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Abstract: Seamless human–robot collaboration requires the equipping of robots with cognitive
capabilities that enable their awareness of the environment, as well as the actions that take place
inside the assembly cell. This paper proposes an AI-based system comprised of three modules that
can capture the operator and environment status and process status, identify the tasks that are being
executed by the operator using vision-based machine learning, and provide customized operator
support from the robot side for shared tasks, automatically adapting to the operator’s needs and
preferences. Moreover, the proposed system is able to assess the ergonomics in human–robot shared
tasks and adapt the robot pose to improve ergonomics using a heuristics-based search algorithm.
An industrial case study derived from the elevator manufacturing sector using a high payload
collaborative robot is presented to demonstrate that collaboration efficiency can be enhanced through
the use of the discussed system.

Keywords: human–robot collaboration; assembly; artificial intelligence; augmented reality; digital
twin; programming; ergonomics

1. Introduction

Applications of human–robot collaboration (HRC) have already made their way into
industrial practice, hence the Industry 4.0 revolution [1], allowing human operators and
robots to coexist in the same space [2,3]. HRC applications offer a number of advantages
over non-collaborative ones, as they allow to combine benefits of both actors, namely
humans and robots. Robots can offer high accuracy and repeatability, can lift heavy
weights, and can reduce the cycle time compared to a merely manual production. On the
other hand, humans show high levels of cognition and dexterity. Safety concerns arise
though in HRC applications, as robots have to share space or tasks with humans and
without proper application human safety may be violated [4].

The driving force for such investigation has been the pursuit of manufacturing flexi-
bility which allows companies to efficiently align their production with the demand for
low volume, highly customized products [5]. Robots have proven very capable of being
reconfigured and repurposed even between cycles within the same shift, however, their
productivity potential becomes hindered when humans are present in their workspace.
Coexistence in a workplace does not automatically result in productivity gains as seamless
collaboration requires intelligence and autonomy on both sides of the collaborating entities.

Speaking of intelligence, researchers have been utilizing AI in various research fields,
such as health care [6,7], education [8], transportation [9], engineering [10], and industry.
Specifically, for industry, AI has been utilized in human –robot collaborative applications,
in topics such as cognition to enable autonomy [4], task planning and allocation of tasks
among humans and robots [11], and operator support [12].

Humans can perform the most delicate and dexterous processes employing their
intelligence and senses. Robots on the other hand are powerful, fast, and accurate machines
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with limited interaction capabilities [13]. Efficient collaboration calls for a reduction of
the interfaces required to exchange information between them and this can be achieved
by increasing the perception and cognition capabilities of robots to emulate the ones of
humans [14]. However, in order to achieve conditions that are similar to the case of human-
to-human collaboration, the triggering of alternative actions on the robot side is merely the
first step. A human counterpart would:

• reason upon the evolution of a task by combining observations of both his/her co-
worker (movement, posture, intention) as well as the working environment (position-
ing of parts, tools, machine state indicators, etc.).

• Increase the efficiency of collaboration by adapting his/her actions to both directly
communicated requirements as well as indirect observations and intuition.

A case of collaborative behavior would include the change of the assembly task
sequence initiated arbitrarily by one operator and followed by the compliance of the
second, without verbal communication. The instinctive adaptation of holding height
during the co manipulation of a large part to better distribute the weight according to the
operator’s physiology is another example.

Transferring this notion to the case of HRC (Figure 1), a high payload collaborative
robot would need to continuously assess the workflow execution status using information
from equipment controllers, process sensors, and direct human input as well as data from
wearable devices, which have been widely used in other sectors such as health care [15].
All data can be hosted in a Shopfloor Digital Representation (Digital Twin [16,17]) of the
system and made available to all cognitive functions to achieve the following:

i. Detection of parts or tools to be manipulated by human operators and localization of
their position. Although this field has been fairly researched in the past using both
RGB and 3D sensors [18], the use of data coming from wearable devices is one of the
novelties of this work.

ii. Identification of tasks being executed by human operators and validation of the
assembly progress. Recent research has mainly focused on tracking the position and
posture [19] and even fewer approaches perform intention prediction [20,21]. This
work advances further by exploiting human and environment tracking to identify the
workflow execution status which allows for the triggering of task-optimized support
strategies.

iii. Online calculation of ergonomic conditions for each task as it evolves. Tools for online
assessment of ergonomics using depth sensors and wearable devices have been
provided [22] to support workplace layout optimization and operator support [23].
Their use is extended in this paper to feed the robotic cognition module with the
ability to consider ergonomic aspects when devising operator support actions.

iv. Adaptation of robot posture to both human actions (direct input to the robot) and
needs (ergonomics assessment) using learning strategies and trajectory optimization
techniques [24]. The approach extends beyond the switching between predefined
states by real-time adaptation of the robot-provided support to each operator.

The novelty of the proposed solution lays in the fact that it enhances the cognitive ca-
pabilities of the robots, performing real-time tracking as well as optimization of ergonomics
by automatic adjustment of the robot pose, going one step forward from existing imple-
mentations that focus on providing suggestions for ergonomics improvement. Moreover,
it allows automatic adaptation of the robot behavior to the needs and preferences of the
operators. In a nutshell, it promotes the seamless coexistence of humans and robots.
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Figure 1. Constituting elements and functions of an HRC system.

In this work, the combination of these advancements has been applied for the first
time in the case of high payload collaborative manipulators which, unlike cobots, are much
more capable to supplement humans in performing strenuous tasks. Section 2 describes
the approach and its architecture, detailing their functionality and interrelationships; in
Section 3 the implementation of the approach is presented and its application on an elevator
assembly case study is outlined in Section 4. Section 5 discusses the results and outlines
future work.

2. Approach and Architecture

The proposed method supports the seamless and non-intrusive collaboration of hu-
man and robotic resources. This is achieved through three distinct but interoperating
modules: (i) action perception module (APM); (ii) ergonomics improvement module (EIM),
(iii) learning and programming module (LPM). The workflow and the functionalities
implemented by each are shown in Figure 2.

As indicated by their names, each module contains functions for perceiving the state
of the work cell and its resources, the monitoring, and correction of working conditions as
well as the human-centered adjustment of the robot’s behavior. The individual functions of
each module are presented in detail in Section 3.

All three modules communicate among each other as well as with the rest of the
software/hardware modules of the work cell using a ROS-based architecture. A common
pre-existing simulation environment, named Shopfloor Digital Representation (SDR), is
used by the modules to simulate various scenarios, enhanced to support the new functional-
ities needed. The SDR is a 1:1 replica of the real environment, able to simulate robot as well
as human motion. It is built, among others, around the GAZEBO simulation software [25]
and MoveIt! planning framework [26].
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3. Implementation
3.1. Actions Perception Module (APM)

APM acts as the main means of capturing and interpreting the scene where the robot
and operator are engaged in collaboration. It uses a convolutional neural network to
detect the existence/position of parts to be assembled as well as the hands of the operator.
The TensorFlow machine learning framework [18] was used, supplemented by a custom
object detector, allowing to detect the parts of interest as well as the operator’s hands. The
real-time detection requirement was met with the use of a single shot detector (SSD) which
provides satisfactory accuracy.

To increase the detection accuracy of the NN, training with multiple datasets were
tested:

(i) Real-life photos: short videos of objects of interest in diverse lighting conditions and
background were shot. The single frames were extracted, followed by a manual
annotation procedure.

(ii) CAD-based photos: CAD files of the objects were imported in Unity3D, textures
were applied, and a script was used to automatically vary the background/viewing
angles/lighting conditions of the virtual scene, capture and label photos.

(iii) Synthetic dataset: a combination of real-life photos and CAD-based photos.
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Augmentation of datasets using HSV filters and image reduction to 300 × 300 pixels
were applied to increase the training and execution speeds. The NN trained with the syn-
thetic data demonstrated increased accuracy when compared to the use of real-life photos
(12% increase) or CAD photos (26% increase). The overall methodology is summarized in
Figure 3.
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Figure 3. APM—detection of parts position/parts being manipulated.

For the APM detection algorithm to work, an input in the form of RGB photos should
be provided. To avoid the installation of multiple stationary RGB cameras to achieve high
coverage of the shopfloor, the necessary video stream is extracted from the built-in cameras
of the AR headset that the operator is already using as a supporting device (Microsoft
HoloLens 2 [27]). This allows the operator to freely move from one station to another
and ensure that his/her actions are constantly tracked. The video feed of the headset is
wirelessly transmitted to the APM controller allowing the utilization of low spec mobile
hardware to be used, while the resource-intensive tasks are performed at a remote machine
with higher processing power. To achieve low latency in HoloLens live video stream, the
Mixed Reality Companion Kit library [28] was used. As soon as a part is detected, the
application draws a boundary box around it, indicating its position within the frame. To
identify the parts being manipulated, the percentage of overlap between the boundary
boxes of the operator’s hands and the objects of interest as well as the amount of time
that the overlap occurs is calculated (Figure 3). A number of experiments manipulating
objects of various sizes were done, allowing to set various overlap percentages and time
thresholds based on the size of parts/boundary boxes size.

This information is cross-checked against the task list of the specific assembly scenario,
to identify the active task (including its completion status) as well as the intention of the
operator on which task to carry out next. The position of the operator on the shopfloor
is constantly monitored and used to supplement the scene analysis. The built-in IMU
sensor of HoloLens is utilized for this reason. Prior to the beginning of the assembly
scenario, the operator puts on the HoloLens headset, moves to a specific location, and
initializes/calibrates his/her position inside the shopfloor. In such a way, the initial position
of the operator is the same as the initial position of the virtual world (SDR). To avoid the
drift phenomenon that usually occurs while calculating position using data from IMU
sensors, an on-the-fly recalibration of the position of the operator is implemented. Several
markers are placed in the shopfloor and at well-known predefined positions. Whenever
a marker is detected via the RGB camera of HoloLens, the position of the operator is
recalibrated according to the predefined position of the marker.
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3.2. Ergonomics Improvement Module (EIM)

EIM’s goal is to quantify the physical effort that the operator is putting in while
actively collaborating with the robot as well as reduce the muscle strain to an acceptable
level. Kinect Azure [29] sensors installed around the shopfloor track operator’s body
and joints. Using the RULA assessment [22], the EIM processes joint data on the fly to
provide scoring of ergonomic risk factors associated with upper extremity musculoskeletal
disorders (MSDs). The final outcome of the above process is to generate a grand score
for each frame. In this way, the ergonomic values are being monitored during the whole
duration of the assembly. Whenever a user-defined threshold is exceeded, the EIM tries
to find an alternative robot pose that will allow the operator to adopt an ergonomically
correct posture.

To achieve it, an AI-based algorithm [30] comprising search and heuristic functions
generates the alternative positions of the end-effector. Its main foundation lays in the
selective search of the solution space, instead of using an exhaustive method. As the
number of possible end-effector positions increases, the solution space becomes excessively
large, which, consequently, vastly increases the computational and memory requirements
of the exhaustive search method. It is important to note that the referred solution space
is the set containing all possible end-effector positions that lead to feasible robot pose
configurations. The operator ergonomic scores for each alternative are being calculated
using the SDR simulation tools. To generate the alternatives, EIM divides the virtual 3D
workspace in a grid with user-adjustable discretization. Each point of the grid is a possible
new position for the robot’s end-effector. The points that are outside the working envelope
of the robot as well as the points that interfere with the surroundings are automatically
discarded. The user can limit the solution’s space to a specific volume around the current
position of the end effector. By viewing the 3D space as tree-nodes (x,y,z coordinates)
(Figure 4), the algorithm iteratively creates random, yet valid, groups of such nodes, noted
as branches. It then extends, or ‘reproduces’, the optimal branch, of the currently generated.
The selection of the fittest branch is performed by estimating the utility value of each one,
first calculating its node sequence utility value and then adding the average utility value
of some of its random extensions, or ‘samples’. A branch’s sample is a random sequence
of nodes that completes said branch, as they together to form a sequence of nodes or 3D
points. This procedure is configured using three, adjustable, parameters:

• Decision horizon (DH): The size in nodes of each generated branch. The higher its
value the more complex each iteration step is, as more assignments are considered
and evaluated each time.

• Maximum number of alternatives (MNA): The number of branches created in each
iteration. The higher its value, the closer the generated robot positions converge to the
optimal solution.

• Sample rate (SR): The plethora of samples examined per generated branch. The higher
its value, the better the accuracy of the predicted final utility value of the extended
branch.
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For each of the alternative configurations, the expected ergonomic value is calculated
by the SDR, using a virtual mannequin that is able to simulate human motion (Figure 5a).
EIM generates a robot pose that provides close to optimal ergonomic score, which is then
adapted by the robot in real time. It is worth noting that the virtual mannequin has, at least
for now, a fixed size and cannot be adapted to the size of the operators.

3.3. Learning and Programming Module (LPM)

To advance the collaboration scheme, predefined program execution needs to be
replaced by automated continuous learning and adaptation of the robot motion, based on
the operator’s perceived needs and preferences. For this purpose, the sequence of tasks to
be executed are inserted in the SDR simulation environment and MoveIt is used to generate
collision-free motion plans for each task.

When the operator is executing a collaborative task, he/she may choose to work with
the robot pose proposed by the system or move the robot to a more convenient pose for
him/her. The LPM module is divided into two sub-modules: (i) programming sub-module
and (ii) learning sub-module

(i) Programming sub-module: The programming sub-module of LPM supports two ways
of achieving such functionality: (a) direct movement of the end effector using manual
guidance (Figure 5b)—the operator can grab the dedicated handles installed at the
gripper of the robot and move the end effector to his preferred position, (b) indirect-
AR based control of the position of the end-effector, moving a virtual end-effector
at the desired position using gestures (Figure 5c)—the operator can manipulate
with gestures a virtual end effector, whose position represents the target position
of the physical end effector. In both cases, the target position of the end-effector is
communicated with SDR and the relevant robot path to achieve such pose is generated,
ensuring the avoidance of collisions with the surroundings.

(ii) Learning sub-module: Each execution of a specific assembly step provides a new input
to the learning sub-module of LPM, associated with a score (Tij_score) computed from
two KPIs; operator satisfaction (oper_sat), and ergonomic score (erg_sc). This funnel
is specific to each operator’s habits and ways to drive the robot; thus, it is necessary
to learn such a funnel for each operator. The relevant data (operator id, task id, robot
pose, Tij_score, oper_sat, erg_sc) for each execution of a specific assembly step, are
stored in a MongoDB. Prior to the execution of each assembly step, the Learning
sub-module determines the mode Tij_score value from the dataset and instructs the
robot to adapt the pose corresponding to the mode Tij_score (Figure 5d).

To calculate the score for the execution of a specific task (Tij_score), the following
formula is used (1):

Tijscore = w1 × oper__sat + w2 × erg__sc (1)

where:

(a) Tij_score: is the score for task i, and j is a counter increasing each time a new input for
task i is inserted into the learning funnel.

(b) oper_sat: declares the operator’s satisfaction. It can have binary values; 1 if the
operator does utilize the proposed robot configuration or 0 if the operator manually
adjusts the position of the end effector.

(c) erg_sc: refers to the ergonomic score calculated by the EIM using the RULA assess-
ment. The value is inverse normalized, meaning that erg_sc equal to 1 declares a good
ergonomic score.

(d) w1 and w2: denote weighting factors for the oper_sat and erg_sc values, respectively.

If the erg_sc is above a predefined threshold, the TiJ_score is set to 0. The various
Tij_score values are stored at a database, along with the corresponding robot pose and
erg_sc and grouped based on their value with 0.1 increments.
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4. Case Study

To demonstrate the aforementioned approach, a used case derived from the elevator
production sector was selected. Specifically, at the workstation of interest, the cab door
panel hangers and 11 subcomponents are pre-assembled. Currently, all material handling
and assembly operations are performed manually by an operator multiple times per shift.
The heavy weight of hangers (up to 22 kg) and the need for two-sided access cause extensive
ergonomic issues and symptoms such as back pains, hand tendonitis, and others. This is
the primary reason why operators with restrictions cannot work in this station.

The first high payload (170 kg) collaborative robot at the market (COMAU AURA [31])
is used as a smart work holding device, taking care of the arduous task of positioning
the assembly. This allows operators to perform delicate assembly actions in an effective,
pleasant, and ergonomic way. Based on the operator position, pace, and the sequence of
assembly operation, the robot automatically adapts its position, rotating the hanger in
space and presenting it to the operator in a convenient way (variation of the programmed
frame (R) by Φ and ∆Z to frame (O) shown in Figure 6). In other words, a change of the
current paradigm, where the part is static and the operator moves and bends around it to
do the different operations, is proposed putting the human in the center of the operation
and the robot presenting the part to him.

To evaluate the effectiveness of our approach, an experimental setup involving 5 op-
erators in total took place (4 males, 1 female), varying in height from 1.56–1.92 cm and
in age from 23–44 years old. Each of the subjects was asked to assemble the hanger in
collaboration with the high-payload robot in two experimental configurations: (a) without
AI support; the robot holds the panel at a pre-programmed stationary position, while the
operator performs assembly with the help of AR instructions, confirming the completeness
of each step through HMIs and hand gestures, and (b) with the utilization of the APM,
EIM, and LPM modules; the robot automatically adapts its pose to operator’s needs and
preferences when needed, without having to provide feedback for his/her actions. Each
operator repeated 10 times each of the experimental configuration (total of 100 tries for the
5 operators). For each repetition, the cycle time and ergonomic score KPIs were monitored,
while at the end of the experimentation the operators filled in questionnaires to capture
their subjective feedback regarding the effectiveness of each of the modules of our approach.
The results are summarized in Table 1.
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Table 1. Experimental results.

Cycle Time (s)
Ergonomics Score
(Max RULA Value)
(Lower Is Better)

Satisfaction
(Higher Is

Better)

LPM
Learning

Curve (Cycles)Before After Before After

Operator 1 137 140 2/6 2/6 3.2/5 2
Operator 2 186 175 2/6 3/6 3.8/5 4
Operator 3 154 141 3/6 2/6 4.8/5 6
Operator 4 192 177 4/6 2/6 4.2/5 5
Operator 5 169 155 3/6 2/6 4.2/5 4

The described approach had a positive impact on the cycle time, as most operators
managed to achieve better cycle time by using the modules of this study (reduction of ~6%).
Regarding ergonomics, the EIM managed to improve the maximum ergonomic values
for 4/5 operators, except from the first subject whose height fit well the pre-programmed
pose of the robot. All the subjects indicated above-average satisfaction for the developed
technology. Finally, for most of the subjects, the LPM was able to adapt to operator needs
and preferences after four cycles, as limited intervention was observed afterward, either by
humans or by the EIM.

5. Conclusions and Future Work

This work discusses an AI system that recognizes the actions being performed by
operators inside a human–robot collaborative cell, analyzes the ergonomics, and adapts
the robot behavior according to the needs of the task and the preferences of the operator,
improving ergonomics and operator’s satisfaction. The demonstration in an industrial
case study from the elevator production sector has revealed possible enhancement in the
cycle time (by 6%), amelioration of ergonomic factors in 80% of the samples, and a quite
high operator acceptance. Finally, the successful use of, non-so widespread, high payload
collaborative robotics has been demonstrated, which, unlike low payload cobots, are more
capable to supplement humans in performing strenuous tasks.

Nowadays, the industry is slowly moving from either manual production or totally
automated production to hybrid solutions. The current implementations utilize mainly
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low payload robots and offer limited cognition of process and surroundings, impacting
negatively the operator’s acceptance of such technologies. The proposed solution aspires to
bring industry one step closer to wide adoption of human–robot collaborative solutions, by
having a robot working seamlessly next to a human. According to the proposed paradigm,
the human has the leading role while the robot assists him/her non-intrusively, bending
its behavior around him/her. Such an approach leads to higher satisfaction rates, and
consequently to higher acceptance of hybrid production solutions. The methodology can
be applied in low payload as well as high payload applications.

Future work will aim at the implementation of algorithms to capture more complex—
non-assembly-based—human actions in order for the system to either ignore them or plan
for countering their effects. Additionally, the virtual mannequin used for simulations will
have the capability to adapt to the exact dimensions of the operator, so more accurate
simulations of ergonomics can be achieved. Moreover, exploration of additional wearable
hardware, such as IMUs on a wristband, for highly granular detection of human posture is
needed. Finally, extensions to guarantee the operator’s safety in a certified way must also
be implemented.
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