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Abstract: Solar array management and photovoltaic (PV) fault detection is critical for optimal and
robust performance of solar plants. PV faults cause substantial power reduction along with health
and fire hazards. Traditional machine learning solutions require large, labeled datasets which are
often expensive and/or difficult to obtain. This data can be location and sensor specific, noisy, and
resource intensive. In this paper, we develop and demonstrate new semi supervised solutions for
PV fault detection. More specifically, we demonstrate that a little-known area of semi-supervised
machine learning called positive unlabeled learning can effectively learn solar fault detection models
using only a fraction of the labeled data required by traditional techniques. We further introduce a
new feedback enhanced positive unlabeled learning algorithm that can increase model accuracy and
performance in situations such as solar fault detection when few sensor features are available. Using
these algorithms, we create a positive unlabeled solar fault detection model that can match and even
exceed the performance of a fully supervised fault classifier using only 5% of the total labeled data.

Keywords: machine learning; positive unlabeled learning; PU learning; solar arrays; solar fault
detection; photovoltaic energy

1. Introduction

Photovoltaic (PV) solar array faults including soilage, shading, degradation, and short
circuit faults can reduce solar array power efficiency by an estimated 22.34% to 27.58% [1].
Several machine learning (ML) methods have been studied for solar fault detection, with
most modern algorithms using some type of deep neural network solution [2–5] provide
a thorough survey of current algorithms in the field and results are promising, however
training the current state of the art deep learning algorithms is quite data intensive and
requires large, labeled data sets. Collecting and labeling these large datasets is expensive
and the data may be unique and sometimes must be at least partially re-collected for
each PV solar array and location. In this paper, we develop and demonstrate a new
fault detection algorithm that requires significantly less labeled training samples using
positive and unlabeled learning (PU learning)—a family of newer semi-supervised positive
unlabeled learning algorithms that has never, to our knowledge, previously been applied
to PV fault detection. General semi-supervised learning algorithms use some labeled data
but improve their models with additional unlabeled data [6]. In recent years, some semi-
supervised algorithms have been applied to PV fault detection [7–10] for the very reasons
listed above. However, general semi-supervised learning algorithms require some labeled
data from both the positive (in this case the solar fault) class and the negative (clean,
non-faulty) class. PU learning is a binary semi-supervised classification process in which
only a small quantity of labeled data from only one class (the positive class) is available,
along with a quantity of inexpensive and unlabeled data [11,12]. This is useful as while PV
faults may be noticeable, care must be taken not to miss a fault before declaring a datapoint
as fault-free.

We start by adapting an existing algorithm called the modified logistic regression
(MLR) PU learning algorithm developed by the authors of this paper [13] for use in solar
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fault detection and similar problems. The resulting new algorithm is called the Feedback
enhanced MLR (MLRf) algorithm and was designed for solar fault classification and related
PU learning problems where there are limited features and labeled data. We compare these
and other solar fault detection algorithms using the standardized NREL PVWatts [4,14]
solar fault dataset (described later in this paper) for insight into the fault classification
problem and to determine the number of labeled data required for effective solar fault
classification. For each algorithm, excluding the oracle (a supervised learning algorithm
that knows all and sees all—typically used as a best-case comparator), the percentage of
known, labeled fault data is varied between 2% and 90% of the total positive data.

Solar fault detection algorithms compared in this paper (and explained in more depth
in Section 2) include:

(1) The MLR algorithm described in [13].
(2) The MLRf algorithm proposed and described in this paper.
(3) A naïve PU implementation using a supervised learning algorithm and treating all

unlabeled datapoints as negatives.
(4) An “oracle” supervised learning algorithm with all labels known.
(5) A “tiny” supervised learning algorithm (we used the term “tiny”, not to indicate a

specific algorithm, but to indicate the process where the training is done with a small
number of labels. Not to be confused with Tiny ML algorithms.) using the same
number of labeled data as MLR or MLRf, but in this case balanced between positive
and negative samples instead of only positive.

(6) An unsupervised kmeans clustering algorithm, mostly for curiosity and to illustrate
the benefit of having some labels in all other cases.

We found that the PU learning algorithms, both the existing MLR and the new MLRf,
were able to match and even outperform even the fully supervised oracle algorithm with
only 5% of the data labeled. We additionally demonstrate that using the same number of
labeled samples, the PU learning algorithms both outperform a smaller supervised learning
algorithm that does not take advantage of the unlabeled samples. This, in addition to the fact
that it is the nature of the problem that it is easier to label a faulty sample than to guarantee
that a sample is not faulty, confirms that given a labeling budget, it is more effective to label
only faulty samples than to attempt to label both faulty and non-faulty ones.

The main contributions of this paper are: (1) the use of a unique PU learning algorithm
for solar array fault detection which has, to our knowledge, never been done before, (2) the
adaptation of the MLR to work for solar fault detection, (3) the ability to effectively use
significantly fewer labeled training data than most supervised learning algorithms by
applying PU learning techniques to solar fault detection problems, (4) the introduction
of a new PU learning algorithm, MLRf, designed to better detect and classify solar fault
data, (5) the development of new comparative results demonstrating the effectiveness
and robustness of the MLR and MLRf algorithms at detecting solar faults with very little
labeled data, and (6) the demonstration that labeling x positive samples is more effective
than labeling x total positive and negative samples. The novelty of this work lies most
especially in the application of PU learning algorithms to solar fault detection and to the
introduction of the MLRf algorithm.

2. Materials and Methods

In this section we describe the NREL PVWatts [4,14] solar fault dataset that we use in
our experiments as well as a more detailed description of the new or unusual algorithms
from the introduction: the MLR [13], MLRf, naïve PU, oracle, and “tiny” supervised
learning algorithms.

But first, a quick note on notation. In addition to the standard classification notation of
using x and y to represent a data sample and its label respectively, a new random variable s
is introduced to represent if that sample is labeled or unlabeled. The PU problem can then
be formally stated as:

p(s = 1 | y = 0) = 0 (1)
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Our classification goal can be thought of as the creation of a probabilistic function f (x)
such that

f (x) = p(y = 1 | x) (2)

2.1. Dataset

For this study, a solar fault dataset described in [4] was used, derived, and modified
from data generated by the PVWatts calculator at the National Renewable Energy Labora-
tory (NREL) [14]. The dataset contains 21,485 solar measurements including equal parts (of
4297 each) clean, “no fault” or “standard conditions” data (STC), shaded, soiled, degraded,
and short circuit solar data. Each measurement has ten features—the DC output, the
open circuit voltage (VOC), short circuit current (ISC), max power point voltage (Vmp), max
current (IMP), fill factor, temperature, irradiance, gamma ratio, and max power. The dataset
was labeled based on these feature measurements as described in [4]. A measurement was
considered no fault or STC if the irradiance, temperature, and power were at the maximum
values for that day. Data was labeled shaded if the measured irradiance was lower than the
STC by 25% or more. Soilage was labeled as present if the irradiance was high while the
power was low, while a short circuit was identified when the irradiance and temperature
were standard but the maximum current, (IMP), was low. A solar panel was labeled as
degraded if the open circuit voltage, (VOC), or short circuit current, (ISC), were more than
25% below the rating of the PV module.

2.2. The MLR Algorithm

While the MLR algorithm is described in detail in [13], we will provide a summary here
for clarity. As first described and proved in the foundational positive unlabeled learning
paper [15], if we make a strong, but common assumption called the SCAR assumption
and assume that the labeled positive (fault) data is selected at random from the set of all
positive (fault) data, then we can create a non-traditional classifier g(x) = p(s = 1|x) that
can be used to obtain our final PU classifier f (x). By assuming that the labeled positive
data is selected at random from all positive data, the probability of being labeled is no
longer dependent on the feature vector x, but only on the sample’s positive status y = 1
as shown in Equation (3). This results in a constant labeling frequency named c in the
literature:

SCAR assumption : p(s = 1 | x, y = 1) = p(s = 1 |y = 1) = c (3)

This final PU classifier based on a non-traditional classifier is derived in [15] and
reproduced as follows:

g(x) = p(s = 1 | x) = p(s = 1∧ y = 1 | x)
= p(y = 1 | x) p(s = 1|y = 1, x)
= p(y = 1|x) p(s = 1|y = 1)

= p(y = 1|x) c.

(4)

therefore:

f (x) = p(y = 1|x) = p(s = 1|x)
c

(5)

In [13], we were able to demonstrate using both real-world and simulated datasets
that the modified logistic regression (MLR) algorithm was an effective non-traditional
classifier and produced better estimates of both s and y than existing algorithms. The MLR
is defined by the expression:

MLR = p(s = 1|x) = 1
1 + b2 + e−ω·x (6)
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where b and ω are variables that are learned in the training process. From this MLR
algorithm and its learned parameter b, we are able to estimate the label frequency c as the
upper asymptote of Equation (6) as:

c =
1

1 + b2 (7)

and from this construct a final PU classifier f (x) using Equation (6). After all data values
have been mean normalized, a stochastic gradient ascent algorithm is used to maximize
the likelihood of the MLR. The MLR algorithm details and block diagram are available in
Appendix A Algorithm A1 and Figure A1.

The MLR algorithm provides an effective, general purpose PU learning algorithm,
but like traditional logistic regression, on which it is based, the model it creates it is mostly
linear in terms of the feature values of the inputs. When the feature set is small, additional
feature engineering and enhancement is useful.

2.3. The MLRf Algorithm

PV fault detection and classification are different from typical classification problems
as the feature set is typically small, while vast quantities of unlabeled data can be generated
automatically. Our dataset has thousands of measurements but only 10 features, and some
of those features such as the gamma ratio are calculated as combinations of other features.

Because our feature set is small and the problem complex, linear classifiers may un-
derfit the data, yet because a PU dataset has many missing labels, most non-PU non-linear
classifiers such as neural networks will overfit the data to the few labeled datapoints. The
MLR algorithm by itself is a powerful general-purpose PU learning algorithm, analogous
to standard classification algorithms such as logistic regression, support vector machines,
or artificial neural networks for fully labeled data and by itself includes no feature en-
hancement or engineering. To better handle the small solar fault detection feature set,
we introduce the MLRf algorithm in this paper. The MLRf algorithm shown in Figure 1
uses the MLR algorithm, but also incorporates a feedback loop to perform custom fea-
ture engineering—enhancing the feature set to enable non-linear classification that does
not overfit or underfit the data. This automates some of the preprocessing steps that are
manually required by other algorithms.
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The proposed MLRf algorithm consists of the following five steps.

(1) An initial classification model is learned using the original MLR algorithm from [13]
and described in Section 2.2.

(2) The MLR model produced in Step 1 above is a weighted combination of n feature
variables. As the original feature data were mean normalized as part of training, the
most influential features in the model are those with the highest magnitude weights.



Appl. Sci. 2021, 11, 5599 5 of 13

This allows us to sort the features by importance to the model. The MLRf algorithm
selects the top k ≤ n most important features by magnitude for enhancement.

(3) Feature enhancement is performed by adding p-level polynomial combinations of the
selected features. For example, if p = 2 an enhancement of any two pairs of original
features x1 and x2 would return the enhanced feature space x1, x2

1, x2, x2
2, and x1·x2.

If p = 3, enhancement would include cubic values and combinations such as x1·x2·x3,
and so forth. The purpose of this expansion is to increase the dimensionality of the
dataset to allow for a more flexible non-linear decision boundary that is better able to
accommodate the complexity of the solar fault data space. A linear decision boundary
in this higher dimensional space is equivalent to a non-linear decision boundary in
the original feature space.

(4) Once the feature space has been expanded, regularization methods or additional
feature manipulation can be performed using a dimensionality reduction algorithm
such as PCA (Principal Component Analysis) to capture the dimensionality of the
enhanced feature set that incorporates more than 95–99% of the variability of the
space. This eliminates or minimizes any enhanced features that do not substantially
contribute to the final classification.

(5) Finally, the newly expanded feature space is sent back through the original MLR clas-
sifier for final classification with a now potentially non-linear classification boundary.

In addition to the standard hyperparameters such as the learning rate and number
of epochs in the MLR algorithm, the MLRf introduces k, the number or percentage of
important features to be enhanced, and p, the level of polynomial enhancement described
in step 2 above. If PCA is used in step 4, then the number of retained components becomes
an additional hyperparameter. Regularization may be preferred for this reason. Once the
model has been created, it can be applied to new data in real time. To capture possible
changing conditions, offline training and model updates can be performed periodically.

2.4. The Naïve PU Algorithm

In practice, data with no detected faults is often labeled as negative, or not faulty. This
strategy is replicated in this naïve PU algorithm which treats all unlabeled data samples
as negative and performs a standard supervised classification (in this case a traditional
logistic regression).

2.5. The Oracle

In computer science, an oracle is the name given to an algorithm that “knows all
and sees all”. In the context of this semi-supervised learning algorithm, an oracle is a
fully supervised learning algorithm that has access to all the true data labels. As the two
algorithms of interest, MLR and MLRf, are both fundamentally related to the traditional
logistic regression algorithm, the oracle algorithm (and indeed all other comparative
algorithms) use traditional, or standard logistic regression (SLR) in this paper to provide
a better measure of comparison. In all algorithms but k-means, a simple unoptimized
stochastic gradient ascent algorithm was used to fit the data. We recognize that it is likely
that other more complex supervised learning algorithms or other more advanced solvers
could improve these algorithm’s performance, but our objective in this paper is to assess the
MLR and MLRf algorithms against others in their same class. As these algorithms are still
being researched and have not yet been optimized, we compare them to algorithms created
in a similar manner. It is likely that with optimization (regularization, batch processing,
more complex solvers, and so on) that eventual results will be substantially higher than
they are now.

2.6. The “Tiny” Supervised Learning Algorithm

To compare the effect of having a small labeling budget more equitably, we create this
supervised learning algorithm that only trains with the same number of data points that the
MLR and MLRf algorithm have labeled. If MLR and MLRf have xL positive labeled and xUL
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samples available to them, this “tiny” supervised learning algorithm has xL total samples
available—half positive and half negative. No unlabeled data is used. This is intended to
simulate an assumed preference for supervised learning given a limited labeling budget
and to compare this with the PU learning algorithm.

2.7. The K-Means Algorithm

We include in our algorithm comparison a simple unsupervised learning algorithm,
more as a matter of curiosity than as a true comparison with the MLR and MLRf algorithms.
K-means was performed using k = 5 clusters representing the five known classes in the
data: shaded, soiled, degraded, short circuit, and no faults. After clustering, the individual
cluster, or clusters (when performing general fault classification), were chosen to be labeled
positive that contained the most samples belonging to the PU labeled positive class.

3. Results
3.1. Experimental Setup

To test our model, we compared each fault type (shaded, soiled, degraded, and short
circuit—abbreviated SC) individually against all other data, including the other fault data
and the non-fault STC data. We also grouped all fault data together into a single “fault”
class that we compared against non-fault STC data. This latter is equivalent to a general
fault detection, while the former enables specific fault classification were such information
known. These details are illustrated in Table 1.

Table 1. The binary composition of the five compared fault types.

Name Positive Fault Data Size of Positive Set Negative Non-Fault Data Size of Negative Set

All Faults vs. No Faults Shaded, Soiled, Degraded, SC 17,188 STC 4297

Shaded vs. All Others Shaded 4297 STC, Soiled, Degraded, SC 17,188

Soiled vs. All Others Soiled 4297 STC, Shaded, Degraded, SC 17,188

Degraded vs. All Others Degraded 4297 STC, Shaded, Soiled, SC 17,188

Short Circuit vs. All Others SC 4297 STC, Shaded, Soiled, Degraded 17,188

For each of the above listed five fault types, we selected random subsets composed of
different percentages between c = 2% and 90% of the true positive fault data to be labeled
positive out of the original. The label frequency c is unknown in a real PU dataset and
constructed in simulated PU datasets such as this for algorithm evaluation. Using standard
classification notation with x representing a data sample, this label frequency is defined as:

c = p(s = 1 | y = 1). (8)

As some papers in the PU learning field use the class prior rather than the label
frequency c, we provide a simple translation:

class prior = p(y = 1) =
p(s = 1)

c
. (9)

To reduce variability, each experiment listed above was run five times and the mean
evaluation metrics reported for each c value in the graphs shown in Section 3.4. This is
described in more depth in Section 3.3.

3.2. Hyperparameter Selection

The hyperparameters associated with the MLRf algorithm are the learning rate, the
number of epochs, the percentage of features to enhance k, the level of enhancement p, and
the level of PCA feature extraction, if used. Hyperparameter tuning was performed using a
grid search looking first at the learning rate and number of epochs over the MLR algorithm
with no p or k. We found that a learning rate of 0.01 and 1000 epochs generally provided the
best results. A further grid hyperparameter search investigated the percentage of important
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features to be enhanced k = 0.3, 0.6, or 1 (MLRf step 2), the values of the polynomial
expansion variable p = 1, 2, 3, 4 (MLRf step 3), and the PCA level of feature extraction
(MLRf step 4). We found that while the optimal k values differed for each fault type, the
polynomial expansion level of p = 3 combined with no PCA feature reduction gave the
best results across all faults. Adding in regularization, which was not implemented in
these experiments, would potentially be beneficial in the future. General fault detection
and identifying solar panel soilage performed best when k = 0.3; short circuit faults were
best detected when k = 0.6; the remaining faults were most effective when k = 1.

3.3. Evaluation Metrics

In PU learning in general it is common to have heavily skewed datasets with the
rare class generally labeled positive. With only a fraction of the rare positive class labeled,
PU classification is a skewed classification problem with too few data to perform class
balancing measures. Instead, the F-score (also called the f1-score) is typically used to
evaluate each experiment as the accuracy and error rate metrics are misleading when the
class sizes are not similar (if 99% of the data were negative and 1% positive, a model that
predicts everything negative would have a 99% accuracy and be completely worthless). The
F-score is the harmonic mean between the precision and recall (also known as sensitivity).
The F-score can be thought of as analogous to accuracy in that it varies between zero and
one, with better models being closer to one. The F-score is calculated as:

Fscore = 2· Precision·Recall
Precision + Recall

(10)

where:
Precision =

# True Positives
# True Positives + # False Positives

(11)

and:
Recall =

# True Positives
# True Positives + # False Negatives

. (12)

For each fault type and c value, the MLRf algorithm was run five times and the mean
value was chosen as the F-score. This was intended to reduce variance, though we found
that the variance per run was minimal when c was greater than 10%. High variance with
small c values is not unexpected as the random selection of the labeled samples becomes
more impactful as the number of samples decrease. Tables including these mean and
variance values are available in Table A1 in Appendix A.

3.4. Results and Comparisons using F-Score Plots

In Figure 2 below, algorithm comparison plots are presented for each of the solar fault
types against all others as described in Table 1. In all graphs shown, the horizontal axis
provides the label frequency c ranging from c = 2% to 90%. Below 10%, c increases in
increments of 2% and above 10%, c increases in increments of 10%. This means that a
random selection of n true positive samples are labeled positive in the simulation, where n
is defined as:

n = c·|Positive Set|. (13)

In all simulations except the “all faults vs. no faults” one shown in Figure 2a, the size
of the positive set is 4297 out of 21,485 total. In Figure 2a, the size of the positive set is
17,188 as all four fault types are combined into the “all faults” class (as shown in Table 1).
All remaining samples, both positive (faulty) and negative (non-faulty) are left unlabeled
for the MLR, MLRf, and naïve PU learning algorithms. The n values for each c level are
provided in Table 2.



Appl. Sci. 2021, 11, 5599 8 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14 
 

3.4. Results and Comparisons using F-Score Plots 
In Figure 2 below, algorithm comparison plots are presented for each of the solar 

fault types against all others as described in Table 1. In all graphs shown, the horizontal 
axis provides the label frequency ܿ  ranging from ܿ = 2% to 90%. Below 10%, ܿ  in-
creases in increments of 2% and above 10%, ܿ  increases in increments of 10%. This 
means that a random selection of ݊ true positive samples are labeled positive in the sim-
ulation, where ݊ is defined as: ݊ = ܿ ∙  (13) .|ݐ݁ܵ ݁ݒ݅ݐ݅ݏ݋ܲ|

In all simulations except the “all faults vs. no faults” one shown in Figure 2a, the size 
of the positive set is 4297 out of 21,485 total. In Figure 2a, the size of the positive set is 
17,188 as all four fault types are combined into the “all faults” class (as shown in Table 1). 
All remaining samples, both positive (faulty) and negative (non-faulty) are left unlabeled 
for the MLR, MLRf, and naïve PU learning algorithms. The ݊ values for each ܿ level are 
provided in Table 2. 

Table 2. This table provides the number of labeled samples, ݊, out of 21,485 total, used for each ܿ value. 

 ܿ 2% 4% 6% 8% 10% 20% 30% 40% 50% 60% 70% 80% 90% 
Figure 2a ݊ 344 688 1031 1375 1719 3438 5156 7875 8594 10,313 12,032 13,750 15,469 

Figure 2b–e ݊ 86 172 258 344 430 859 1289 1719 2145 2578 3008 3438 3867 
 

 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 
Figure 2. Algorithm results for each fault type: (a) General fault detection; (b) Shaded panels; (c) Soilage; (d) Degraded 
panels; (e) Short Circuit faults. 

4. Discussion 
In this section, we discuss the results provided in Section 3 in some depth. As each 

graph in Figure 2 provides results for a different fault type and model, we break these 
results down separately and scrutinize each individually. 
• All Faults vs. No Faults 

In the top graph in Figure 2a, we see that all algorithms including the MLR, MLRf, 
and “tiny” supervised learning algorithm behaved well and provided similar results, even 
with only 2% of total fault data labeled. As illustrated in Table 2, 344 datapoints out of 
21,485 total datapoints were labeled at this lowest ܿ value. It should be noted that treating 
unlabeled samples as negatives, as illustrated by the naïve PU algorithm, is ineffective 
unless nearly all faulty points (17,188 total) are labeled. In the bottom graph, it is clear that 
both the MLR and MLRf algorithms slightly and consistently outperform the oracle and 
the “tiny” supervised learning algorithms when at least 10% of the positive samples are 
labeled. We believe this may be due in part to the non-linear classification capabilities of 
both algorithms. This is discussed further in the next bullet point. 
• Shaded vs. All Others 

Figure 2b demonstrates a situation where the nonlinear nature of the MLRf algorithm 
provides a clear advantage. The poor results of the supervised linear oracle model (with 
an F-Score of approximately 0.64) indicate that the faulty and non-faulty data for this 
problem are non-separable in the given feature space. The oracle model is underfitting the 
data. The improvement gained by the MLRf algorithm with its much higher feature di-
mensionality confirms this. If the decision boundary is substantially nonlinear, this could 
explain the noticeable F-score improvement of the non-linear MLRf classifier. A future 
test should be performed against a nonlinear oracle model for confirmation. 

The more surprising result in this graph is the improvement made possible by the 
simpler MLR algorithm. The MLR algorithm has one additional variable over the oracle 

Figure 2. Algorithm results for each fault type: (a) General fault detection; (b) Shaded panels; (c) Soilage; (d) Degraded
panels; (e) Short Circuit faults.



Appl. Sci. 2021, 11, 5599 9 of 13

Table 2. This table provides the number of labeled samples, n, out of 21,485 total, used for each c value.

c 2% 4% 6% 8% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 2a n 344 688 1031 1375 1719 3438 5156 7875 8594 10,313 12,032 13,750 15,469

Figure 2b–e n 86 172 258 344 430 859 1289 1719 2145 2578 3008 3438 3867

4. Discussion

In this section, we discuss the results provided in Section 3 in some depth. As each
graph in Figure 2 provides results for a different fault type and model, we break these
results down separately and scrutinize each individually.

• All Faults vs. No Faults

In the top graph in Figure 2a, we see that all algorithms including the MLR, MLRf,
and “tiny” supervised learning algorithm behaved well and provided similar results, even
with only 2% of total fault data labeled. As illustrated in Table 2, 344 datapoints out of
21,485 total datapoints were labeled at this lowest c value. It should be noted that treating
unlabeled samples as negatives, as illustrated by the naïve PU algorithm, is ineffective
unless nearly all faulty points (17,188 total) are labeled. In the bottom graph, it is clear that
both the MLR and MLRf algorithms slightly and consistently outperform the oracle and
the “tiny” supervised learning algorithms when at least 10% of the positive samples are
labeled. We believe this may be due in part to the non-linear classification capabilities of
both algorithms. This is discussed further in the next bullet point.

• Shaded vs. All Others

Figure 2b demonstrates a situation where the nonlinear nature of the MLRf algorithm
provides a clear advantage. The poor results of the supervised linear oracle model (with an
F-Score of approximately 0.64) indicate that the faulty and non-faulty data for this problem
are non-separable in the given feature space. The oracle model is underfitting the data. The
improvement gained by the MLRf algorithm with its much higher feature dimensionality
confirms this. If the decision boundary is substantially nonlinear, this could explain the
noticeable F-score improvement of the non-linear MLRf classifier. A future test should be
performed against a nonlinear oracle model for confirmation.

The more surprising result in this graph is the improvement made possible by the
simpler MLR algorithm. The MLR algorithm has one additional variable over the oracle
(the b variable described in Section 2.2), and we surmise that this slight nonlinearity may be
contributing to its success. It is remarkable that these high scores are possible even when
only 4% of the faulty data is labeled, or 172 datapoints.

• Soiled vs. All Others

The soilage detection models in Figure 2c act similarly to those in Figure 2a in that
the MLR, MLRf, and the “tiny” supervised algorithm are similar to that of the Oracle
except at low values of c. Unlike the other graphs in Figure 2, MLRf performance increases
noticeably above the Oracle only when the label frequency c is around 70%—much higher
than in other graphs. However, the actual difference is slight and may simply indicate
an upward trend like that of the MLR algorithm. Due to the small number (five) of runs
that we were able to do for this algorithm on this problem at that c value, the jump at
c = 0.7 may be a random outlier. Additional simulations would need to be performed to
test this hypothesis.

• Degraded vs. All Others

The degraded fault detection problem illustrated in Figure 2d is the “simplest” of
all problems to solve in Figure 2. The oracle was able to achieve perfect classification
(F-score = 1) in the given feature space for this problem. The MLR, MLRf, and “tiny”
supervised algorithm also performed at or near this level for all but the very smallest of c
values. Notice that the lower graph had to be substantially scaled to see any variability
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between algorithms at all. Despite the obvious separability of this problem, neither the
naïve PU algorithm nor the unsupervised k-means algorithm were useful.

• Short Circuit vs. All Others

Figure 2e illustrates our most interesting and enigmatic result. The oracle algorithm
and related “tiny” supervised algorithm are unable to classify short circuit faults in the
given feature space. The MLR and MLRf algorithms, while performing poorly with an
F-score between 0.4 and 0.6, are nevertheless substantially more effective. Unlike the
Shaded problem shown in Figure 2b, higher feature dimensionality alone is not sufficient
to explain this discrepancy as the lower dimensional MLR algorithm performed better
than the higher dimensional MLRf algorithm. One thought is that the MLRf algorithm
with p = 3 and k = 3 expanded features may be overfitting the problem while the slight
increase in dimensionality provided by the MLR algorithm may be preferable, though this
conclusion is not particularly satisfying. Other authors such as [16] suggest that there are
theoretical situations where PU learning can surpass supervised classification. It would be
interesting to investigate if this is such a case. Either way, further research is warranted.

In addition to the increased dimensionality and non-linear models described above,
one other possible improvement due to PU learning is possible. With noisy data, it may be
that because of the reduction in labeled data in the positive class, outliers are likely to be
excluded, simplifying the model, and improving overall performance. This does not seem
likely to have played a large role in the given datasets however as the MLR and MLRf
algorithm performance does not trend towards the oracle with higher values of c. Instead,
we believe that the non-linear aspects of the MLR and MLRf algorithms are more likely to
explain this discrepancy as described in the bullets above. It is likely that this non-linear
boundary can capture nuances that a fully linear boundary such as used in the simple
supervised oracle algorithm used in this paper is unable to capture. feature engineering
of the oracle algorithm or selection of a more advanced algorithm would likely improve
this. Additionally, it may be worth investigating more theoretical explanations for these
phenomena in future work as described in [16].

Due to the encouraging results, it is worth investigating these and other PU learning
algorithms on additional solar fault datasets. The improvements in classification, with few
labeled data samples, especially in the case of hazardous faults such as short circuits, bring
significant value in terms of improved detection.

5. Conclusions

To the best of our knowledge, this is the first time PU learning has been used for
solar fault detection and classification. This, along with the introduction of the MLRf
algorithm in Section 2.3, comprise the novel contributions in this paper. PU learning has
the advantage over standard supervised and semi-supervised learning in that it does not
require any labeled data from the “good” or STC class. This allows seemingly faultless data
to avoid additional expensive scrutiny to confirm faultless status. Mistaking a low-level
fault for STC or treating unlabeled data as negative can confuse a learning algorithm and
create a poor learning model, as shown by the poor results of the naïve PU algorithm in
Figure 2 at lower values of c. At the same time, PU learning algorithms such as MLR and
MLRf are extremely effective, essentially matching the quality of a fully supervised model
at all but the very lowest possible percentage of labels. With a small amount of labeled
fault data, PU learning can accurately label the large amount of unknown data as well as
creating an effective model for future data. Comparisons with a “tiny” supervised learning
algorithm in Figure 2a–c,e with the same number of labeled samples split between the
positive and negative classes illustrate the benefit of PU learning and the advantage found
in using the unlabeled data as stated in [17].

In addition to demonstrating the MLR algorithm on solar fault data, we proposed
and evaluated a new MLRf algorithm developed for PU learning with application to
solar fault datasets and other large datasets with few features. The MLRf algorithm has
several components including feedback, feature enhancement, and feature pruning. These
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elements significantly increase the flexibility of the algorithm, though they do require
additional hyperparameter tuning. They also raise the potential of overfitting concerns,
though we did not see much evidence of this in our work.

Simulations were performed for PU labeled fault detection and classification for a
variety of different c values representing the percentage of known labels for the class of
interest. Both the original MLR and the new MLRf algorithm provide extremely robust
results, equaling or surpassing a fully supervised oracle algorithm when less than 10% of
labels from the class of interest were available. These results are remarkable and confirm
the results found in [13].
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Appendix A

Algorithm A1 Modified Logistic Regression using Stochastic Gradient Ascent

Input: Data Xm×n, IsItLabeled sm×1

Output: Labels ym×1

//Initialization
X ← normalize(X);

X ← concat
(
[1]m×1, X

)
//Add a column of ones to X

ω ← [1]1×n ;
b← 1 ;
λ← 0.01//Learning rate set to some constant or schedule
//Learn Model
while Maximum Epochs not reached do

for x in X do
∂L
∂ω ←

(
s−1

b2+e−ω·x + 1
1+b2+e−ω·x

)
x·e−ω·x

∂L
∂b ←

(
1−s

b2+e−ω·x + 1
1+b2+e−ω·x

)
2b

ω ← ω + λ· ∂L
∂ω

b← b + λ· ∂L
∂b

end
end
//Apply Model
ŝ← 1

1+b2+e−ω·x //p(s=1|x)

ĉ← 1
1+b2 //p(s=1|y=1)

ŷ← ŝ/ĉ //p(y=1|x) – Can be thresholded at some
//cutoff value to make a binary classifier

https://www.nrel.gov
https://www.nrel.gov
https://www.nrel.gov/disclaimer.html
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Table A1. This table provides the raw results for Figure 2 and their variance.

All Faults vs. No Faults Shaded vs. All Others Soiled vs. All Others Degraded vs. All Others Short Circuit vs. All
Others

MLR

c F-Score
Mean Variance F-Score

Mean Variance F-Score
Mean Variance F-Score

Mean Variance F-Score
Mean Variance

0.02 0.887 1.736× 10−5 0.579 4.707 × 10−3 0.668 2.251× 10−2 0.333 0.000 × 100 0.407 3.113× 10−5

0.04 0.893 7.802× 10−5 0.682 2.070 × 10−4 0.887 2.387× 10−4 0.988 1.293× 10−4 0.454 1.610× 10−3

0.06 0.913 3.123× 10−5 0.697 1.246 × 10−4 0.894 1.459× 10−4 0.992 6.084× 10−5 0.479 4.868× 10−3

0.08 0.915 8.007× 10−6 0.704 6.023 × 10−6 0.905 7.837× 10−6 0.991 3.387× 10−4 0.475 3.105× 10−3

0.1 0.918 2.676× 10−6 0.706 1.467 × 10−5 0.905 1.814× 10−5 0.995 7.014× 10−5 0.453 2.591× 10−4

0.2 0.920 3.977× 10−7 0.710 1.859 × 10−5 0.911 2.321× 10−6 0.9996 1.722× 10−7 0.533 3.116× 10−3

0.3 0.921 3.177× 10−8 0.711 2.153 × 10−6 0.916 7.630× 10−6 0.9997 8.406× 10−8 0.514 3.189× 10−3

0.4 0.921 6.695× 10−8 0.714 2.430 × 10−6 0.917 3.545× 10−6 0.9999 2.439× 10−8 0.576 1.695× 10−7

0.5 0.921 1.393× 10−7 0.716 5.034 × 10−6 0.919 2.246× 10−6 1 0 0.577 1.056× 10−7

0.6 0.921 2.237× 10−7 0.717 6.609 × 10−7 0.920 3.976× 10−7 1 0 0.577 3.358× 10−8

0.7 0.921 8.527× 10−7 0.718 2.026 × 10−6 0.921 1.294× 10−6 1 0 0.577 1.946× 10−7

0.8 0.917 5.738× 10−6 0.721 6.220 × 10−7 0.923 1.139× 10−6 1 0 0.578 1.355× 10−7

0.9 0.914 2.347× 10−6 0.721 2.982 × 10−6 0.925 2.344× 10−7 1 0 0.578 1.242× 10−7

MLRf

c F-Score
Mean Variance F-Score

Mean Variance F-Score
Mean Variance F-Score

Mean Variance F-Score
Mean Variance

0.02 0.886 2.190× 10−5 0.527 3.660 × 10−3 0.400 0.000 × 100 0.957 1.989× 10−3 0.433 8.312× 10−4

0.04 0.902 6.661× 10−5 0.727 6.299 × 10−5 0.706 7.802× 10−2 0.776 1.470E-01 0.457 1.579× 10−6

0.06 0.902 1.574× 10−4 0.726 1.202 × 10−4 0.909 2.741× 10−5 0.979 7.459× 10−4 0.463 2.500× 10−5

0.08 0.895 1.730× 10−4 0.741 2.345 × 10−5 0.915 3.568× 10−7 0.999 5.846× 10−7 0.476 7.896× 10−7

0.1 0.903 1.750× 10−4 0.745 7.555 × 10−6 0.913 1.469× 10−5 0.993 1.474× 10−4 0.474 3.925× 10−5

0.2 0.919 7.574× 10−6 0.765 4.855 × 10−6 0.914 6.090× 10−7 0.999 2.577× 10−7 0.478 7.403× 10−6

0.3 0.920 1.184× 10−6 0.776 5.368 × 10−6 0.919 2.594× 10−6 0.9998 5.421× 10−8 0.478 8.289× 10−6

0.4 0.919 4.644× 10−6 0.780 3.644 × 10−6 0.922 3.501× 10−6 0.9996 2.352× 10−7 0.480 8.155× 10−9

0.5 0.918 3.344× 10−6 0.783 1.887 × 10−6 0.922 7.712× 10−7 1 0 0.481 9.804× 10−9

0.6 0.918 1.859× 10−6 0.785 3.743 × 10−6 0.926 3.323× 10−6 1 0 0.481 2.116× 10−9

0.7 0.917 3.336× 10−6 0.788 7.608 × 10−7 0.937 1.772× 10−6 1 0 0.481 9.536× 10−8

0.8 0.919 4.666× 10−6 0.788 8.647 × 10−7 0.937 1.707× 10−6 1 0 0.481 7.941× 10−8

0.9 0.919 2.712× 10−6 0.789 9.123 × 10−7 0.937 3.254× 10−7 1 0 0.481 2.924× 10−8
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