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Abstract: This paper deals with the optimal design of a planar cable-driven parallel robot (CDPR),
with three degrees of freedom, intended for assisting the patient’s affected upper limb along a
prescribed movement. A Qualisys motion capture system was used to record the prescribed task
performed by a healthy subject. For each pose taken by the center of mass of the end-effector, the cable
tensions, the elastic stiffness and the dexterity were optimized while satisfying a set of constraints.
First, a multiobjective formulation of the optimization problem was adopted. Since selecting a single
solution among the multiple ones given by the Pareto front presents an issue, a mono-objective
formulation was chosen, where the objective function was defined as a weighted sum of the chosen
criteria. The appropriate values of the weighted coefficients were studied with the aim of identifying
their influence on the optimization process and, thus, a judicious choice was made. A prototype
of the optimal design of the CDPR was developed and validated experimentally on the prescribed
workspace using the position control approach for the motors. The tests showed promising reliability
of the proposed design for the task.

Keywords: planar CDPR; prescribed task; optimization problem; multiobjective formulation; mono-
objective formulation; position control approach; validated experimentally

1. Introduction

Functional rehabilitation aims to recover as much as possible of the patient’s locomo-
tion independence. It requires the assistance of a therapist to perform repetitive exercises
for an injured member [1]. Task-oriented protocols, where the patient is assisted to perform
a specific prescribed movement, such as kicking a ball or standing up and walking, show
promising outcomes compared to the conventional training based on passively moving the
impaired joints in the limits of their range of motion [2].

Rehabilitation sessions can last up to several weeks [3]. In addition, to guarantee a
better quality of the followed protocol, one-to-one assistance is needed [4]. However, the
limited number of available therapists influences the high-intensity and the repetition of
the assistance. Given these issues, researchers have developed robotic devices to assist
practitioners’ tasks [5–9]. They also provide the opportunity to assess the patient’s recovery
progress and monitor protocol efficiency; for instance, by using ARMin [10], the ARM
Guide [11], and the MIME [12].
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The robotic devices used for clinical practice allow mainly the rehabilitation of the knee,
the shoulder and the elbow [13]. Cable-driven parallel robots (CDPRs) [14] can be used to
extend the coverage of existing robotic platforms since they allow rehabilitation of other
joints [13]. They have also a larger translational workspace, less dynamic inertia and higher
flexibility compared to serial manipulators [13]. Thanks to their simple reconfiguration
and light weight, they have no setup constraints and can be used at the patients’ personal
spaces to reduce the need to move to rehabilitation centers.

Various studies have been carried out dealing with the design [15], control [16–18] and
the structural optimization of CDPRs. In [19], Lorenzo et al. studied the optimal position
of the cable exit points allowing minimization of CDPR size for fully constrained and
suspended configurations. In this work, the location of the cable exit points was supposed
to be fixed, which was an unrealistic assumption. In [20], Hussein et al. optimized the CDPR
geometry by minimizing the maximum cable tensions. This criterion could not guarantee
minimum cable tensions since only the maximum value was optimized. Abbas et al. [21]
studied the optimal design of a suspended CDPR using first the workspace area, then the
global condition index, which describes the robot dexterity, as two separated objective
functions and, thus, only one criterion in each optimization was used. Yangmin et al. [22]
studied first, the optimal design of a CDPR taking into consideration the dexterity then the
elastic stiffness as criteria, then a multiobjective optimization approach was used mixing
the two characteristics. The selection of each criterion weight was chosen in a way that
either the system was preferred to be more dexterous or stiffer. The authors chose to give
the same importance to the two criteria. Such a choice can be improved by studying the
influence of the variation of each coefficient on the objective function and on the criteria.

The gaps presented above are taken into consideration in this paper. The goal is to
design a planar CDPR for upper limb rehabilitation. The prescribed exercise consists of
tracing the number eight shape with the hand. This form was used among others since it
involves shoulder and elbow motions [23]. The rehabilitation of the wrist joint was also
considered since the hand orientation was not fixed. The cable tensions, the elastic stiffness
and the dexterity were selected as the problem criteria. The choice of each criterion weight
was justified, and the design parameters were set in a way to obtain a realistic design. This
design problem can be formulated as a constrained optimization problem. Thus, this paper
aims to design an optimal planar CDPR, based on the above-mentioned criteria, able to mo-
bilize the patient’s affected upper limb along the prescribed task. The design optimization
problem was formulated after considering the disadvantages of some proposed approaches
introduced above. Once the optimal structure was selected, an experimental prototype was
developed allowing a check of solution feasibility and reliability.

The paper is organized as follows: Section 2 details the experimental protocol followed
to record the prescribed task. The planar CDPR model is presented as well as the criteria
and the constraints adopted to seek the optimal design. In Section 3, the optimization
results, using a multiobjective formulation then an adapted mono-objective formulation,
are discussed and the experimental validation using a developed prototype is shown. The
last section concludes the paper.

2. Materials and Methods
2.1. Prescribed Exercise Analysis

Rehabilitation aims to recover the functional abilities of the affected member by
performing intensive and repetitive training [1]. The chosen exercise for this study was
commonly performed for upper limb rehabilitation. It consisted of tracing with the hand
an “8” curve. This exercise allows the rehabilitation of the three upper limb joints.

A healthy subject was asked to perform the prescribed drill in order to obtain a normal
trajectory to use as a reference. This exercise involved five joints’ movements, namely the
three rotations of the shoulder and the flexion/extension motion of the elbow and the
wrist. The participant’s gestures were recorded using a Qualisys motion capture system
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with five infra-red cameras and five reflective markers attached to his hand as illustrated
in Figure 1. Figure 2 illustrates the steps followed for the data acquisition.
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Figure 2. Data acquisition steps.

The hand trajectory was defined by tracking the successive positions taken by the
marker H3 during the prescribed exercise. Hand orientation was delimited by computing
the rotation angle between a local frame (H3, x, y) attached to the participant’s hand and a
global frame (O, X, Y) attached to the table as illustrated in Figure 3. Since the patient’s
hand was attached to the robot end-effector, the recorded data, given in Figure 4, were
used to define the robot’s prescribed workspace.
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2.2. Optimal Synthesis Problem and Its Formulation

A planar cable-driven parallel robot with three degrees of freedom (DOFs) is con-
sidered in this paper. Since at least one more cable than the DOFs was needed to fully
constrain the robot, four cables were used [24]. Their mass and elasticity were neglected.
They were modeled as straight lines. The design process consisted of finding the optimal
position of each actuator and the end-effector size satisfying a set of criteria and constraints.
The motors’ positions were defined using the parameters ai and bi, which represent the
coordinates of the center of the pulley Pi, fixed on the ith actuator. The mobile platform was
considered as a square of side c (see Figure 5). The design vector is given by Equation (1).
The global and the local frames (X, Y) and (x, y), respectively, matched those represented
in Figure 2, used for the motion capture analysis.

I = [a1, b1, a2, b2, a3, b3, a4, b4, c], (1)

ni denotes the unit vector along the ith cable. It is defined as follows, where ψi and θi
are expressed as given in Equation (2). Li is the length of the ith cable and Rp is the
pulleys’ radius. Rp is considered to be fixed, since the cable radius and the coiling effects
are neglected.
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n1 =

[
− sin (ψ1 + θ1)
− cos (ψ1 + θ1)

]
, n2 =

[
sin (ψ2 − θ2)
− cos (ψ2 − θ2)

]
,n3 =

[
sin (ψ3 + θ3)
cos (ψ3 + θ3)

]
, n4 =

[
− sin (ψ4 − θ4)

cos (ψ4 − θ4)

]
, (2)

ψi = tan−1(
|Pix −Bix |∣∣∣Piy −Biy

∣∣∣ ), (3)

θi = tan−1
(

Rp

Li

)
, (4)

The end-effector dynamic model was obtained using Newton-Euler formulation with
the assumption of neglecting the cables mass and the dynamics of the pulleys. Its expression
is given by Equation (5).[

∑ F
∑M

]
= M

..
χ+ C

.
χ = JTT + fg + Fext/EE, (5)

where M =

[
mpI3×3 03∗3

03×3 RΦ Ip RΦ
T

]
and C =

[
03×1

ω×RΦIp RΦ
Tω

]
are the mass and

the Coriolis matrices, respectively. mp and ω are the mass and the angular velocity
of the end-effector, RΦ is the rotation matrix, Ip denotes the inertial matrix of the mo-
bile platform written in its center of mass, χ = [x y Φ]T is the pose vector of the end-
effector, JT is the transpose of the Jacobian matrix given in Equation (6), and T, fg, and
Fext/EE are the cable tensions vector, the gravity force and the external forces applied on
the end-effector, respectively.

JT =
[
ni Z·(RΦ·Bi)× ni

]T, i = 1..4, (6)

Bi is the vector containing the anchor points coordinates (Bi) in the local frame.
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Thus, the expression of the cable tensions vector T can be deduced using Equation (5)
as follows:

T = Tp + Th =
(

JT
)+(

M
..
χ+ C

.
χ− fg − Fext/OL

)
+ λ Null

(
JT
)

(7)

where Tp and Th are the particular and the homogenous solutions,
(
JT)+ is the Moore-

Penrose pseudoinverse and λ is an arbitrary scalar. The cable tensions must be bounded
between a minimum positive and a maximum value in order to avoid slack and over-
tensioned cables. This condition forms the first problem constraint, which is formulated
as follows:

0 < Tmin ≤ Ti(j) ≤ Tmax, i = 1..4, j = 1..n (8)

where n is the number of points composing each trajectory, Ti(j) is the tension of the ith

cable at the jth position.
The second constraint concerns the collisions between the cables and the end-effector.

to prevent this issue, the angle αi between the mobile platform and the ith cable is computed
for each position of the prescribed trajectories. αi must remain higher than a limit angle
αlim. The formulation of the collision constraint is given as follows:

αi = cos−1
(
ni .

mi

‖mi‖

)
> αlim, i = 1..4, (9)

where m1 = −m4 = B1B4, m2 = −m3 = B2B3, and ni is the unit vector along the ith cable
as illustrated in Figure 5.

The last constraint concerns the location of the points Pi. They must be located on
the edges of the square forming the robot fixed frame. This constraint facilitates the robot
reconfiguration when any other trajectory, included in the robot workspace, is selected.

The 4 × 3 Jacobian matrix J of the considered robot includes components of different
physical units since the latter has mixed DOFs. To have a meaningful value of the condition
number, the Jacobian matrix must be normalized allowing assessment of the closeness of a
pose to a singularity. In order to settle the dimensional inhomogeneity, several methods
have been suggested based on dividing the rotational elements of the Jacobian matrix J by
a conventional length L. Lee et al. defined L in [25] as a nominal length represented by the
distance between the origins of the global and the local frames. Angeles introduced in [26]
the notion of natural length, which is the value of L that minimizes the condition number.
This length is approximated to the radius of the end-effector [27]. The latter method was
adopted in this paper. The homogenous Jacobian matrix, Jh, of size 4 × 3, is calculated as
given by Equation (10), where c is the side length of the mobile platform.

Jh = J·diag
(

1, 1,
2

c
√

2

)
, (10)

Three criteria are considered for the optimization problem formulation, namely mini-
mizing the tension in each cable and maximizing both the elastic stiffness and the dexterity
of the end-effector. The first, the second, and the third criteria are characterized using the
parameters C1, C2, and C3, respectively, as follows:

C1 =
1
4

4

∑
i=1

∑n
j=1 Ti(j)

n .max
j=1..n

Ti(j)
, (11)

C2 = 1− 1
n

n

∑
j=1

λmin (j)
λmax (j)

, (12)

C3 = 1− 1
n

n

∑
j=1

σmin (j)
σmax (j)

, (13)
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where λ and σ are the eigenvalue of the cable stiffness matrix and the singular value of
the normalized Jacobian matrix Jh. The maximum value of the ratios λmin

λmax
and σmin

σmax
is 1,

thus, maximizing the elastic stiffness and the dexterity leads to minimizing the parameters
C2 and C3.

3. Results and Discussions
3.1. Multiobjective Formulation

The multiobjective formulation is given in Equation (14). A penalty formulation was
adopted to handle the problem constraints.

min(C1(I) + ℘1 + ℘2 + ℘3),
min(C2(I) + ℘1 + ℘2 + ℘3),
min(C3(I) + ℘1 + ℘2 + ℘3),

(14)

℘1 =

{
0 if 0 < Tmin ≤ Ti(j) ≤ Tmax
ψ otherwise

, (15)

℘2 =

{
0 if αi > αlim
ψ otherwise

, (16)

℘3 =

{
0 if Pi ε fixed frame
ψ otherwise

, (17)

where ℘i, i=1,2,3 are the penalty functions and ψ is a large scalar.
Multiple solutions coexist forming the Pareto front displayed in Figure 6. Without

adding supplementary information about the desired result, all the nondominated points
form a potential optimal solution.
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In order to facilitate its interpretation, two dimensions representations of the Pareto
front are given. Figure 7 shows the cable tension vs the elastic stiffness criteria, the cable
tension vs dexterity criteria, the dexterity vs the elastic stiffness criteria and the histogram
of each criterion. The three criteria are normalized, and their values vary from 0 to 1.
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Figure 7. Bi-objective visualizations of the Pareto front.

The nondominated solutions for each two criteria present the preferable solutions if
only the two corresponding objectives are considered. For the overall problem, the most
desirable results are those which lay within the nondominated solutions of all the pairs
illustrated in Figure 7. For the Pareto front presented above, the selection of the optimal
solution was complicated since each solution minimized no more than two criteria and
maximized those remaining. Additional subjective preference information was, therefore,
needed to facilitate the decision-making.

3.2. Mono-Objective Formulation

Another method can be used for the resolution of a multiobjective optimization
problem. This technique, called the scalarization method [28], consists of attributing a
weight to each criterion that corresponds to the priority given to this objective in the
optimization process. This method allows a single solution. Based on this technique, the
modified optimization aims to find the optimal design vector I∗ which minimizes the new
objective function F , defined as a weighted sum of the three subfunctions introduced
above. The optimization problem is then formulated as follows:

min(F (I)),
Subject to

0 < Tmin ≤ Ti(j) ≤ Tmax, i = 1..4, j = 1..n

αi > αlim, i = 1..4

Pi ε fixed frame, i = 1..4

(18)
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The problem constraints are handled using a penalty approach. F is then expressed
as follows:

F (I) = β1C1(I) + β2C2(I) + β3C3(I) + ℘1 + ℘2 + ℘3, (19)

where ℘i, i=1,2,3 are the penalty functions given by the Equations (15)–(17) and β1, β2 and
β3 define the weight of each criterion. These coefficients must verify Equation (20).

3

∑
i=1

βi = 1, (20)

Three strategies have been used in the literature to compute the values of the coef-
ficients βi [29], namely, the equal weights method [30], the rank order centroid weights
method [31] and the rank-sum weights method [31].

The equal weights method was used in our previous work [32]. In this paper, a
deeper study of the appropriate values of these weighting coefficients is conducted in
order to identify the impact of each coefficient on the quality of the final solution and the
optimization process. A mapping of the global objective function and those corresponding
to the three criteria is computed for all the possible coefficient values inside the interval (0,1)
with respect to Equation (20), using the Particle Swarm Optimization algorithm (PSO) [33].
The computed variations are illustrated in Figure 8.
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Referring to Figure 8d, the objective function decreases with β1. This means that the
cable tension criterion C1 has the greatest impact on the objective function F compared to
the other coefficients β2 and β3. Thus, having a structure with a minimum cable tension
distribution is easier than generating good dexterity and elastic stiffness.

As illustrated in Figure 8c, the dexterity criterion C3 is nearly equal to 0.3 (C3 ∈ [0.3, 0.33]
for β3 = 0 and C3 = 0.28 for β3 = 1). Thus, according to Equation (13), the robot dexterity
remains between 0.67 and 0.72. In other words, it takes good values even when β1 and
β2 are large (β3 is close to zero). This is contrary to the elastic stiffness criterion C2,whose
minimum value is equal to 0.58 for β2 = 1, which corresponds to an elastic stiffness equal
to 0.42 (according to Equation (12)).

Based on this mapping study, since the dexterity has acceptable values for any chosen
β3, the lowest coefficient is given to the criterion C3. The remaining weight is divided
equally between the two other criteria. Thus, β3 = 0.1, β1 = β2 = 0.45.

Several methods exist in the literature allowing the resolution of optimization prob-
lems [34,35]. Particle Swarm Optimization (PSO) was used in this paper to select the
optimal design vector. The different parameters used for the problem resolution are listed
in Table 1. The lower and the upper boundaries of each design parameter are listed in
Table 2.

Table 1. Optimization problem parameters.

Parameter Value

Mobile platform weight [kg] 0.5
Pulley radius [mm] 37
Cable radius [mm] 0.3

Tmin[N] 0.5
Tmax[N] 15
αlim[◦] 2

β1 = β2 0.45
β3 0.1

Population size 100

Table 2. Boundaries of the design parameters.

Parameter a1 b1 a2 b2 a3 b3 a4 b4 c

Lower bounds [m] −0.375 −0.385 0 −0.385 0 0 −0.375 0 0.1
Upper bounds [m] 0 0 0.375 0 0.375 0.385 0 0.385 0.15

The obtained solution, as well as the corresponding values of the objective function
and the three criteria, are given in Table 3.

Table 3. Optimization results.

Parameter Value

Optimal design vector I∗ [−0.375,−0.39, 0.375,−0.26, 0.375, 0.18,−0.375, 0.39, 0.1]
Objective function F 0.35

Cable tension criterion C1 0.124
Elastic stiffness criterion C2 0.588

Dexterity criterion C3 0.3

The maximum cable tension, the elastic stiffness and the dexterity of the optimal robot
structure computed along the task workspace are illustrated in Figure 9. Figure 10 displays
the free collision static workspace of the optimal structure for different values of Φ.
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in (a–c).



Appl. Sci. 2021, 11, 5635 13 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17 
 

 

(c) 

 

(d) 

Figure 9. Optimization results (a) the cable tension distribution, (b) the elastic stiffness distribu-

tion, (c) the dexterity distribution along the task workspace and (d) the arrows signification repre-

sented in (a–c). 

   

(a) (b) 

𝒫4 

𝒫3 

𝒫2 

𝒫1 

𝒫4 

𝒫3 

𝒫2 

𝒫1 Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17 
 

 
(c) 

Figure 10. The free collision static workspace (in blue) for (a) Φ =  Φ𝑚𝑖𝑛 =  −13°, (b) Φ = 0° and (c) Φ =  Φ𝑚𝑎𝑥 =  24°. 

4. Experimental Validation 

Following the optimization study detailed above, a CDPR prototype, presented in 

Figure 11a, was developed. The actuators’ positions and the end-effector size were ad-

justed according to the optimal design vector resulting in Table 2. It was composed of a 

rigid frame with four actuated pulleys controlling the end-effector poses by means of four 

cables. The patient sits near to the robot and grabs the mobile platform with his hand. 

Figure 11b shows the prototype representation using QTM (Qualisys Track Manager) soft-

ware recording the passive markers’ locations along the end-effector movement. 

The prototype was actuated using the Dynamixel MX-106T and equipped with a 

feedforward, a PID controller and a gear reducer. The pulleys and the end-effector were 

produced using 3D printing. The cables were made of Dacron. 

The extended position control mode was used for the actuator commands. The de-

sired angular positions of the motors were computed using the inverse kinematic model. 

Figure 12 presents the block diagram of the robot control. 

  

(a) (b) 

Figure 11. (a) Robot prototype and (b) its representation using QTM (Qualisys Track Manager) 

software. Markers are represented in green. 

𝒫4 

𝒫3 

𝒫2 

𝒫1 

Figure 10. The free collision static workspace (in blue) for (a) Φ = Φmin = −13◦, (b) Φ = 0◦ and (c) Φ = Φmax = 24◦.

4. Experimental Validation

Following the optimization study detailed above, a CDPR prototype, presented in
Figure 11a, was developed. The actuators’ positions and the end-effector size were adjusted
according to the optimal design vector resulting in Table 2. It was composed of a rigid frame
with four actuated pulleys controlling the end-effector poses by means of four cables. The
patient sits near to the robot and grabs the mobile platform with his hand. Figure 11b shows
the prototype representation using QTM (Qualisys Track Manager) software recording the
passive markers’ locations along the end-effector movement.
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Figure 11. (a) Robot prototype and (b) its representation using QTM (Qualisys Track Manager) software. Markers are
represented in green.

The prototype was actuated using the Dynamixel MX-106T and equipped with a
feedforward, a PID controller and a gear reducer. The pulleys and the end-effector were
produced using 3D printing. The cables were made of Dacron.

The extended position control mode was used for the actuator commands. The
desired angular positions of the motors were computed using the inverse kinematic model.
Figure 12 presents the block diagram of the robot control.
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Figure 12. Control block diagram.

The angular positions of the pulleys were controlled so that the robot end-effector
could replicate the prescribed exercise. A motion capture system was also used in this
phase to evaluate the performance of the robot by tracking the mobile platform poses
along its movement so that a comparison, illustrated in Figure 13, between the target and
the performed trajectories could be made. This external and global approach allowed
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consideration of all error sources inside and outside the control loop, such as anchor point
errors and the cable’s behavior.
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In order to assess the robot prototype performance, the mean absolute, the root-mean-
square and the standard deviation position and orientation errors were computed as given
in Table 4.

Table 4. Measured errors between the desired and the performed end-effector poses.

Parameter Equation Value

Mean absolute error
1
n

n
∑

i=1
|Xt(i)− Xm(i)| Position [mm] 10.63

Orientation [◦] 1.64

Root-mean-square error

√
∑n

i=1(Xt(i)− Xm(i))2

n
Position [mm] 13
Orientation [◦] 1.95

Error standard deviation

√
∑n

i=1(ε(i)− ε )2

n− 1
Position [mm] 12.57
Orientation [◦] 1.06

Where Xt(i) and Xm(i) are the true and the measured values corresponding to the ith

position, ε(i) = Xt(i)− Xm(i) is the measured error at the ith position, ε is the mean of ε
and n is the number of points forming the trajectory.

5. Conclusions

This paper aims to find the optimal design of a planar cable-driven parallel robot for
upper limb rehabilitation purposes. For that, an optimization problem was formulated
in which the dexterity, the elastic stiffness and the tension in the cables were the chosen
criteria. Bounding the cable tensions, avoiding collisions with the mobile platform and
controlling the potential positions of the pulleys were the selected constraints. A multi-
objective formulation of the optimization design problem showed different nondominated
solutions for each pair of criteria, which complicated the selection of a single solution. A
mono-objective formulation was then adopted. Weighting coefficients were studied, and
appropriate values were selected. Finally, the validation of the robot optimal design was
carried out using a real prototype to verify its behavior along the given trajectory. Different
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computed errors between the desired and the performed trajectories showed promising
results regarding prototype reliability.
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