was applied column-wise
to compare results for the same metric. Figure 6 presents all the results for the Seq2seq and
Seq2seq + attention models. Figures 7 and 8 present the results for the rest of the models,
Figure 7 for a f value equal to 45, and Figure 8 for an f value equal to 1. Metric values
are provided for the forecasts of the first (T-0) and the last (T-23) time-slots, in addition to
the average of forecasts for all (24) predicted time-slots. The last two columns provide the
training and test times for all models.
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Figure 6. (Upper section): forecast metrics for the average, first (T-0), and last (T-23) predicted time-slots using Seq2seq
with and without an attention mechanism. The table is color-coded along columns with colors between red and green
corresponding to the worst and best results, respectively. (Lower section): bar chart for sMAPE metrics for some of the best
performing models from the upper table.
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45 24 2 1D-CNN (MaxPooling) + 1 FC 6,126,764 1792.7 1336.6 0.812 9.130 0.115 2,658,230 1263.9 1012.1 0.918 6.580 0.077 8,993,910 2172.0 1568.9 0.724 10.954 0.141 3.788 0.004

45 24 2 1D-CNN + 1 LSTM + 1 FC 4,975,367 1507.8 1016.4 0.847 7.627 0.103 1,564,870 928.8 715.4 0.952 4.813 0.059 7,307,580 1830.8 1187.4 0.775 9.227 0.127 19.558 0.007

45 24 2 1D-CNN + 2 LSTM + 1 FC 5,738,281 1629.7 1087.6 0.824 8.264 0.111 2,041,510 1086.1 856.6 0.937 5.610 0.067 8,104,580 1970.8 1330.0 0.751 9.959 0.134 12.020 0.015

45 168 1 LSTM + 1 FC 6,974,843 1766.6 1170.7 0.786 8.856 0.122 2,428,550 1195.6 962.4 0.925 6.263 0.073 9,739,580 2082.1 1305.0 0.701 10.384 0.147 18.308 0.046

45 168 2 LSTM + 1 FC 7,798,327 1833.4 1166.8 0.761 9.153 0.129 2,802,340 1228.6 941.5 0.914 6.341 0.079 10,425,300 2170.0 1400.7 0.680 10.934 0.152 31.858 0.067

45 168 2 1D-CNN + 1 FC 11,667,630 2662.6 2181.5 0.642 13.216 0.160 9,972,840 2524.9 2106.5 0.694 12.685 0.148 13,048,100 2794.2 2236.9 0.600 13.824 0.170 1.921 0.013

45 168 2 1D-CNN (MaxPooling) + 1 FC 16,910,420 3278.5 2812.9 0.481 16.236 0.192 20,405,200 3713.7 3217.1 0.374 18.473 0.212 24,157,800 4056.4 3695.9 0.259 20.018 0.231 4.178 0.016

45 168 2 1D-CNN + 1 LSTM + 1 FC 5,372,823 1487.8 995.2 0.835 7.527 0.107 1,576,770 951.4 744.6 0.952 4.931 0.059 8,369,170 1832.4 1158.3 0.743 9.245 0.136 8.235 0.018

45 168 2 1D-CNN + 2 LSTM + 1 FC 4,189,875 1332.0 882.4 0.871 6.677 0.094 1,247,890 837.3 645.4 0.962 4.371 0.052 5,960,730 1596.7 1009.0 0.817 7.936 0.115 15.313 0.022

45 720 1 LSTM + 1 FC 6,090,553 1599.7 1081.7 0.814 8.054 0.114 1,894,670 1017.9 776.7 0.942 5.275 0.065 8,479,800 1843.8 1179.6 0.741 9.115 0.137 56.410 0.221

45 720 2 LSTM + 1 FC 7,241,965 1745.5 1130.5 0.778 8.668 0.124 2,611,450 1191.2 911.1 0.920 6.037 0.076 9,902,940 2008.5 1205.5 0.697 9.879 0.148 69.946 0.370

45 720 2 1D-CNN + 1 FC 33,224,320 4884.9 4485.8 -0.017 24.145 0.270 33,419,500 4895.9 4503.5 -0.023 24.193 0.271 33,571,700 4903.6 4500.3 -0.027 24.221 0.272 8.410 0.045

45 720 2 1D-CNN (MaxPooling) + 1 FC 33,134,430 4880.0 4485.1 -0.014 24.125 0.270 33,276,900 4888.4 4490.7 -0.018 24.162 0.270 33,390,600 4894.1 4508.7 -0.022 24.182 0.271 15.823 0.050

45 720 2 1D-CNN + 1 LSTM + 1 FC 5,059,471 1496.8 1014.4 0.845 7.493 0.104 1,645,400 959.7 743.7 0.950 5.063 0.060 6,419,050 1721.4 1157.2 0.804 8.563 0.119 21.860 0.067

45 720 3 1D-CNN + 1 LSTM + 1 FC 5,661,417 1612.8 1116.3 0.827 8.066 0.111 2,411,320 1137.5 849.1 0.926 5.880 0.073 7,315,740 1854.9 1268.3 0.776 9.242 0.127 17.143 0.090

45 720 2 1D-CNN + 2 LSTM + 1 FC 6,291,731 1746.6 1206.9 0.807 8.619 0.117 3,990,250 1471.3 1093.8 0.878 7.417 0.094 7,100,180 1837.5 1236.7 0.783 9.080 0.125 23.993 0.062

45 24 Random Forest 5,463,283 1470.4 857.2 0.832 7.414 0.107 633,968 556.8 398.2 0.981 2.807 0.037 7,913,630 1803.0 1046.0 0.757 9.057 0.132 9.488 0.105

45 24 Linear Regression 6,314,323 1753.8 1260.5 0.806 8.862 0.115 688,331 588.0 415.5 0.979 2.938 0.039 8,622,780 2124.0 1502.5 0.735 10.664 0.138 0.902 0.001

45 24 Gradient Boosting 19,925,480 3714.6 3301.1 0.387 18.849 0.209 14,067,000 3155.2 2888.6 0.568 16.218 0.176 20,416,300 3759.5 3307.8 0.372 19.056 0.212 3.271 0.009

45 24 KNN 13,130,560 2576.7 1652.0 0.596 12.658 0.170 11,975,500 2422.6 1494.0 0.632 11.901 0.162 14,493,100 2734.1 1824.0 0.554 13.401 0.179 1.476 18.022

45 24 Support Vector Regression 7,051,829 2011.4 1617.9 0.783 10.180 0.123 2,608,470 1314.6 1146.2 0.920 6.691 0.076 9,420,250 2361.8 1922.7 0.710 11.911 0.144 38.132 8.682

45 24 AdaBoost 11,344,240 2665.9 2276.3 0.651 13.636 0.157 2,720,780 1338.4 1158.9 0.916 6.975 0.077 12,510,100 2773.4 2257.8 0.615 14.152 0.166 6.649 0.067

45 168 Random Forest 4,959,729 1351.4 788.8 0.848 6.717 0.103 747,048 614.5 443.3 0.977 3.105 0.041 5,707,890 1472.8 843.3 0.825 7.322 0.112 92.524 1.028

45 168 Linear Regression 4,758,965 1379.6 892.7 0.854 6.941 0.100 406,341 442.2 321.5 0.988 2.261 0.030 6,361,340 1625.5 1041.7 0.805 8.138 0.118 73.650 0.008

45 168 Gradient Boosting 16,874,050 3388.8 3016.4 0.482 17.295 0.193 13,894,000 3108.7 2870.8 0.574 16.009 0.175 17,038,100 3405.4 3041.5 0.477 17.365 0.194 44.733 0.069

45 168 KNN 12,102,020 2544.2 1748.8 0.629 12.387 0.163 11,877,000 2509.1 1716.0 0.636 12.214 0.162 12,215,900 2558.9 1760.0 0.625 12.463 0.164 7.530 274.878

45 168 Support Vector Regression 6,325,536 1890.3 1487.0 0.806 9.536 0.118 4,085,740 1558.7 1249.2 0.875 7.934 0.095 7,465,730 2087.5 1678.4 0.771 10.520 0.128 179.090 42.726

45 168 AdaBoost 8,299,474 2283.8 1963.3 0.745 11.802 0.134 2,030,910 1133.3 947.5 0.938 5.856 0.067 9,607,530 2459.9 2061.6 0.705 12.743 0.146 55.554 0.478

45 24 (3 FC)*5 7,690,465 1914.9 1321.1 0.764 9.581 0.128 2,235,200 1128.2 891.2 0.931 5.877 0.070 10,874,800 2359.8 1689.7 0.666 11.865 0.155 1.504 0.003

45 24 (4 FC)*5 8,469,669 1959.6 1258.3 0.740 9.953 0.134 2,134,390 1086.2 841.6 0.934 5.688 0.069 11,740,500 2353.4 1436.9 0.639 11.818 0.161 2.896 0.003

45 24 (1 LSTM + 1 FC)*10 6,974,140 1701.1 1039.4 0.786 8.600 0.120 723,268 635.2 499.1 0.978 3.278 0.040 10,420,500 2131.0 1256.6 0.680 10.642 0.152 57.917 0.049

45 24 (2 LSTM + 1 FC)*3 7,176,459 1815.6 1190.7 0.779 9.174 0.123 1,565,160 982.0 818.2 0.952 5.124 0.059 11,087,600 2279.0 1417.5 0.659 11.457 0.156 16.675 0.025

45 168 (3 FC)*5 6,195,977 1768.8 1290.1 0.810 8.879 0.116 3,703,070 1465.4 1159.3 0.886 7.582 0.090 7,909,510 2052.0 1543.7 0.757 10.291 0.132 13.312 0.012

45 168 (4 FC)*5 6,660,185 1778.6 1248.9 0.796 8.886 0.120 3,321,780 1345.0 1046.3 0.898 6.857 0.086 8,342,990 2077.2 1492.1 0.744 10.386 0.136 11.200 0.009

45 168 (1 LSTM + 1 FC)*5 6,689,661 1752.0 1183.0 0.795 8.895 0.119 1,498,140 931.6 728.0 0.954 4.823 0.057 9,546,250 2111.4 1403.9 0.707 10.618 0.145 50.960 0.146

45 168 (2 LSTM + 1 FC)*3 5,669,071 1552.3 1011.5 0.826 7.780 0.110 1,610,220 960.9 763.7 0.951 4.910 0.060 7,639,600 1846.9 1175.7 0.766 9.246 0.130 49.340 0.146

45 24 (3 FC)*5 8,475,861 2196.9 1715.3 0.739 11.094 0.136 5,611,620 1773.3 1354.7 0.827 9.121 0.111 10,887,700 2502.1 1931.9 0.665 12.496 0.155 1.452 0.003

45 24 (4 FC)*5 8,526,247 2103.0 1552.9 0.738 10.558 0.135 3,404,970 1414.3 1154.4 0.895 7.453 0.087 12,056,400 2485.3 1767.0 0.629 12.378 0.163 1.185 0.003

45 168 (3 FC)*5 33,547,800 4906.2 4521.8 -0.030 24.272 0.272 33,964,500 4928.3 4540.0 -0.042 24.361 0.274 33,623,700 4909.6 4523.8 -0.032 24.281 0.272 2.432 0.009

45 168 (4 FC)*5 7,619,318 2063.7 1581.3 0.766 10.344 0.129 6,430,420 1881.8 1418.7 0.803 9.487 0.119 10,722,500 2469.2 1871.0 0.671 12.453 0.154 4.301 0.009

45 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 6,663,891 1700.8 1083.0 0.795 8.660 0.118 954,288 728.7 562.9 0.971 3.779 0.046 10,798,700 2155.7 1252.4 0.668 10.744 0.154 14.514 0.013

45 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 4,838,068 1461.5 961.9 0.852 7.338 0.102 1,164,250 801.2 611.4 0.964 4.127 0.051 6,988,970 1787.9 1168.9 0.786 8.896 0.124 72.698 0.059

Classic ML
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Ensemble 
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Figure 7. (Upper section): forecast metrics for the average, first (T-0), and last (T-23) predicted time-slots using DL, ML,
and ensemble models for a fixed number of values per predictor ( f = 45). The table is color-coded along columns with
colors between red and green corresponding to the worst and best results, respectively. (Lower section): bar chart for
sMAPE metrics for some of the best performing models from the upper table.
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Class f p Model MSE MAE MAD R2 sMAPE RRMSE MSE MAE MAD R2 sMAPE RRMSE MSE MAE MAD R2 sMAPE RRMSE

Training

Time 

(min)

Test

Time 

(min)
1 24 1 LSTM + 1 FC 6,022,328 1731 1232 0.8148 8.766 0.112 1,228,310 842 659 0.9622 4.357 0.052 9,384,450 2203 1578 0.7115 11.066 0.144 3.812 0.0091

1 24 2 LSTM + 1 FC 5,675,340 1694 1219 0.8255 8.542 0.109 1,152,420 815 633 0.9646 4.179 0.050 8,421,500 2110 1508 0.7411 10.673 0.136 4.826 0.0161

1 24 2 1D-CNN + 1 FC 5,975,028 1734 1272 0.8163 8.837 0.112 1,252,970 878 716 0.9615 4.634 0.053 10,303,400 2260 1487 0.6833 11.404 0.151 1.684 0.0052

1 24 2 1D-CNN (MaxPooling) + 1 FC 6,924,590 1882 1376 0.7871 9.555 0.120 1,572,820 984 811 0.9516 5.091 0.059 10,800,700 2438 1813 0.6680 12.277 0.154 1.564 0.0058

1 24 2 1D-CNN + 1 LSTM + 1 FC 5,923,070 1724 1252 0.8179 8.711 0.112 1,340,070 893 712 0.9588 4.588 0.054 9,072,510 2165 1472 0.7211 10.976 0.141 1.805 0.0121

1 24 2 1D-CNN + 2 LSTM + 1 FC 5,587,690 1660 1181 0.8282 8.337 0.108 1,284,620 894 739 0.9605 4.509 0.053 8,512,330 2096 1464 0.7383 10.556 0.137 3.646 0.0176

1 168 1 LSTM + 1 FC 3,296,706 1224 867 0.8988 6.151 0.084 1,122,670 823 673 0.9656 4.155 0.050 4,244,780 1373 923 0.8697 6.961 0.097 122.766 0.0431

1 168 2 LSTM + 1 FC 3,595,281 1265 890 0.8897 6.368 0.088 1,578,830 954 751 0.9516 4.860 0.059 4,316,120 1339 880 0.8675 6.691 0.098 52.734 0.0852

1 168 2 1D-CNN + 1 FC 7,223,554 2067 1739 0.7783 10.411 0.124 8,383,650 2405 2200 0.7428 12.025 0.136 12,656,700 2909 2623 0.6116 14.587 0.167 4.088 0.0107

1 168 2 1D-CNN (MaxPooling) + 1 FC 5,344,936 1653 1256 0.8360 8.396 0.107 4,393,440 1626 1330 0.8652 8.313 0.098 8,322,360 2172 1739 0.7446 10.991 0.135 2.336 0.0129

1 168 2 1D-CNN + 1 LSTM + 1 FC 3,950,512 1372 998 0.8788 6.938 0.092 1,334,120 898 742 0.9591 4.629 0.054 5,206,950 1543 1040 0.8402 7.788 0.107 4.332 0.0153

1 168 2 1D-CNN + 2 LSTM + 1 FC 3,383,631 1274 912 0.8962 6.424 0.085 1,191,380 844 684 0.9634 4.334 0.051 5,022,610 1537 1050 0.8459 7.682 0.105 8.075 0.0213

1 720 1 LSTM + 1 FC 4,788,052 1593 1199 0.8535 8.013 0.102 2,197,550 1160 956 0.9328 6.017 0.070 6,004,430 1749 1267 0.8163 8.755 0.115 34.154 0.2102

1 720 2 LSTM + 1 FC 5,541,973 1732 1319 0.8304 8.810 0.110 3,487,550 1444 1171 0.8933 7.439 0.088 7,219,800 2021 1601 0.7791 10.355 0.126 35.682 0.3469

1 720 2 1D-CNN + 1 FC 19,444,790 3654 3256 0.4049 18.106 0.206 21,130,200 3885 3484 0.3534 19.295 0.216 22,165,200 3934 3504 0.3218 19.486 0.221 6.670 0.0401

1 720 2 1D-CNN (MaxPooling) + 1 FC 33,198,780 4884 4484 -0.0161 24.139 0.270 33,122,000 4880 4475 -0.0136 24.129 0.270 33,117,800 4880 4470 -0.0133 24.123 0.270 5.667 0.0291

1 720 2 1D-CNN + 1 LSTM + 1 FC 2,982,062 1171 837 0.9087 5.873 0.080 986,983 781 656 0.9698 4.060 0.047 4,328,650 1382 947 0.8676 6.874 0.098 9.040 0.0338

1 720 3 1D-CNN + 1 LSTM + 1 FC 3,340,233 1233 878 0.8978 6.236 0.084 1,203,010 825 650 0.9632 4.196 0.051 4,746,470 1460 966 0.8548 7.359 0.102 16.328 0.0461

1 720 2 1D-CNN + 2 LSTM + 1 FC 3,316,090 1239 884 0.8985 6.148 0.084 1,268,230 866 693 0.9612 4.429 0.053 4,712,460 1474 1022 0.8558 7.240 0.102 17.393 0.0391

1 24 Random Forest 5,302,593 1479 889 0.8370 7.517 0.105 568,900 534 380 0.9825 2.720 0.035 8,331,450 1954 1213 0.7439 9.851 0.135 1.228 0.0136

1 24 Linear Regression 10,533,310 2266 1547 0.6761 11.594 0.148 902,373 693 497 0.9723 3.465 0.045 13,948,600 2732 1865 0.5712 13.950 0.175 0.007 0.0001

1 168 Random Forest 5,020,732 1349 780 0.8459 6.704 0.104 757,942 619 454 0.9767 3.108 0.041 5,815,730 1481 847 0.8215 7.363 0.113 9.665 0.1074

1 168 Linear Regression 4,240,085 1297 827 0.8699 6.436 0.094 350,885 431 328 0.9892 2.212 0.028 5,533,440 1495 915 0.8302 7.402 0.110 0.050 0.0006

1 24 NA 18,253,160 3234 2612 0.4409 16.414 0.199 7,035,700 2021 1516 0.7845 10.128 0.125 22,294,500 3647 3024 0.3171 18.565 0.222 0.005 0.0695

1 168 NA 11,280,890 2580 2062 0.6542 13.301 0.158 8,531,820 2299 1918 0.7388 11.931 0.138 13,465,600 2810 2272 0.5869 14.338 0.173 0.053 0.5600

1 720 NA 8,297,923 2210 1804 0.7174 11.425 0.140 7,232,500 2077 1698 0.7520 10.755 0.131 8,731,240 2262 1838 0.7064 11.696 0.143 0.065 0.8642

1 24 (3 FC)*5 4,911,157 1524 1062 0.8490 7.713 0.101 868,293 730 612 0.9733 3.831 0.044 8,012,950 1971 1313 0.7537 9.912 0.133 1.820 0.0019

1 24 (4 FC)*5 4,710,536 1480 1012 0.8552 7.497 0.099 889,754 740 607 0.9726 3.873 0.044 7,636,190 1970 1374 0.7652 9.845 0.130 2.278 0.0022

1 24 (1 LSTM + 1 FC)*10 5,256,786 1608 1166 0.8384 8.228 0.104 663,536 620 482 0.9796 3.207 0.038 8,867,330 2212 1657 0.7274 11.255 0.140 58.649 0.0568

1 24 (2 LSTM + 1 FC)*3 5,312,667 1587 1110 0.8367 7.979 0.105 927,148 738 591 0.9715 3.812 0.045 8,037,210 2067 1487 0.7529 10.323 0.133 21.165 0.0226

1 168 (3 FC)*5 3,161,967 1148 788 0.9030 5.741 0.082 695,745 636 507 0.9787 3.245 0.039 4,338,160 1343 904 0.8669 6.752 0.098 2.413 0.0033

1 168 (4 FC)*5 3,256,741 1152 771 0.9001 5.724 0.083 790,755 669 524 0.9757 3.449 0.042 4,472,430 1353 890 0.8627 6.784 0.099 1.733 0.0026

1 168 (1 LSTM + 1 FC)*5 3,615,454 1258 868 0.8890 6.329 0.088 760,056 679 569 0.9767 3.478 0.041 4,858,600 1395 867 0.8509 6.876 0.104 57.717 0.1239

1 168 (2 LSTM + 1 FC)*3 3,750,715 1343 960 0.8849 6.812 0.090 1,022,650 789 631 0.9686 3.973 0.047 5,022,560 1511 982 0.8459 7.584 0.105 22.735 0.1317

1 24 (3 FC)*5 6,025,247 1791 1351 0.8147 9.065 0.112 1,203,380 858 718 0.9630 4.454 0.051 8,690,810 2164 1575 0.7328 10.889 0.138 1.107 0.0017

1 24 (4 FC)*5 5,670,401 1681 1220 0.8257 8.511 0.109 1,099,780 808 648 0.9662 4.191 0.049 8,551,730 2046 1377 0.7371 10.281 0.137 2.021 0.0017

1 168 (3 FC)*5 4,354,109 1425 1026 0.8664 7.233 0.097 3,156,330 1347 1044 0.9032 7.115 0.083 6,977,510 1922 1441 0.7859 9.649 0.124 1.121 0.0022

1 168 (4 FC)*5 3,844,067 1323 942 0.8820 6.560 0.091 1,267,590 852 669 0.9611 4.389 0.053 5,385,760 1503 999 0.8347 7.439 0.109 3.031 0.0033

1 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 5,280,710 1551 1034 0.8376 7.827 0.105 830,195 723 616 0.9745 3.685 0.043 8,266,720 1997 1300 0.7459 10.044 0.135 13.403 0.0131

1 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 3,064,396 1127 773 0.9060 5.693 0.080 604,466 587 458 0.9815 2.988 0.037 4,364,300 1327 861 0.8661 6.666 0.098 95.918 0.0986
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Figure 8. (Upper section): forecast metrics for the average, first (T-0), and last (T-23) predicted time-slots using DL, ML,
and ensemble models for a fixed number of values per predictor ( f = 1). The table is color-coded along columns with colors
between red and green corresponding to the worst and best results, respectively. (Lower section): bar chart for sMAPE
metrics for some of the best performing models from the upper table.

The best results for the Seq2seq models were achieved when using only recurring
networks (one or two LSTM layers) while the inclusion of convolutional layers deteriorates
the forecast. Seq2seq models (Figures 6 and A1 (Appendix A) present some of the best
results for very short-term forecasts and worst for average and long-term forecasts. These
models have difficulty converging with f , equal to one with their best results with f equal
to 45.

The results for DL, ML, and ensemble models, with an f value equal to 45, are shown
in Figure 7 and the Appendix A. For this value of parameter f , the best performing models
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were classic ML models. A combination of two CNN layers and two LSTM appeared
to provide a performance similar to random forest and linear regression. The ensemble
models did not give a good performance either.

The results for DL, ML, and ensemble models, with an f value equal to 1, are shown in
Figure 8 and the Appendix A. The results in this figure are very different from the results in
Figure 7, despite being the same models with a different value for parameter f . In Figure 8,
we obtain most of the best results obtained in this work. The best performing model types
were DL and ensemble models for long-term forecasting and average results, while for
short-term results, the classic ML and Seq2seq models were best. It is interesting how the
combination of CNN and LSTM layers produced some of the best performance models,
since this result is very different from what happens in Seq2seq architectures, for which
these layer combinations provide very poor results.

A conclusion drawn from the results in Figures 6–8 is the importance of the impact
of the rolling window length and the number of features associated with the time-slots.
Another is that the best specific sequence of layers for a deep learning architecture depends
on the type of model, making it impossible to establish a priori a better architecture for all
types of models.

In all the tables in Figures 6–8, the description of the models includes the number and
type of layers used: CNN, LSTM, and fully connected layers (FC), forming a sequence
separated by the + sign. The ensemble models follow the gaNet architecture [11] which is
formed by repeating blocks where the configuration of each repeating block is included in
parentheses with an asterisk and a number to the right of the parentheses that indicates
the number of repetitions of the block. Ensemble Type II models that are made up of
different blocks with a possibly different architecture per block can also have different
types of inputs per block; in those cases where there are different inputs per block, we
have marked that in the tables by an NA in the f column, reporting the type of input
associated with each block by an additional letter within parentheses and immediately
after the layer type (LSTM or 1D-CNN). Possible values for these additional letters are: an
(L) for inputs formed exclusively by the load values, a (D) for inputs formed by the load
plus the date/time features, and a (A) for inputs formed by the load plus the date/time
and weather features.

Table 1 provides a summary table with a ranking of the three best models for the three
most important metrics (R2, RRMSE, and SMAPE) plus training and test times. Similar to
Figures 6–8, metric values are provided for the forecasts of the first (T-0) and the last (T-23)
time-slots, in addition to the average of forecasts for all (24) predicted time-slots.
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Table 1. Ranking of the three best models for the three most important metrics (R2, SMAPE and RRMSE) plus training and
test times. Values are provided for the forecasts of the first (T-0) and the last (T-23) time-slots, in addition to the average of
forecasts for all (24) predicted time-slots.

Metric Rank Class f p k Model Metric
Value

1◦ DL Achitectures 1 720 24 2 1D-CNN + 1 LSTM
+ 1 FC 0.9087

2◦ Ensemble Type II 1 168 24 (1 LSTM + 2 FC) * 2 +
(4 FC) * 2 0.9060

R2

3◦ Ensemble Type I 1 168 24 (3 FC) * 5 0.9030

1◦ Ensemble Type II 1 168 24 (1 LSTM + 2 FC) * 2 +
(4 FC) * 2 5.6934

2◦ Ensemble Type I 1 168 24 (4 FC) * 5 5.7235sMAPE
3◦ Ensemble Type I 1 168 24 (3 FC) * 5 5.7410

1◦ DL Achitectures 1 720 24 2 1D-CNN + 1 LSTM
+ 1 FC 0.0797

RRMSE
2◦ Ensemble Type II 1 168 24 (1 LSTM + 2 FC) * 2 +

(4 FC) * 2 0.0803

A
ve

ra
ge

3◦ Ensemble Type I 1 168 24 (3 FC) * 5 0.0820

R2
1◦ Classic ML 1 168 24 Linear Regression 0.9892
2◦ Classic ML 45 168 24 Linear Regression 0.9875R2

3◦ Seq2Seq + Attention 45 24 24 2 LSTM + 1 FC 0.9872
1◦ Classic ML 1 168 24 Linear Regression 2.2120
2◦ Classic ML 45 168 24 Linear Regression 2.2608

T-
0

sMAPE
3◦ Seq2Seq + Attention 45 24 24 2 LSTM + 1 FC 2.3705
1◦ Classic ML 1 168 24 Linear Regression 0.0278
2◦ Classic ML 45 168 24 Linear Regression 0.0299RRMSE
3◦ Seq2Seq + Attention 45 24 24 2 LSTM + 1 FC 0.0303
1◦ DL Achitectures 1 168 24 1 LSTM + 1 FC 0.8697

2◦ DL Achitectures 1 720 24 2 1D-CNN + 1 LSTM
+ 1 FC 0.8676R2

3◦ DL Achitectures 1 168 24 2 LSTM + 1 FC 0.8675

1◦ Ensemble Type II 1 168 24 (1 LSTM + 2 FC) * 2 +
(4 FC) * 2 6.6660

2◦ DL Achitectures 1 168 24 2 LSTM + 1 FC 6.6912T-
23

sMAPE

3◦ Ensemble Type I 1 168 24 (3 FC) * 5 6.7516
1◦ DL Achitectures 1 168 24 1 LSTM + 1 FC 0.0967

2◦ DL Achitectures 1 720 24 2 1D-CNN + 1 LSTM
+ 1 FC 0.0975RRMSE

3◦ DL Achitectures 1 168 24 2 LSTM + 1 FC 0.0976
1◦ DMD 1 24 24 NA 0.0047
2◦ Classic ML 1 24 24 Linear Regression 0.0066

Training
Time
(min) 3◦ Classic ML 1 168 24 Linear Regression 0.0499

1◦ Classic ML 1 24 24 Linear Regression 0.0001
2◦ Classic ML 1 168 24 Linear Regression 0.0006

Test
Time
(min) 3◦ Ensemble Type I-B 1 24 24 (3 FC) * 5 0.0017

The main findings of the work, as conclusions from Table 1, are:

• The best value for parameter p seems to be 168, i.e., having a rolling window length
of 1 week, it appears that shorter and longer values do not generally provide the
best results. The exceptions are Seq2seq models, which prefer a value of 24 (1 day),
and some deep learning models that combine a CNN with an LSTM, for which 720
(1 month) is the preferred length.

• The best number of features associated with each time-slot seems to be one, i.e., to use
the load value exclusively. The exception is again the Seq2seq models which prefer to
have the date features additionally. The behavior of logistic regression is confusing in
this regard because they obtain best results with both 1 and 45 features/time-slot.
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• For near-term forecasts (prediction of the following value), the linear/simple models,
as linear regression, provide the best results when using a large enough number of
predictors (p = 128) and a simple scalar predictor value ( f = 1), which is the electric load.
In this scenario, another model providing the best results is the Seq2seq+attention
model with a smaller number of predictors (p = 24) and the full vector of predictor
values ( f = 45).

• For longer-term forecasts, the deep learning models with one or two LSTM layers
provide the best results. Another model with excellent performance is a model
combining 1D-CNN layers and LSTM layers. The model with the best sMAPE metric
is an ensemble Type II model with a small number of dense and LSTM blocks. In all
these cases, the best results are obtained with a large number of predictors (p = 168,
720) and a smaller number of values per predictor ( f = 1).

• Considering the average results for the 24 predicted values, the best results are ob-
tained for: (1) ensemble Type II models with a small number of dense and LSTM
blocks, (2) ensemble Type I models with a small number of dense blocks, and (3)
combined 1D-CNN and LSTM layers with p = 720. All these results are obtained with
the smaller number of values per predictor ( f = 1).

• Interestingly, multiple output models can produce better results for distant forecasts
than single output models (classic ML models) even when the latter models have
a specific regressor to predict each output. This is a demonstration of the great
correlation between the outputs that a single model can learn, while k independent
regressors lose this valuable information.

In Figure A1 (Appendix A), a complete table is provided, integrating the results from
Figures 6–8 into a single one. The Table in the Appendix A contains additional results that
are not shown in Figures 6–8, with the intention to simplify them by not showing the worst
performing models.

Another interesting result is that including additional features (date/time, weather)
should provide an improvement in the results due to the strong correlation between
weather and electricity consumption. Nevertheless, this influence turned out to be less
significant than anticipated, with most models performing better simply by using the past
load values. An explanation could be obtained from the results presented in previous
works showing that the influence of weather data is more noticeable as the forecast period
increases [36,37], and their influence is small for a forecast horizon of a few hours [37].

It is interesting to analyze the evolution of the forecast metrics for the different time-
ahead time-slots. This evolution depends mainly on the forecasting model, and it can
range from a monotonous decreasing line to a decreasing exponential, and it can have
intermediate plateaus where the performance is almost constant regardless of the prediction
time distance. In all cases, the performance metrics experience a decline when the forecast
is for a longer time interval, as intuitively expected. Figure 9 presents the evolution of
the forecast metrics for different k-ahead forecasts for two of the best models for average
forecasting (Table 1) and Figure 10 for another two of the best models for near-term
forecasting (Table 1).
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( f = 1, p = 168, k = 24) (left) and DL architecture (2 1D-CNN + 1 LSTM + 1 FC) ( f = 1, p = 720, k = 24) (right).
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Figure 10. Forecast metrics for successive predicted time-slots for models: classic ML, (linear regression) ( f = 1, p = 168,
k = 24) (left) and Seq2seq + attention (2 LSTM + 1 FC) ( f = 45, p = 24, k = 24) (right).

It is interesting to analyze the impact of the rolling window length (parameter p)
on the forecast performance metrics. Figure 11 presents the impact on the performance
metrics with a rolling window length between 24 (1 day) and 1440 h (60 days). In Figure 11,
a vertical red line marks an interval of one week (168 h). A performance improvement
is obtained by increasing the value of p up to a value of 168 (1 week of rolling window
length); from this point, the improvement is much smaller, and even decreases with a
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p value greater than 720 (4 weeks). This behavior explains why the best results were
obtained with a p value between 168 and 720. The Seq2seq models are an exception in this
case due to their difficulties in handling large input vectors.
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Figure 11. Influence of the rolling window length (p) on different forecast metrics (MSE, MAE, MAD,
R2, SMAPE and RRMSE), obtained with the DMD model. The range of values for p is between 24
(1 day) and 1440 h (60 days).

It may also be of interest to investigate the evolution of the loss function during
training. Figure 12 provides this evolution for one of the deep learning architectures
((1 LSTM + 1 FC) ( f = 1, p = 168, k = 24)), using the mean squared error (MSE) loss. In
general, we observed that after 20–30 epochs, most of the models converged smoothly, with
the Seq2seq and ensemble models experiencing the most difficulties in their convergence.
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Figure 12. Training (blue line) and validation (green line) MSE loss evolution for successive epochs
while training (model: DL architecture (1 LSTM + 1 FC) ( f = 1, p = 168, k = 24)).

To provide a visual indication of the quality of the 24 h forecast, Figure 13 shows a
comparison between real (ground-truth) load signals and their forecasts as we increase
the forecast time horizon. The different diagrams are 24 h time windows taken at random
points in the test set. The forecast follows the real signal almost perfectly to a point where it
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begins to drift. The drift point is different for different samples, with some signals perfectly
followed almost all the time and others beginning to separate in the initial forecasts. In all
cases, the forecast signal is a smoothed version of the real one.
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Figure 13. Comparison between real 24 h load signals (blue lines) and their forecasts (orange lines) for
data in the test set (model: ensemble Type II ([1 LSTM + 2 FC] * 2 + (4 FC)*2) ( f = 1, p = 168, k = 24)).

Figures 14–17 present the ability of the DMD algorithm to identify the structure of
the time-series (load values). Figure 14 shows the evolution of the signal energy (sum
of squares of principal eigenvalues) in relation to the total signal energy (sum squares
of all eigenvalues). We observe that to achieve a 99% total signal energy, generally a
few eigenvalues are sufficient. In particular, for our dataset, 10 eigenvalues (modes) are
sufficient to capture the 99% of total signal energy for a rolling window of 24 and 168 h,
and 16 eigenvalues for a rolling window of 720 h.
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Figure 14. Graph showing the total energy of the signal captured by the linear DMD approximation
versus the number of eigenvectors (modes) used to implement the transformation. This graph was
obtained with a rolling window of 24 h, and is very similar to the graph for a rolling window of
168 h.
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Figure 15. Principal eigenvectors (Φ) of the DMD algorithm (best linear mapping) for the temporal
evolution of the load values. The eigenvectors are in order of importance (according to their corresponding
eigenvalues) and represent the main modes of temporal evolution of the time-series. They clearly show
the strong intra-day periodicity of the load values. The values shown correspond to a rolling window of
24 h (1 day).
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Figure 16. Principal eigenvectors (Φ) of the DMD algorithm (best linear mapping) for the temporal
evolution of the load values. The eigenvectors are in order of importance (according to their corresponding
eigenvalues) and represent the main modes of temporal evolution of the time-series. They clearly show
the strong daily periodicity of the load values. The values shown correspond to a rolling window of
168 h (1 week).
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Figure 17. Principal eigenvectors (Φ) of the DMD algorithm (best linear mapping) for the temporal
evolution of the load values. The eigenvectors are in order of importance (according to their corre-
sponding eigenvalues) and represent the main modes of temporal evolution of the time-series. They
clearly show the strong daily/weekly periodicity of the load values. The values shown correspond
to a rolling window of 720 h (1 month). In this case, 16 eigenvectors were needed to capture 99% of
the total signal energy.

Figures 15–17 show the principal eigenvectors (Φ) of the DMD algorithm for the
temporal evolution of the load values and for different rolling window lengths (24, 168,
and 720 h). The eigenvectors are in order of importance (according to their corresponding
eigenvalues) and represent the main modes of temporal evolution of the time-series. They
show the strong periodicity of the load values at different levels of granularity: intra-day,
daily, and weekly.

We implemented all the neural network models (deep learning, Seq2seq, attention,
and gaNet) in python using Tensorflow/Keras [59]. For all other models, we used the
scikit-learn python package [60].

5. Conclusions

This work provides a comprehensive analysis of a significant number of novel forecast-
ing models from different fields and areas of research, exploring reduced-order dynamical
systems techniques (DMD), classic ML models (linear regression, random forest, gradient
boosting, k-nearest neighbors, support vector regression, and AdaBoost), DL models (con-
volutional and recurrent architectures and their combination), DL sequence to sequence
models (Seq2seq with and without attention), and specific DL ensemble models (gaNet).
All techniques were applied to a unique dataset obtained from real data from a Spanish util-
ity, which implies having a homogeneous set of results that allows a systematic comparison
between models.
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Some of the models analyzed have been widely applied to STLF (e.g., classical ma-
chine learning models), while others have rarely been applied (e.g., sequence to sequence,
attention, DMD), and some of them have been applied for the first time to STLF, as far as we
know (e.g., deep learning ensemble models specifically suitable for time-series forecasting,
and specific configurations combining convolutional and recurring layers).

The main conclusions obtained from this work are the following: (a) A rolling window
of 1 week appears to be the best value for most models, and longer and shorter values
do not, on average, provide better results. (b) Another interesting result is that including
additional features (date/time, weather) could provide an improvement in the results in
some scenarios, but not in general, the models that obtain better results simply using the
past values of load being more numerous. (c) For very-short term forecasts, it is important
to note that simple linear models and Seq2seq architectures provide better results than
more complex models. (d) For longer-term forecasts, deep learning models consisting
of convolutional layers followed by recurrent layers provide the best results, better than
pure convolutional or recurrent networks and similar, in forecasting performance in DL
ensemble models (gaNet). (e) When the focus is to have good average forecasts, considering
both very short-term and medium-term forecasts, the best models are DL ensemble models
(gaNet), followed by CNN/RNN network combinations.

This work also validates the importance of deep ensemble models and how they
provide better performance results for predictions with increasing degrees of uncertainty.
It corroborates other studies that try to understand the foundations of this behavior,
considering different points of view. This work presents a specific deep ensemble model
that originated by combining ideas from gradient boosting and residual networks [11]
and demonstrates the results from other ensemble architectures [27,61] where emphasis is
placed on the random initialization of the different ensemble entities.

As already mentioned, the electrical sector is a critical infrastructure and therefore
one of the main industries exposed to security and fraud attacks, i.e., DDoS (distributed
denial of service) cybersecurity threats. It could also be vulnerable to so-called ransomware
cybersecurity attacks, where the attacker hijacks (typically through encryption) customer
data that can only be recovered after payment to the attacker. One specific threat scenario is
related to charging and billing. In smart grids, the central billing system receives customer
consumptions from so-called smart meters through communication technologies. It also
receives aggregated consumptions from intermediate elements of the grid (substations at
district level, city distribution level). A cybersecurity attack could target both the billing
system and the individual smart meters, preventing the electrical utility from knowing how
much electricity has been consumed by the customers. An electrical company would lose a
significant amount of money if it was not able to bill its customers, and the attacker could
ask for an important ransom. However, thanks to machine learning, the electrical company
could estimate the consumption made based on historical data, and therefore, minimize the
incentive of the attacker to ask for a ransom, and if the attack is executed in any case, make
a provisional billing based on an accurate estimation. With the current dataset, estimations
are made at the small city level, because consumption data from individual smart meters
are much more restrictive from a General Data Protection Regulation (European Union)
data privacy perspective. As a future line of study, research could be extended with
anonymized personal identifiable information.

Considering the experience gained with deep learning models applied to time-series
forecasting from the perspective of a multivariate multi-output regression problem, we
plan to extend the experiments with novel deep learning sequential models, such as
transformers [62]. Another future work will be to build controlled perturbation-based
experiments to demonstrate the capabilities of STLF as a security/threat indicator.
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Appendix A

In this annex is presented the complete set of results from which the most important
results and conclusions have been extracted.

The table below shows all the forecast performance metrics for the average, first (T-0),
and last (T-23) predicted time-slots using DL, ML, and ensemble models. The average is
obtained along the 24 predicted values (k = 24). Different number of predictors (p) and
network architectures are considered for a fixed number of values per predictor (f = 1).
The table is color coded (column-wise) with a green–red palette corresponding to best–
worst results. Section 3.2 provides how to interpret the description of the models and their
groups. The last two columns provide the training and test times for all models.
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Class f p Model MSE MAE MAD R2 sMAPE RRMSE MSE MAE MAD R2 sMAPE RRMSE MSE MAE MAD R2 sMAPE RRMSE

Training

Time 

(min)

Test

Time 

(min)

45 24 1 LSTM + 1 FC 6,479,118 1770.5 1261.5 0.801 9.0 0.115 434,997 476.9 353.3 0.987 2.4 0.031 10,543,200 2436.6 1810.2 0.676 12.2 0.152 14.369 0.0479

45 24 2 LSTM + 1 FC 8,289,029 1747.5 969.9 0.745 8.7 0.129 451,045 479.0 352.3 0.986 2.5 0.032 13,433,500 2427.8 1372.3 0.587 11.8 0.172 63.148 0.0715

45 24 2 1D-CNN + 1 LSTM + 1 FC 47,089,200 5315.6 4358.8 -0.448 27.0 0.315 2,358,580 1182.3 940.3 0.927 6.4 0.072 53,410,500 5806.8 4783.1 -0.642 29.5 0.343 16.880 0.0684

45 168 1 LSTM + 1 FC 8,420,570 1879.8 1174.8 0.742 9.2 0.129 434,666 477.9 356.7 0.987 2.4 0.031 14,577,200 2672.0 1687.9 0.553 12.9 0.179 82.606 0.0763

45 168 2 LSTM + 1 FC 6,788,302 1748.8 1176.9 0.792 8.8 0.117 419,015 477.5 371.4 0.987 2.4 0.030 11,131,400 2377.3 1613.9 0.658 11.7 0.157 84.025 0.1339

45 168 2 1D-CNN + 1 LSTM + 1 FC 29,722,340 4474.9 4106.6 0.088 22.0 0.251 3,050,370 1326.3 1034.1 0.906 6.3 0.082 33,555,800 4903.7 4572.9 -0.030 24.2 0.272 35.034 0.1019

45 720 1 LSTM + 1 FC 8,534,025 1890.2 1154.7 0.739 9.4 0.131 462,248 489.2 359.5 0.986 2.5 0.032 14,063,700 2592.6 1628.2 0.570 12.6 0.176 100.725 0.2294

45 720 2 LSTM + 1 FC 6,366,990 1667.3 1077.9 0.805 8.4 0.114 446,108 491.5 375.3 0.986 2.5 0.031 9,796,230 2190.8 1422.8 0.700 10.8 0.147 160.340 0.3678

45 720 2 1D-CNN + 1 LSTM + 1 FC 30,051,510 4128.2 3208.7 0.080 20.3 0.255 8,307,780 2268.5 1907.6 0.746 10.9 0.135 32,701,000 4385.3 3466.6 -0.001 21.7 0.268 115.625 0.2975

45 24 1 LSTM + 1 FC 8,384,991 1854.4 1172.6 0.742 9.1 0.130 488,121 503.9 374.0 0.985 2.6 0.033 13,955,300 2544.9 1620.0 0.571 12.3 0.175 13.582 0.0665

45 24 2 LSTM + 1 FC 7,578,606 1698.7 987.7 0.767 8.4 0.123 416,383 464.7 351.1 0.987 2.4 0.030 12,384,800 2373.5 1409.8 0.619 11.5 0.165 17.083 0.0669

45 24 2 1D-CNN + 1 LSTM + 1 FC 159,237,700 11174.2 10988.3 -3.896 70.3 0.592 143,198,000 10482.3 10183.4 -3.402 64.2 0.562 162,892,000 11335.8 11235.5 -4.008 71.7 0.599 12.383 0.0675

45 168 1 LSTM + 1 FC 9,017,546 1936.1 1214.5 0.723 9.7 0.135 528,351 525.2 388.1 0.984 2.7 0.034 13,566,200 2555.7 1646.6 0.584 12.7 0.173 24.848 0.0865

45 168 2 LSTM + 1 FC 6,999,635 1698.1 1045.9 0.785 8.4 0.119 445,945 485.9 360.4 0.986 2.5 0.031 10,888,600 2258.5 1409.4 0.666 11.1 0.155 87.210 0.1232

45 168 2 1D-CNN + 1 LSTM + 1 FC 39,696,310 4883.9 4246.0 -0.218 25.7 0.286 4,081,380 1499.9 1128.3 0.875 7.5 0.095 62,598,700 6520.2 6020.2 -0.921 35.2 0.372 49.909 0.1016

45 720 1 LSTM + 1 FC 16,830,620 2744.8 1849.3 0.485 12.7 0.180 484,231 503.7 371.9 0.985 2.6 0.033 29,492,600 3963.0 2761.7 0.098 17.8 0.255 184.945 0.2322

45 720 2 LSTM + 1 FC 9,215,292 2022.9 1331.0 0.718 10.0 0.135 450,344 496.0 379.3 0.986 2.5 0.031 15,789,300 2842.9 1856.9 0.517 13.8 0.186 167.660 0.3336

45 720 2 1D-CNN + 1 LSTM + 1 FC 26,543,160 3987.9 3370.7 0.188 19.6 0.239 8,106,980 2239.7 1862.6 0.752 11.2 0.134 30,918,400 4356.0 3724.7 0.054 21.4 0.261 109.441 0.2477

1 24 1 LSTM + 1 FC 6,022,328 1730.5 1232.1 0.815 8.8 0.112 1,228,310 842.4 659.5 0.962 4.4 0.052 9,384,450 2203.3 1578.5 0.712 11.1 0.144 3.812 0.0091

1 24 2 LSTM + 1 FC 5,675,340 1694.3 1219.1 0.826 8.5 0.109 1,152,420 815.4 633.0 0.965 4.2 0.050 8,421,500 2110.2 1508.4 0.741 10.7 0.136 4.826 0.0161

1 24 2 1D-CNN + 1 FC 5,975,028 1734.3 1271.7 0.816 8.8 0.112 1,252,970 878.2 716.2 0.961 4.6 0.053 10,303,400 2260.3 1486.7 0.683 11.4 0.151 1.684 0.0052

1 24 2 1D-CNN (MaxPooling) + 1 FC 6,924,590 1881.6 1376.1 0.787 9.6 0.120 1,572,820 984.0 810.8 0.952 5.1 0.059 10,800,700 2438.0 1813.5 0.668 12.3 0.154 1.564 0.0058

1 24 2 1D-CNN + 1 LSTM + 1 FC 5,923,070 1724.4 1251.8 0.818 8.7 0.112 1,340,070 892.7 712.1 0.959 4.6 0.054 9,072,510 2164.9 1472.1 0.721 11.0 0.141 1.805 0.0121

1 24 2 1D-CNN + 2 LSTM + 1 FC 5,587,690 1660.1 1180.9 0.828 8.3 0.108 1,284,620 894.1 738.8 0.961 4.5 0.053 8,512,330 2096.0 1463.7 0.738 10.6 0.137 3.646 0.0176

1 24 6 FC 6,043,480 1746.9 1256.7 0.814 8.8 0.113 2,106,420 1128.1 897.7 0.935 5.8 0.068 9,780,620 2307.0 1700.4 0.699 11.6 0.147 0.345 0.0023

1 168 1 LSTM + 1 FC 3,296,706 1224.4 867.3 0.899 6.2 0.084 1,122,670 822.6 673.3 0.966 4.2 0.050 4,244,780 1372.8 923.1 0.870 7.0 0.097 122.766 0.0431

1 168 2 LSTM + 1 FC 3,595,281 1265.2 889.6 0.890 6.4 0.088 1,578,830 954.4 750.7 0.952 4.9 0.059 4,316,120 1339.5 879.5 0.868 6.7 0.098 52.734 0.0852

1 168 2 1D-CNN + 1 FC 7,223,554 2067.2 1739.4 0.778 10.4 0.124 8,383,650 2405.4 2200.5 0.743 12.0 0.136 12,656,700 2909.2 2623.3 0.612 14.6 0.167 4.088 0.0107

1 168 2 1D-CNN (MaxPooling) + 1 FC 5,344,936 1653.3 1256.5 0.836 8.4 0.107 4,393,440 1625.8 1329.7 0.865 8.3 0.098 8,322,360 2171.6 1739.3 0.745 11.0 0.135 2.336 0.0129

1 168 2 1D-CNN + 1 LSTM + 1 FC 3,950,512 1371.7 997.6 0.879 6.9 0.092 1,334,120 898.3 741.9 0.959 4.6 0.054 5,206,950 1542.8 1039.7 0.840 7.8 0.107 4.332 0.0153

1 168 2 1D-CNN + 2 LSTM + 1 FC 3,383,631 1274.5 911.8 0.896 6.4 0.085 1,191,380 843.5 683.8 0.963 4.3 0.051 5,022,610 1537.1 1050.3 0.846 7.7 0.105 8.075 0.0213

1 168 6 FC 3,717,323 1274.2 877.5 0.886 6.3 0.089 1,184,110 832.9 646.5 0.964 4.3 0.051 4,955,080 1464.8 966.5 0.848 7.3 0.105 2.508 0.0030

1 720 1 LSTM + 1 FC 4,788,052 1592.8 1199.2 0.853 8.0 0.102 2,197,550 1160.0 956.2 0.933 6.0 0.070 6,004,430 1748.9 1267.4 0.816 8.8 0.115 34.154 0.2102

1 720 2 LSTM + 1 FC 5,541,973 1732.3 1319.1 0.830 8.8 0.110 3,487,550 1444.4 1170.7 0.893 7.4 0.088 7,219,800 2021.4 1601.1 0.779 10.4 0.126 35.682 0.3469

1 720 2 1D-CNN + 1 FC 19,444,790 3653.8 3255.8 0.405 18.1 0.206 21,130,200 3884.8 3484.3 0.353 19.3 0.216 22,165,200 3934.4 3504.3 0.322 19.5 0.221 6.670 0.0401

1 720 2 1D-CNN (MaxPooling) + 1 FC 33,198,780 4883.6 4484.2 -0.016 24.1 0.270 33,122,000 4880.2 4475.0 -0.014 24.1 0.270 33,117,800 4879.7 4470.0 -0.013 24.1 0.270 5.667 0.0291

1 720 2 1D-CNN + 1 LSTM + 1 FC 2,982,062 1171.1 836.6 0.909 5.9 0.080 986,983 781.2 655.7 0.970 4.1 0.047 4,328,650 1382.1 946.6 0.868 6.9 0.098 9.040 0.0338

1 720 3 1D-CNN + 1 LSTM + 1 FC 3,340,233 1233.4 878.0 0.898 6.2 0.084 1,203,010 825.4 650.4 0.963 4.2 0.051 4,746,470 1459.7 966.2 0.855 7.4 0.102 16.328 0.0461

1 720 2 1D-CNN + 2 LSTM + 1 FC 3,316,090 1239.0 884.4 0.899 6.1 0.084 1,268,230 866.2 692.8 0.961 4.4 0.053 4,712,460 1474.2 1022.5 0.856 7.2 0.102 17.393 0.0391

1 720 6 FC 3,566,631 1290.4 944.9 0.891 6.5 0.088 2,102,510 1086.4 873.4 0.936 5.6 0.068 4,663,830 1500.0 1081.6 0.857 7.5 0.101 0.774 0.0036

45 24 1 LSTM + 1 FC 6,195,447 1698.4 1170.8 0.810 8.5 0.115 1,494,960 937.8 722.7 0.954 4.8 0.057 9,810,780 2117.0 1435.5 0.698 10.6 0.147 4.765 0.0077

45 24 2 LSTM + 1 FC 7,748,237 1802.8 1121.3 0.762 9.1 0.128 1,528,600 913.9 693.6 0.953 4.7 0.058 12,091,800 2310.3 1419.4 0.628 11.4 0.163 19.256 0.0149

45 24 2 2D-CNN + 1 FC 33,094,060 4882.9 4494.4 -0.018 24.2 0.270 33,039,300 4880.1 4482.6 -0.016 24.1 0.270 33,275,800 4891.8 4506.8 -0.023 24.2 0.271 7.766 0.0226

45 24 2 1D-CNN + 1 FC 5,907,817 1743.4 1284.2 0.818 8.8 0.113 2,394,930 1208.6 993.5 0.926 6.4 0.073 8,622,150 2095.9 1485.9 0.735 10.5 0.138 3.201 0.0037

45 24 2 1D-CNN (MaxPooling) + 1 FC 6,126,764 1792.7 1336.6 0.812 9.1 0.115 2,658,230 1263.9 1012.1 0.918 6.6 0.077 8,993,910 2172.0 1568.9 0.724 11.0 0.141 3.788 0.0037

45 24 2 1D-CNN + 1 LSTM + 1 FC 4,975,367 1507.8 1016.4 0.847 7.6 0.103 1,564,870 928.8 715.4 0.952 4.8 0.059 7,307,580 1830.8 1187.4 0.775 9.2 0.127 19.558 0.0074

45 24 2 1D-CNN + 2 LSTM + 1 FC 5,738,281 1629.7 1087.6 0.824 8.3 0.111 2,041,510 1086.1 856.6 0.937 5.6 0.067 8,104,580 1970.8 1330.0 0.751 10.0 0.134 12.020 0.0150

45 24 6 FC 7,861,525 1911.9 1302.3 0.758 9.6 0.130 2,565,100 1246.3 1025.8 0.921 6.5 0.075 10,000,900 2193.8 1505.5 0.693 10.9 0.148 1.753 0.0019

45 168 1 LSTM + 1 FC 6,974,843 1766.6 1170.7 0.786 8.9 0.122 2,428,550 1195.6 962.4 0.925 6.3 0.073 9,739,580 2082.1 1305.0 0.701 10.4 0.147 18.308 0.0460

45 168 2 LSTM + 1 FC 7,798,327 1833.4 1166.8 0.761 9.2 0.129 2,802,340 1228.6 941.5 0.914 6.3 0.079 10,425,300 2170.0 1400.7 0.680 10.9 0.152 31.858 0.0668

45 168 2 1D-CNN + 1 FC 11,667,630 2662.6 2181.5 0.642 13.2 0.160 9,972,840 2524.9 2106.5 0.694 12.7 0.148 13,048,100 2794.2 2236.9 0.600 13.8 0.170 1.921 0.0131

45 168 2 1D-CNN (MaxPooling) + 1 FC 16,910,420 3278.5 2812.9 0.481 16.2 0.192 20,405,200 3713.7 3217.1 0.374 18.5 0.212 24,157,800 4056.4 3695.9 0.259 20.0 0.231 4.178 0.0163

45 168 2 1D-CNN + 1 LSTM + 1 FC 5,372,823 1487.8 995.2 0.835 7.5 0.107 1,576,770 951.4 744.6 0.952 4.9 0.059 8,369,170 1832.4 1158.3 0.743 9.2 0.136 8.235 0.0176

45 168 2 1D-CNN + 2 LSTM + 1 FC 4,189,875 1332.0 882.4 0.871 6.7 0.094 1,247,890 837.3 645.4 0.962 4.4 0.052 5,960,730 1596.7 1009.0 0.817 7.9 0.115 15.313 0.0219

45 168 6 FC 8,624,556 2140.4 1547.8 0.735 10.6 0.137 6,972,700 2020.0 1585.7 0.786 10.2 0.124 11,376,000 2526.7 1933.5 0.651 12.5 0.158 0.898 0.0065

45 720 1 LSTM + 1 FC 6,090,553 1599.7 1081.7 0.814 8.1 0.114 1,894,670 1017.9 776.7 0.942 5.3 0.065 8,479,800 1843.8 1179.6 0.741 9.1 0.137 56.410 0.2215

45 720 2 LSTM + 1 FC 7,241,965 1745.5 1130.5 0.778 8.7 0.124 2,611,450 1191.2 911.1 0.920 6.0 0.076 9,902,940 2008.5 1205.5 0.697 9.9 0.148 69.946 0.3704

45 720 2 1D-CNN + 1 FC 33,224,320 4884.9 4485.8 -0.017 24.1 0.270 33,419,500 4895.9 4503.5 -0.023 24.2 0.271 33,571,700 4903.6 4500.3 -0.027 24.2 0.272 8.410 0.0447

45 720 2 1D-CNN (MaxPooling) + 1 FC 33,134,430 4880.0 4485.1 -0.014 24.1 0.270 33,276,900 4888.4 4490.7 -0.018 24.2 0.270 33,390,600 4894.1 4508.7 -0.022 24.2 0.271 15.823 0.0499

45 720 2 1D-CNN + 1 LSTM + 1 FC 5,059,471 1496.8 1014.4 0.845 7.5 0.104 1,645,400 959.7 743.7 0.950 5.1 0.060 6,419,050 1721.4 1157.2 0.804 8.6 0.119 21.860 0.0670

45 720 3 1D-CNN + 1 LSTM + 1 FC 5,661,417 1612.8 1116.3 0.827 8.1 0.111 2,411,320 1137.5 849.1 0.926 5.9 0.073 7,315,740 1854.9 1268.3 0.776 9.2 0.127 17.143 0.0900

45 720 2 1D-CNN + 2 LSTM + 1 FC 6,291,731 1746.6 1206.9 0.807 8.6 0.117 3,990,250 1471.3 1093.8 0.878 7.4 0.094 7,100,180 1837.5 1236.7 0.783 9.1 0.125 23.993 0.0625

45 720 6 FC 9,512,350 2313.1 1757.0 0.709 11.4 0.145 10,589,100 2407.2 1778.1 0.676 11.9 0.153 11,515,800 2579.2 2037.7 0.648 12.9 0.159 3.164 0.0255

1 24 Random Forest 5,302,593 1478.8 889.0 0.837 7.5 0.105 568,900 534.5 380.4 0.983 2.7 0.035 8,331,450 1954.0 1213.0 0.744 9.9 0.135 1.228 0.0136

1 24 Linear Regression 10,533,310 2266.1 1547.2 0.676 11.6 0.148 902,373 692.7 497.0 0.972 3.5 0.045 13,948,600 2731.6 1865.2 0.571 14.0 0.175 0.007 0.0001

1 24 Gradient Boosting 20,891,520 3810.9 3399.4 0.358 19.3 0.214 14,067,000 3155.2 2888.6 0.568 16.2 0.176 21,707,300 3886.6 3421.5 0.333 19.6 0.219 0.089 0.0009

1 24 KNN 4,989,475 1418.2 862.2 0.847 7.2 0.102 967,456 698.0 510.0 0.970 3.6 0.046 8,942,990 2001.4 1216.0 0.725 10.0 0.140 0.019 0.1742

1 24 Support Vector Regression 9,076,027 2198.5 1699.7 0.721 11.2 0.138 1,804,010 1105.8 965.6 0.945 5.7 0.063 12,368,900 2628.5 2062.1 0.620 13.3 0.165 2.525 0.3637

1 24 AdaBoost 12,802,020 2782.2 2266.8 0.606 14.2 0.166 2,758,610 1348.2 1159.9 0.915 7.0 0.078 14,798,600 2956.5 2320.5 0.545 15.0 0.181 0.507 0.0074

1 168 Random Forest 5,020,732 1349.2 780.1 0.846 6.7 0.104 757,942 618.7 454.2 0.977 3.1 0.041 5,815,730 1481.1 846.7 0.822 7.4 0.113 9.665 0.1074

1 168 Linear Regression 4,240,085 1297.5 827.1 0.870 6.4 0.094 350,885 430.9 328.1 0.989 2.2 0.028 5,533,440 1495.4 915.4 0.830 7.4 0.110 0.050 0.0006

1 168 Gradient Boosting 16,874,050 3388.8 3016.4 0.482 17.3 0.193 13,894,000 3108.7 2870.8 0.574 16.0 0.175 17,038,100 3405.4 3041.5 0.477 17.4 0.194 0.765 0.0049

1 168 KNN 4,112,377 1282.9 823.5 0.874 6.3 0.095 2,606,990 1055.6 708.0 0.920 5.3 0.076 5,185,820 1444.5 912.0 0.841 7.1 0.107 0.134 3.8043

1 168 Support Vector Regression 4,366,702 1444.1 1056.4 0.866 7.4 0.097 1,666,740 1044.3 917.9 0.949 5.5 0.061 5,569,000 1614.3 1149.7 0.829 8.2 0.111 3.598 0.7381

1 168 AdaBoost 8,127,589 2242.5 1898.0 0.751 11.6 0.133 2,203,930 1190.4 1025.6 0.932 6.2 0.070 9,485,050 2465.8 2120.7 0.709 12.6 0.145 3.401 0.0496

45 24 Random Forest 5,463,283 1470.4 857.2 0.832 7.4 0.107 633,968 556.8 398.2 0.981 2.8 0.037 7,913,630 1803.0 1046.0 0.757 9.1 0.132 9.488 0.1054

45 24 Linear Regression 6,314,323 1753.8 1260.5 0.806 8.9 0.115 688,331 588.0 415.5 0.979 2.9 0.039 8,622,780 2124.0 1502.5 0.735 10.7 0.138 0.902 0.0010

45 24 Gradient Boosting 19,925,480 3714.6 3301.1 0.387 18.8 0.209 14,067,000 3155.2 2888.6 0.568 16.2 0.176 20,416,300 3759.5 3307.8 0.372 19.1 0.212 3.271 0.0091

45 24 KNN 13,130,560 2576.7 1652.0 0.596 12.7 0.170 11,975,500 2422.6 1494.0 0.632 11.9 0.162 14,493,100 2734.1 1824.0 0.554 13.4 0.179 1.476 18.0216

45 24 Support Vector Regression 7,051,829 2011.4 1617.9 0.783 10.2 0.123 2,608,470 1314.6 1146.2 0.920 6.7 0.076 9,420,250 2361.8 1922.7 0.710 11.9 0.144 38.132 8.6819

45 24 AdaBoost 11,344,240 2665.9 2276.3 0.651 13.6 0.157 2,720,780 1338.4 1158.9 0.916 7.0 0.077 12,510,100 2773.4 2257.8 0.615 14.2 0.166 6.649 0.0673

45 168 Random Forest 4,959,729 1351.4 788.8 0.848 6.7 0.103 747,048 614.5 443.3 0.977 3.1 0.041 5,707,890 1472.8 843.3 0.825 7.3 0.112 92.524 1.0280

45 168 Linear Regression 4,758,965 1379.6 892.7 0.854 6.9 0.100 406,341 442.2 321.5 0.988 2.3 0.030 6,361,340 1625.5 1041.7 0.805 8.1 0.118 73.650 0.0082

45 168 Gradient Boosting 16,874,050 3388.8 3016.4 0.482 17.3 0.193 13,894,000 3108.7 2870.8 0.574 16.0 0.175 17,038,100 3405.4 3041.5 0.477 17.4 0.194 44.733 0.0694

45 168 KNN 12,102,020 2544.2 1748.8 0.629 12.4 0.163 11,877,000 2509.1 1716.0 0.636 12.2 0.162 12,215,900 2558.9 1760.0 0.625 12.5 0.164 7.530 274.8777

45 168 Support Vector Regression 6,325,536 1890.3 1487.0 0.806 9.5 0.118 4,085,740 1558.7 1249.2 0.875 7.9 0.095 7,465,730 2087.5 1678.4 0.771 10.5 0.128 179.090 42.7263

45 168 AdaBoost 8,299,474 2283.8 1963.3 0.745 11.8 0.134 2,030,910 1133.3 947.5 0.938 5.9 0.067 9,607,530 2459.9 2061.6 0.705 12.7 0.146 55.554 0.4784

1 24 NA 18,253,160 3234.0 2611.7 0.441 16.4 0.199 7,035,700 2021.0 1515.8 0.785 10.1 0.125 22,294,500 3646.8 3023.9 0.317 18.6 0.222 0.005 0.0695

1 168 NA 11,280,890 2580.4 2062.0 0.654 13.3 0.158 8,531,820 2298.9 1918.4 0.739 11.9 0.138 13,465,600 2809.6 2272.1 0.587 14.3 0.173 0.053 0.5600

1 720 NA 8,297,923 2210.2 1803.7 0.717 11.4 0.140 7,232,500 2076.7 1698.1 0.752 10.8 0.131 8,731,240 2261.5 1838.4 0.706 11.7 0.143 0.065 0.8642

1 24 (3 FC)*5 4,911,157 1524.4 1062.0 0.849 7.7 0.101 868,293 730.1 612.4 0.973 3.8 0.044 8,012,950 1970.6 1312.9 0.754 9.9 0.133 1.820 0.0019

1 24 (4 FC)*5 4,710,536 1480.2 1012.0 0.855 7.5 0.099 889,754 739.5 607.3 0.973 3.9 0.044 7,636,190 1969.6 1374.3 0.765 9.8 0.130 2.278 0.0022

1 24 (1 LSTM + 1 FC)*10 5,256,786 1608.1 1166.0 0.838 8.2 0.104 663,536 620.4 482.0 0.980 3.2 0.038 8,867,330 2212.0 1656.8 0.727 11.3 0.140 58.649 0.0568

1 24 (1 LSTM + 1 FC)*10 + dropout(0.3) 23,755,980 4104.2 3837.5 0.270 21.4 0.229 24,718,500 4599.4 4773.9 0.240 26.1 0.233 21,555,400 3823.8 3570.6 0.337 19.3 0.218 34.108 0.0434

1 24 (2 LSTM + 1 FC)*3 5,312,667 1586.6 1110.1 0.837 8.0 0.105 927,148 738.3 590.6 0.971 3.8 0.045 8,037,210 2067.4 1487.3 0.753 10.3 0.133 21.165 0.0226

45 24 (3 FC)*5 7,690,465 1914.9 1321.1 0.764 9.6 0.128 2,235,200 1128.2 891.2 0.931 5.9 0.070 10,874,800 2359.8 1689.7 0.666 11.9 0.155 1.504 0.0031

45 24 (4 FC)*5 8,469,669 1959.6 1258.3 0.740 10.0 0.134 2,134,390 1086.2 841.6 0.934 5.7 0.069 11,740,500 2353.4 1436.9 0.639 11.8 0.161 2.896 0.0028

45 24 (1 LSTM + 1 FC)*10 6,974,140 1701.1 1039.4 0.786 8.6 0.120 723,268 635.2 499.1 0.978 3.3 0.040 10,420,500 2131.0 1256.6 0.680 10.6 0.152 57.917 0.0492

45 24 (1 LSTM + 1 FC)*10 + dropout(0.3) 13,571,780 2865.4 2337.1 0.583 14.1 0.173 10,828,000 2593.8 2143.7 0.667 13.0 0.154 14,458,700 2997.8 2532.5 0.556 14.9 0.178 22.944 0.0460

45 24 (2 LSTM + 1 FC)*3 7,176,459 1815.6 1190.7 0.779 9.2 0.123 1,565,160 982.0 818.2 0.952 5.1 0.059 11,087,600 2279.0 1417.5 0.659 11.5 0.156 16.675 0.0253

1 168 (3 FC)*5 3,161,967 1147.6 787.7 0.903 5.7 0.082 695,745 635.8 506.8 0.979 3.2 0.039 4,338,160 1342.7 904.1 0.867 6.8 0.098 2.413 0.0033

1 168 (4 FC)*5 3,256,741 1152.1 771.2 0.900 5.7 0.083 790,755 669.5 524.0 0.976 3.4 0.042 4,472,430 1352.8 890.1 0.863 6.8 0.099 1.733 0.0026

1 168 (1 LSTM + 1 FC)*5 3,615,454 1258.5 867.5 0.889 6.3 0.088 760,056 678.9 569.1 0.977 3.5 0.041 4,858,600 1394.8 867.2 0.851 6.9 0.104 57.717 0.1239

1 168 (2 LSTM + 1 FC)*3 3,750,715 1342.7 960.2 0.885 6.8 0.090 1,022,650 788.7 631.5 0.969 4.0 0.047 5,022,560 1511.1 981.7 0.846 7.6 0.105 22.735 0.1317

45 168 (3 FC)*5 6,195,977 1768.8 1290.1 0.810 8.9 0.116 3,703,070 1465.4 1159.3 0.886 7.6 0.090 7,909,510 2052.0 1543.7 0.757 10.3 0.132 13.312 0.0123

45 168 (4 FC)*5 6,660,185 1778.6 1248.9 0.796 8.9 0.120 3,321,780 1345.0 1046.3 0.898 6.9 0.086 8,342,990 2077.2 1492.1 0.744 10.4 0.136 11.200 0.0094

45 168 (1 LSTM + 1 FC)*5 6,689,661 1752.0 1183.0 0.795 8.9 0.119 1,498,140 931.6 728.0 0.954 4.8 0.057 9,546,250 2111.4 1403.9 0.707 10.6 0.145 50.960 0.1463

45 168 (2 LSTM + 1 FC)*3 5,669,071 1552.3 1011.5 0.826 7.8 0.110 1,610,220 960.9 763.7 0.951 4.9 0.060 7,639,600 1846.9 1175.7 0.766 9.2 0.130 49.340 0.1459

1 24 (4 FC)*5 5,049,507 1495.3 993.5 0.845 7.6 0.103 986,533 739.6 556.3 0.970 3.8 0.047 7,830,260 1953.5 1346.9 0.759 9.9 0.131 4.099 0.0031

1 24 (1 LSTM + 1 FC)*5 5,514,763 1626.0 1135.9 0.830 8.2 0.107 853,369 712.4 569.7 0.974 3.7 0.043 8,177,150 2094.6 1549.5 0.749 10.5 0.134 28.741 0.0267

1 168 (1 LSTM + 1 FC)*3 3,351,393 1208.6 842.9 0.897 6.0 0.085 969,539 750.9 595.7 0.970 3.9 0.046 4,680,840 1418.6 933.0 0.856 7.0 0.102 1.778 0.0039

45 24 (4 FC)*5 8,325,770 1948.5 1295.8 0.744 9.8 0.132 1,920,650 1029.0 779.5 0.941 5.3 0.065 10,609,900 2224.6 1429.6 0.674 11.1 0.153 3.452 0.0049

45 24 (1 LSTM + 1 FC)*5 7,269,773 1721.2 1046.1 0.776 8.7 0.123 1,241,060 829.3 631.2 0.962 4.3 0.052 10,785,800 2094.6 1196.9 0.668 10.5 0.154 28.006 0.0307

45 168 (1 LSTM + 1 FC)*5 6,949,138 1686.6 1040.4 0.787 8.5 0.121 1,362,150 880.5 691.1 0.958 4.6 0.055 9,728,390 2001.5 1216.1 0.701 9.9 0.146 59.952 0.1442

1 24 (3 FC)*5 6,025,247 1791.1 1351.3 0.815 9.1 0.112 1,203,380 857.9 717.8 0.963 4.5 0.051 8,690,810 2163.7 1575.1 0.733 10.9 0.138 1.107 0.0017

1 24 (4 FC)*5 5,670,401 1680.7 1220.1 0.826 8.5 0.109 1,099,780 807.9 647.6 0.966 4.2 0.049 8,551,730 2045.8 1377.0 0.737 10.3 0.137 2.021 0.0017

1 168 (3 FC)*5 4,354,109 1425.3 1026.1 0.866 7.2 0.097 3,156,330 1347.3 1043.8 0.903 7.1 0.083 6,977,510 1922.3 1441.4 0.786 9.6 0.124 1.121 0.0022

1 168 (4 FC)*5 3,844,067 1322.9 941.7 0.882 6.6 0.091 1,267,590 852.3 668.7 0.961 4.4 0.053 5,385,760 1502.9 999.4 0.835 7.4 0.109 3.031 0.0033

45 24 (3 FC)*5 8,475,861 2196.9 1715.3 0.739 11.1 0.136 5,611,620 1773.3 1354.7 0.827 9.1 0.111 10,887,700 2502.1 1931.9 0.665 12.5 0.155 1.452 0.0034

45 24 (4 FC)*5 8,526,247 2103.0 1552.9 0.738 10.6 0.135 3,404,970 1414.3 1154.4 0.895 7.5 0.087 12,056,400 2485.3 1767.0 0.629 12.4 0.163 1.185 0.0026

45 168 (3 FC)*5 33,547,800 4906.2 4521.8 -0.030 24.3 0.272 33,964,500 4928.3 4540.0 -0.042 24.4 0.274 33,623,700 4909.6 4523.8 -0.032 24.3 0.272 2.432 0.0092

45 168 (4 FC)*5 7,619,318 2063.7 1581.3 0.766 10.3 0.129 6,430,420 1881.8 1418.7 0.803 9.5 0.119 10,722,500 2469.2 1871.0 0.671 12.5 0.154 4.301 0.0091

1 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 5,280,710 1550.9 1033.6 0.838 7.8 0.105 830,195 723.1 615.9 0.974 3.7 0.043 8,266,720 1996.9 1300.2 0.746 10.0 0.135 13.403 0.0131

45 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 6,663,891 1700.8 1083.0 0.795 8.7 0.118 954,288 728.7 562.9 0.971 3.8 0.046 10,798,700 2155.7 1252.4 0.668 10.7 0.154 14.514 0.0125

NA 24

(1 LSTM(A) + 2 FC)*1 + 

(1 LSTM(D) + 2 FC)*1 + 

(1 LSTM(L) + 2 FC)*1 + 

(4 FC)*1

7,187,851 1687.9 990.6 0.779 8.4 0.122 573,377 564.9 433.8 0.982 2.9 0.036 10,856,900 2197.1 1237.0 0.666 10.9 0.155 30.576 0.0172

NA 24

(1 LSTM(A) + 2 FC)*1 + 

(1 LSTM(D) + 2 FC)*1 + 

(1 LSTM(L) + 2 FC)*1 

7,062,396 1717.1 1071.5 0.783 8.6 0.121 787,803 674.8 528.4 0.976 3.4 0.042 11,162,300 2194.6 1231.7 0.657 11.1 0.157 27.577 0.0294

NA 24

(1 LSTM(A) + 2 FC)*2 + 

(1 LSTM(D) + 2 FC)*2 + 

(1 LSTM(L) + 2 FC)*2 + 

(4 FC)*2

6,363,914 1649.2 1058.9 0.804 8.4 0.114 570,060 571.3 448.8 0.982 2.9 0.035 10,226,000 2156.0 1330.3 0.686 10.7 0.150 33.828 0.0294

NA 24

(2 1D-CNN(A) +1 LSTM + 2 FC)*1 + 

(2 1D-CNN(D) +1 LSTM + 2 FC)*1 + 

(2 1D-CNN(L) +1 LSTM+  2 FC)*1 + 

(4 FC)*1

5,313,763 1625.5 1168.0 0.837 8.3 0.106 1,589,250 952.1 746.2 0.951 4.8 0.059 8,367,550 2002.0 1312.2 0.743 10.1 0.136 9.082 0.0130

NA 24

(2 1D-CNN(A) +1 LSTM + 2 FC)*2 + 

(2 1D-CNN(D) +1 LSTM + 2 FC)*2 + 

(2 1D-CNN(L) +1 LSTM+  2 FC)*2 + 

(4 FC)*2

5,364,495 1637.0 1160.4 0.835 8.3 0.107 2,702,450 1351.7 1187.5 0.917 6.9 0.077 8,231,580 2008.4 1348.8 0.747 10.1 0.135 27.541 0.0229

1 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 3,064,396 1126.6 772.9 0.906 5.7 0.080 604,466 587.1 458.0 0.981 3.0 0.037 4,364,300 1326.7 861.1 0.866 6.7 0.098 95.918 0.0986

45 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 4,838,068 1461.5 961.9 0.852 7.3 0.102 1,164,250 801.2 611.4 0.964 4.1 0.051 6,988,970 1787.9 1168.9 0.786 8.9 0.124 72.698 0.0586

NA 168

(1 LSTM(A) + 2 FC)*1 + 

(1 LSTM(D) + 2 FC)*1 + 

(1 LSTM(L) + 2 FC)*1 + 

(4 FC)*1

4,564,873 1392.9 916.9 0.860 7.0 0.098 743,137 650.9 498.2 0.977 3.3 0.040 6,565,770 1711.3 1107.2 0.799 8.6 0.120 37.157 0.0621

NA 168

(1 LSTM(A) + 2 FC)*1 + 

(1 LSTM(D) + 2 FC)*1 + 

(1 LSTM(L) + 2 FC)*1 

4,881,112 1484.2 1002.6 0.850 7.5 0.102 1,125,100 795.5 612.2 0.965 4.1 0.050 6,792,180 1759.1 1154.1 0.792 8.7 0.122 36.073 0.0596

NA 168

(1 LSTM(A) + 2 FC)*2 + 

(1 LSTM(D) + 2 FC)*2 + 

(1 LSTM(L) + 2 FC)*2 + 

(4 FC)*2

4,323,387 1426.0 1003.4 0.867 7.2 0.096 802,789 688.9 561.9 0.975 3.5 0.042 6,515,730 1757.3 1140.2 0.800 8.8 0.120 78.647 0.0980

NA 168

(2 1D-CNN(A) +1 LSTM + 2 FC)*1 + 

(2 1D-CNN(D) +1 LSTM + 2 FC)*1 + 

(2 1D-CNN(L) +1 LSTM+  2 FC)*1 + 

(4 FC)*1

4,410,754 1493.2 1070.1 0.865 7.5 0.097 1,293,710 877.8 720.4 0.960 4.5 0.053 5,816,750 1724.5 1205.1 0.821 8.6 0.113 24.410 0.0713

NA 168

(2 1D-CNN(A) +1 LSTM + 2 FC)*2 + 

(2 1D-CNN(D) +1 LSTM + 2 FC)*2 + 

(2 1D-CNN(L) +1 LSTM+  2 FC)*2 + 

(4 FC)*2

4,623,346 1549.9 1149.6 0.858 7.9 0.099 1,110,690 815.2 654.9 0.966 4.3 0.049 6,889,680 1924.8 1406.1 0.789 9.7 0.123 34.370 0.1153

1 720 (1 LSTM + 2 FC)*2 + (4 FC)*2 3,664,349 1316.3 983.3 0.888 6.6 0.088 1,115,960 838.7 699.7 0.966 4.2 0.050 4,391,940 1384.6 939.8 0.866 6.8 0.098 42.145 0.5970

NA 720

(1 LSTM(A) + 2 FC)*1 + 

(1 LSTM(D) + 2 FC)*1 + 

(1 LSTM(L) + 2 FC)*1 + 

(4 FC)*1

4,443,107 1448.9 1033.2 0.864 7.3 0.096 671,410 627.3 507.5 0.979 3.3 0.038 6,591,150 1812.8 1236.8 0.798 9.2 0.120 107.037 0.7107
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Figure A1. Forecast metrics for the average, first (T-0), and last (T-23) predicted time-slots for all models.
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