
applied
sciences

Article

Designing Parallel Adaptive Laplacian Smoothing for
Improving Tetrahedral Mesh Quality on the GPU

Ning Xi 1, Yingjie Sun 2,∗, Lei Xiao 1 and Gang Mei 1,∗

����������
�������

Citation: Xi, N.; Sun, Y.; Xiao, L.;

Mei, G. Designing Parallel Adaptive

Laplacian Smoothing for Improving

Tetrahedral Mesh Quality on the GPU.

Appl. Sci. 2021, 11, 5543. https://

doi.org/10.3390/app11125543

Academic Editor: Carlos A. Iglesias

Received: 29 April 2021

Accepted: 11 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
xining@cugb.edu.cn (N.X.); xiaolei@cugb.edu.cn (L.X.)

2 Center for Hydrogeology and Environmental Geology Survey, China Geological Survey,
Baoding 071051, China

* Correspondence: sunyingjie@mail.cgs.gov.cn (Y.S.); gang.mei@cugb.edu.cn (G.M.)

Abstract: Mesh quality is a critical issue in numerical computing because it directly impacts both
computational efficiency and accuracy. Tetrahedral meshes are widely used in various engineering
and science applications. However, in large-scale and complicated application scenarios, there are a
large number of tetrahedrons, and in this case, the improvement of mesh quality is computationally
expensive. Laplacian mesh smoothing is a simple mesh optimization method that improves mesh
quality by changing the locations of nodes. In this paper, by exploiting the parallelism features of
the modern graphics processing unit (GPU), we specifically designed a parallel adaptive Laplacian
smoothing algorithm for improving the quality of large-scale tetrahedral meshes. In the proposed
adaptive algorithm, we defined the aspect ratio as a metric to judge the mesh quality after each itera-
tion to ensure that every smoothing improves the mesh quality. The adaptive algorithm avoids the
shortcoming of the ordinary Laplacian algorithm to create potential invalid elements in the concave
area. We conducted 5 groups of comparative experimental tests to evaluate the performance of the
proposed parallel algorithm. The results demonstrated that the proposed adaptive algorithm is up to
23 times faster than the serial algorithms; and the accuracy of the tetrahedral mesh is satisfactorily
improved after adaptive Laplacian mesh smoothing. Compared with the ordinary Laplacian algo-
rithm, the proposed adaptive Laplacian algorithm is more applicable, and can effectively deal with
those tetrahedrons with extremely poor quality. This indicates that the proposed parallel algorithm
can be applied to improve the mesh quality in large-scale and complicated application scenarios.

Keywords: mesh generation; mesh quality; tetrahedral mesh; adaptive laplacian smoothing; Graphic
Processing Unit (GPU)

1. Introduction

The finite element method (FEM) is one of the most popular numerical simulation
methods, which is commonly used to address many science and engineering problems.
The core idea of the FEM is to discretize a continuum into a set of finite size elements to
solve continuum mechanics problems. Generally, a two-dimensional model is discretized
into a triangular or quadrilateral mesh; and a three-dimensional model is discretized into a
tetrahedral or hexahedral mesh. The mesh is the basis of discretization in the numerical
analysis of FEM. Thus, the quality of meshes plays a key role on the computational accu-
racy and efficiency of final results [1–3]. To obtain a high-quality mesh, numornous mesh
generation methods [3–6] have been proposed. However, the generated initial meshes
are in general have poor quality, and cannot be directly used for numerical computa-
tion. Therefore, it is necessary to further optimize the mesh to improve its quality after
initial generation.

There are two main approaches used to optimize meshes [7,8]. One is to improve the
mesh quality by encrypting, removing, or inserting mesh nodes [9], which changes the
topology of the mesh [10,11]; the other is to change the locations of the mesh nodes, which

Appl. Sci. 2021, 11, 5543. https://doi.org/10.3390/app11125543 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0026-5423
https://doi.org/10.3390/app11125543
https://doi.org/10.3390/app11125543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125543
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/11/12/5543?type=check_update&version=4

Appl. Sci. 2021, 11, 5543 2 of 18

is called mesh smoothing [12–15]. Mesh smoothing is more widely used because it does
not change the connectivity of the mesh; one of the popular approaches is Laplacian mesh
smoothing [16–18].

The process of Laplacian mesh smoothing is straightforward, requiring only that the
locations of mesh nodes be updated to the geometric center of their neighbors during each
iteration. In this case, the mesh topology will not be changed. However, in large-scale and
complicated application scenarios, the computational models consist of a large number of
nodes and elements, which means that in tetrahedral or hexahedral mesh models, a large
number of tetrahedrons or hexahedrons need to be involved in the iterative computations.
In this case, the complex iteration process will result in expensive computational costs
when using Laplacian mesh smoothing. The use of parallel computing is an effective
strategy to improve the efficiency of the Laplacian mesh smoothing algorithm; the powerful
parallelism features of a modern graphics processing unit (GPU) can be utilized.

Currently, parallel computing on GPUs has been widely used in numerical comput-
ing, artificial intelligence, and other applications [19–22]. In Laplacian mesh smoothing,
when the input mesh changes from a simple triangular mesh to a complex tetrahedral or
hexahedral mesh, there are obviously larger number of tetrahedrons need to be calculated,
Laplacian mesh smoothing process in serial calculation will become extremely long, and the
experimental cost will be expensive. Therefore, it is necessary to accelerate Laplacian mesh
smoothing algorithm on a GPU.

Several feasible algorithms accelerated on the GPU have been proposed to optimize
mesh quality. For example, Mei et al. [23] proposed an ordinary Laplacian mesh smoothing
algorithm accelerated on the GPU; Dahal and Newman [24] proposed three efficient parallel
algorithms to improve finite element meshes based on the Laplacian smoothing. In addi-
tion, other parallel optimization strategies have been proposed for various types of meshes.
For example, Jiao, X et al. [25] presented a parallel approach for optimizing surface meshes
by redistributing vertices on a feature-aware higher-order reconstruction of a triangulated
surface. Antepara, O et al. [26] described a parallel adaptive mesh refinement strategy
for two-phase flows using tetrahedral meshes. Shang Mengmeng [27] proposed a multi-
threaded parallel version of a sequential quality improvement algorithm for tetrahedral
meshes, which combined mesh smoothing operations and local reconnection operations.

In our previous research, we developed parallel Laplacian mesh smoothing algo-
rithms for triangular meshes accelerated on the GPU [23,28]. Moreover, a parallel ordinary
Laplacian mesh smoothing for tetrahedral mesh accelerated on the GPU [29] has been
presented. However, there is a shortcoming in the previously proposed ordinary Laplacian
mesh smoothing algorithm. Specifically, the potential invalid nodes will be created in the
concave area of the mesh. In FEM, the creation of invalid nodes will lead to distorted
elements, which will strongly reduce the computational accuracy [30–33]. For example,
Freitag L.A [18] found that approximately 30 percent of the Laplacian smoothing steps will
result in an invalid mesh when using the ordinary algorithm compared with approximately
3 percent when using an improved swapping approach. Moreover, Vollmer J [33] found
that the ordinary Laplacian algorithm shrinks meshes. Huang Lili et al. [4] reported that
there are still severely distorted elements after using Laplacian smoothing. Therefore, it is
necessary to propose improved Laplacian mesh smoothing algorithms.

To address the above problem, in this paper, we specifically designed a parallel adap-
tive Laplacian smoothing algorithm for improving the quality of large-scale tetrahedral
meshes by exploiting the parallelism features of the GPU. In the proposed algorithm, we
added a judgment of tetrahedral mesh quality in the Laplacian smoothing process, and the
new smoothing location is retained only if it improves the mesh quality. Furthermore,
we changed the method of searching for neighboring nodes and compared the impact
of different data layouts and iteration forms on the running performance and compared
the efficiency on the GPU when using a single block and multiple blocks. The results are
compared and analyzed with the serial version and ordinary Laplacian smoothing.

Appl. Sci. 2021, 11, 5543 3 of 18

The rest of the paper is organized as follows: Section 2 provides a background in-
troduction to Laplacian mesh smoothing and GPU computing. Section 3 introduces the
proposed parallel adaptive Laplacian mesh smoothing in detail. Section 4 describes the
experimental test and results. Section 5 discusses the advantages and shortcomings of
the proposed parallel algorithm and outlines future work. Finally, Section 6 concludes
this work.

2. Background
2.1. Laplacian Mesh Smoothing
2.1.1. Ordinary Laplacian Mesh Smoothing

Laplacian mesh smoothing is one of the most widely used smoothing methods.
The core idea of Laplacian mesh smoothing is straightforward. First, the first-order do-
main [29] of every internal node is determined in the mesh. Second, the coordinate of
each internal node is updated iteratively to the center of mass of its first-order neighboring
nodes until the result converges. Laplacian mesh smoothing does not change the topology
of the mesh; and the iterative calculation of nodes in the algorithm is easy to parallelize;
thus, it is easy to exploit in practical applications. Figure 1 briefly compares a tetrahedral
mesh before and after Laplacian smoothing.

(a) Before Smoothing (b) After Smoothing

Figure 1. A simple illustration of improving tetrahedral mesh quality using Laplacian smoothing.

2.1.2. Adaptive Laplacian Mesh Smoothing

Adaptive Laplacian mesh smoothing is proposed based on ordinary Laplacian mesh
smoothing. Generally, in ordinary Laplacian mesh smoothing, invalid elements may be
created in the concave areas of the mesh, which results in a mesh quality that does not
improve. To solve this problem, adaptive Laplacian mesh smoothing [23] adds a step to
judge whether the mesh quality improves after every update of the nodal location. If the
new smoothing location improves the mesh quality, the new location is retained; if not,
it is recalculated. This approach provides a guarantee for improving the mesh quality
compared with ordinary mesh smoothing.

The quality of an entire mesh model depends on the quality of all tetrahedrons in
the mesh; and the quality of a tetrahedron can be defined by different metrics, such as
mean ratio, aspect ratio, dihedral angle, circumradius-shortest edge ratio, etc. According
to these defined metrics, the adaptive Laplacian algorithm will automatically determine
whether the new node is invalid. This mechanism of checking can avoid invalid iterative
calculations compared with the ordinary Laplacian algorithm. Figure 2 illustrates the
smoothed positions of a sample node in the concave area of a tetrahedral mesh when using
ordinary Laplacian mesh smoothing and adaptive Laplacian mesh smoothing.

Appl. Sci. 2021, 11, 5543 4 of 18

Valid node

(c) Adaptive Laplacian

(a) Input Mesh

Smoothing node Neighboring nodes

(b) Ordinary Laplacian

Invalid nodeNeighboring nodes Neighboring nodes

Figure 2. An illustration for comparing the smoothed positions of a sample node in the concave area
of a tetrahedral mesh when using ordinary Laplacian mesh smoothing and adaptive Laplacian mesh
smoothing. (a) Input mesh; (b) mesh after ordinary Laplacian smoothing; (c) mesh after adaptive
Laplacian smoothing.

2.1.3. Two Forms of Smoothing Iteration

In Laplacian mesh smoothing, there are two forms to select the coordinates of neigh-
boring nodes when iteratively calculating the smoothing coordinate of a vertex: Form A
and Form B. For example, when updating the smoothing coordinates of vertices in iteration
pass (q + 1), Form A completely select the old coordinates of neighboring nodes calculated
in the previous iteration pass q, while Form B need not only the old coordinates of neigh-
boring nodes calculated in the previous iteration pass q but also the new coordinates of
neighboring nodes calculated in the current iteration pass (q + 1). It is clear that Form A is
a special case of Form B when the number of neighboring nodes derived from iteration
pass (q + 1) is 0.

Form A:

xq+1
i =

1
N

N

∑
j=1

xq
j (1)

Form B:

xq+1
i =

1
N

 Nq

∑
j=1

xq
j +

Nq+1

∑
k=1

xq+1
k

,

0 ≤ Nq ≤ N

0 ≤ Nq+1 ≤ N
Nq + Nq+1 = N

(2)

where N is the total quantity of neighboring nodes of computing node; xq+1
i is the new

location calculated in the iteration (q + 1); Nq is the number of neighbors derived from the
iteration q ; Nq+1 is the number of neighbors derived from the iteration (q + 1) ; xq

j is the

old location calculated in the iteration q for Nq nodes; xq+1
k is the old location calculated

in the iteration (q + 1) for Nq+1 nodes. Form A is a special case of Form B where Nq+1 = 1.

Appl. Sci. 2021, 11, 5543 5 of 18

2.2. Data Layouts in GPU Computing

Data layout takes the form of storing and accessing data in memory. In GPU com-
puting, there are two main data layouts [34]: Array of Structures (AoS) and Structure of
Arrays (SoA). The selection of the data layout is an important step, and an appropriate
data layout can significantly improve GPU computing efficiency.

In the AoS data layout, the data will be misaligned, which will cause merging problems.
This is because multidimensional and multivalued data containers lead to stridden memory
access in the one-dimensional address space. Therefore, organizing data in the AoS layout
cannot make full use of the memory bandwidth, resulting in a waste of memory space.

SoA data layout is more appropriate in most cases. Compared with the AoS data
layout, organizing the data in the SoA layout can avoid data interleaving to make full use
of the memory bandwidth.

Whether the data layout can achieve better performance depends on its underlying
algorithm, and the specific algorithm should match the specific data layout. Generally,
the SoA data layout is more suitable for single instruction multiple data (SIMD) units,
and the AoS data layout is more suitable for commonly used language syntax and standard
container types. Different types of data layouts can be converted into each other; for
example, in the paper by Strzodka R [35], the conversion of two data layouts in C++ was
realized. Taking the storage of node A containing four neighboring nodes as an example,
Figure 3 briefly illustrates the different ways of storing the coordinates of its neighbors.

Z1, Z2, Z3, Z4Array 3Y1, Y2, Y3, Y4Array 2X1, X2, X3, X4Array 1

Array 1

Array 2

Array 3

Struct A

(b) SoA

Node A

 Neighbor 1

 (X1,Y1,Z1)

 Neighbor 2

 (X2,Y2,Z2)

 Neighbor 3

 (X3,Y3,Z3)

 Neighbor 4

 (X4,Y4,Z4)

X1

Y1

Z1

Struct 1

X2

Y2

Z2

Struct 2

X4

Y4

Z4

Struct 4

Node A

 Neighbor 1

 (X1,Y1,Z1)

 Neighbor 2

 (X2,Y2,Z2)

 Neighbor 3

 (X3,Y3,Z3)

 Neighbor 4

 (X4,Y4,Z4)

(a) AoS

Struct1, Struct2, Sruct3, Struct4Array A

X3

Y3

Z3

Struct 3

Figure 3. Two common data layouts: AoS and SoA.

3. Parallel Adaptive Laplacian Mesh Smoothing on the GPU
3.1. Overview

In this paper, we proposed a parallel adaptive Laplacian smoothing algorithm for
improving the quality of large-scale tetrahedral mesh, the proposed algorithm consists of
three main steps. (1) The first step is to determine the first-order domain of all nodes in
the input tetrahedral mesh. This step includes searching for the first-order neighboring
nodes of each vertex and initializing the mass of each adjacent tetrahedral element. (2) The
second step is to determine the constraints, i.e., which nodes are internally smoothable and
which are constrained. (3) The third step is to iteratively calculate the smoothing location
of each node until the iteration converges, and the end of every iteration needs a quality
judgment of neighboring tetrahedrons. The above steps are implemented in parallel on the

Appl. Sci. 2021, 11, 5543 6 of 18

GPU. The shortcomings and advantages are described in detail in Section 5.3. The entire
workflow of the proposed algorithm is illustrated in Figure 4.

Input Mesh

Smoothing Iteration

Improvement?

Convergence?

Output Mesh

Yes

Yes

No

No

Parallel updating of

nodal locations

Searching for Neighbors Determining Boundary Nodes

Figure 4. Workflow of the proposed parallel adaptive Laplacian mesh smoothing.

3.2. Step 1: Searching for First-Order Neighbors of Nodes

The new smoothing position of a node depends entirely on its neighboring nodes.
For a tetrahedral mesh, a single tetrahedron is a basic unit, and each node of the tetrahedron
is a neighbor of the other three nodes. All neighbors form the first-order domain of the
vertex. The center of mass of the first-order domain is taken as the new nodal location
during the iteration. The general method of obtaining neighbors is to allocate an array for
each node to store its neighboring coordinates, and then to find the neighbors of that node
by traversing each neighboring tetrahedron in turn [36]. There are two major disadvantages
of this approach. First, the length of the array of neighboring nodes cannot be determined
at the time of initial creation, and it should only be opened up gradually at a later stage of
storage, which will lead to data conflicts during writing operations. Second, the work of
finding neighbors is carried out in the order of nodes; thus, it is impossible to determine all
the neighbors of nodes at the same time.

Based on this approach, we have proposed a new search method in our previous
research [36], where the data traversal unit is changed from a node to each side of a triangle.
The specific implementation procedures are as follows.

1. Search for the sideline segments of each triangle in the tetrahedral mesh by multi-
threading, and the corresponding values of the start node and the end node of each
edge are stored in two integer arrays;

2. Copy two integer arrays where store all sideline segments in reverse;
3. Sort by the value of the first integer array that stores the starting node of all the

sideline segments in parallel;
4. Remove duplicate integer pairs with unique operations in parallel and perform

segmented scans to quickly find the index of all neighboring nodes of each vertex.

It is clear that neighbors of all the nodes can be found simultaneously through the
above method, and the number of neighboring nodes can also be determined in advance.
In the proposed method, there is no complex data structure, and only an integer array is
needed; therefore, it is easy to execute efficiently on a GPU. Figure 5 briefly illustrates the
process of searching for neighbors.

Appl. Sci. 2021, 11, 5543 7 of 18

2 3 1 3 4 1

1 2 3 1 3 4

2 1 3 2 1 3

1 2 2 3 3 1

3 1 4 3 1 4

1 3 3 4 4 1

2 3 3 4 1 3

1 1 1 1 2 2

1 1 2 4 1 3

3 3 3 3 4 4

2 3 4 1 3

1 1 1 2 2

1 2 4 1 3

3 3 3 4 4

Copy

Sort

Unique

Node A

Node B

1

4

2

3

Node A

Node B

Node A

Node B

Node A

Node B

Figure 5. Illustration of searching for nodal neighbors.

3.3. Step 2: Determining Boundary Nodes

There are two types of nodes in a tetrahedral mesh: boundary nodes and internal
nodes. Only the internal nodes are involved in the smoothing iteration, and the boundary
nodes are used as mesh constraints to fix their coordinates. Therefore, it is necessary to
determine which nodes are boundary nodes before iterating. The core idea of determining
boundary nodes is straightforward. The face in a tetrahedral mesh shared by two tetra-
hedrones at the same time is an internal face, and all three nodes on the internal face are
internal nodes, while the face that has only been used once is the boundary face, and the
nodes that make up the boundary face are boundary nodes. The specific procedure to
determine boundary nodes is as follows.

1. Invoke all threads in the thread grid to traverse each tetrahedron in the mesh, and the
node indices of four faces in each tetrahedron are stored from small to large in memory;

2. Sort all the faces in the array from small to large in parallel;
3. Compare each face in the array with its adjacent face in parallel to choose the boundary

face that has been used only once and mark all three nodes of the boundary face as
internal nodes saved in the CUDA kernel.

Through the above operations, we add a new attribute value for all nodes in memory
to facilitate the subsequent iterative calculation.

3.4. Step 3: Adaptive Smoothing Iteration

When optimizing the tetrahedral meshes using adaptive Laplacian mesh smoothing,
the last step is to judge the mesh node locations iteratively until convergence. For adaptive
Laplacian mesh smoothing to tetrahedral meshes, the standard for judging tetrahedral
mesh quality is the minimum value of the mass of all adjacent tetrahedrons of the node [22].
If the minimum value of the mass obtained in this iteration is greater than the minimum
value of the mass calculated in the previous iteration, then we terminate the iteration and
keep the smoothing results in this iteration; otherwise, we need to continue the iteration.

In this paper, we chose the aspect ratio as a metric to evaluate the quality of the
tetrahedral meshes, where the aspect ratio is the radius ratio of the inscribed sphere and
the circumscribed sphere. The maximum aspect ratio of the tetrahedron is 1/3, that is,
the regular tetrahedron. For the convenience of statistical analysis, we have expanded
all the mesh masses by three times, and the numerical range of the radius ratio is con-
trolled between 0 ∼ 1, where 1 represents the tetrahedral element with the best quality,
and 0 represents the tetrahedral element with the worst quality. The calculations of the in-
scribed sphere radius and circumscribed sphere radius are shown in Equations (3) and (4).

Appl. Sci. 2021, 11, 5543 8 of 18

Figure 6 simply shows the relationship between a tetrahedron and its inscribed sphere and
circumscribed sphere.

Radius of inscribed sphere R1:

R1 =
3V
S

(3)

where V is the volume of the tetrahedron and S is the sum of the side areas of the tetrahedron.
Radius of inscribed sphere R2:

R2 =

√
(a + b + c) ∗ (a + b − c) ∗ (a + c − b) ∗ (b + c − a)

24V
(4)

where a, b, and c are the products of three pairs of opposite edges of the tetrahedron and V
is the volume of the tetrahedron.

Figure 6. The inscribed sphere and circumscribed sphere of a tetrahedron.

There is a clear data dependency in the iteration process. In the smoothing iteration,
the q + 1 iteration calculation requires the results of the q iteration, and the computation
must ensure that all nodes in the mesh have completed the q iteration before the q + 1
iteration can be performed. However, in GPU computing, there are no synchronization
barriers in a block, and it is not always guaranteed that the current iteration must have
started after all nodes have completed the previous calculation. A practical solution to
this problem is to distribute only one block for a single iteration. Each thread in the block
is responsible for the smoothing calculation of several nodes in this iteration, including
(1) updating the locations of nodes and (2) updating the mass value of all neighboring
tetrahedrons in memory by the new node coordinates and determining whether the mass
minimum has increased.

Obviously, when distributing a block for a location updating process, it is guaranteed
that the q + 1 iteration must start after the q iteration completely finishes. However, this
iteration method cannot make efficient use of the parallel computing power of GPUs.
In this paper, we adopted a multiple block iterative method [29] where the multiple blocks
complete an iteration at the same time. The maximum number of threads allowed on the
GPU is 1024 at the moment; thus, all simultaneous starts of multiple blocks can achieve the
maximum parallel strategy. In the implementation, we distribute a thread to each node to
complete its smoothing calculation. If there are a total of 4096 internal nodes in the mesh
that need to be calculated, when 1024 threads are allocated to a block, 4 blocks need to be
designed to work at the same time. Figure 7 briefly illustrates the process of the single
block iteration and the multiple block iteration.

Appl. Sci. 2021, 11, 5543 9 of 18

0 1 2 3 4 5 6 7 N-3 N-2 N-1 N

Block 1 Thread 1 Block 1 Thread 2 …… Block 1 Thread m

Block 1 ……Block 2 Block m

Node ID ……

Multiple Blocks

Single Block

Figure 7. Illustration of single block and multiple blocks iteration.

4. Results
4.1. Experimental Setup

In this paper, we implemented the proposed adaptive Laplacian mesh smoothing algo-
rithm for tetrahedral mesh with CUDA11.0 on a workstation computer. The specifications
and details of the workstation used for the experiments are shown in Table 1.

In order to evaluate the performance of the proposed parallel adaptive algorithm, we
conducted five groups of experimental tests, which are implemented on CPU and GPU,
respectively. And the CPU version is implemented serially. The test data includes five sets
of tetrahedral meshes: 5k, 10k, 59k, 77k, and 109k vertices; among them, the test of 77k
vertices is supplemented by a slope model. The experimental data are shown in Table 2.
The input mesh is created as follows. First, the equidistant nodes were distributed in a
user-specified multidimensional data set. Second, random nodes were created in this space.
Third, Delaunay meshes for these discrete point sets were established by using the TetGen
library [37,38]. As shown in Figure 8, we displayed the surface and internal structure of
experimental mesh models with 59k nodes and 77k nodes.

Table 1. Specifications and details of the workstation computer.

Specifications Details

Compiler VS2017 Community
CUDA version (GHz) V11.0

CPU Intel Xeon Gold
CPU Frequency 2.30 GHz

CPU RAM 128 GB
CPU cores 48

GPU NVIDIA Quadro P6000
GPU core 3840

GPU Memory 24 GB

Table 2. Experimental data.

Model Number of Nodes Number of Tetrahedrons

1 5000(5k) 32,978
2 10,000(10k) 66,542
3 59,261(59k) 391,220
4 76,928(77k) 388,428
5 109,260(109k) 727,088

Appl. Sci. 2021, 11, 5543 10 of 18

(a) (b) (c) (d)

Figure 8. Two experimental models. (a) The entire mesh model with 59k nodes; (b) The partial mesh model with 59k nodes;
(c) The entire mesh model with 77k nodes; (d) The partial mesh model with 77k nodes.

4.2. Experimental Results

In this paper, we recorded the running times of five groups of experiments. The results
were conducted to test the impact of different data layouts in the two iterative methods
of Form A and Form B and the effect of using a single block or multiple blocks in the
iterative process on the GPU computational performance. Tables 3 and 4 show the running
time of Form A and Form B in the adaptive Laplacian mesh smoothing for tetrahedral
mesh, and Tables 5 and 6 show the speedups of Form A and Form B in the parallel
adaptive Laplacian mesh smoothing over a corresponding serial version of the algorithm
for tetrahedral meshes.

All the experimental results indicated that (1) the algorithm with Form B is faster than
Form A; (2) the algorithm with AoS data layout is slightly faster than SoA data layout;
and (3) the running time of the algorithm that distributed multiple blocks during the GPU
iteration is faster than the algorithm with a single block. In the five experiments, for a
tetrahedral mesh with 100k nodes, the proposed mesh optimization algorithm can achieve
a maximum acceleration of 22.620 times compared with the serial version.

Table 3. Running time of the proposed algorithm when using Form A.

Number of Nodes

Running Time (ms)

CPU
GPU-AoS GPU-SoA

Single Block Multiple Blocks Single Block Multiple Blocks

5k 1473 450 467 151 139
10k 3745 537 535 775 331
59k 8452 799 954 986 1254
77k 15,825 3252 1675 3505 2231

109k 36,592 5811 4866 6718 4140

Table 4. Running time of the proposed algorithm when using Form B.

Number of Nodes

Running Time (ms)

CPU
GPU-AoS GPU-SoA

Single Block Multiple Blocks Single Block Multiple Blocks

5k 1473 169 155 130 96
10k 3745 542 304 287 389
59k 8452 763 502 726 654
77k 15,825 1184 705 1263 1180

109k 36,592 3566 1618 4362 2230

Appl. Sci. 2021, 11, 5543 11 of 18

Table 5. Speedup of the proposed algorithm over serial algorithm when using Form A.

Number of Nodes

Speedup

Max SpeedupGPU-AoS GPU-SoA

Single Block Multiple Blocks Single Block Multiple Blocks

5k 3.273 3.154 9.755 10.597 10.597
10k 6.974 7.004 4.832 11.310 11.31
59k 10.576 8.857 8.570 6.740 10.576
77k 4.866 9.448 4.515 7.093 9.448

109k 6.297 7.520 5.447 8.839 8.839

Table 6. Speedup of the proposed algorithm over serial algorithm when using Form B.

Number of Nodes

Speedup

Max SpeedupGPU-AoS GPU-SoA

Single Block Multiple Blocks Single Block Multiple Blocks

5k 8.716 9.503 11.331 15.344 15.344
10k 6.906 12.319 13.049 9.627 13.049
59k 11.075 16.833 11.639 12.920 16.833
77k 13.366 22.447 12.530 13.411 22.447

109k 10.261 22.620 8.389 16.409 22.620

5. Discussion
5.1. Efficiency of the Parallel Adaptive Laplacian Mesh Smoothing
5.1.1. Efficiency Analysis of Data Layouts

Figure 9a,b show the running time of the different data layouts when using Form A
and Form B, respectively. It can be clearly seen that: (1) for Form A, when the number
of nodes is smaller than 5k, the running time of the SoA version is shorter than that of
the AoS version; and when the number of nodes is larger than 5k, AoS version shows
better performance than SoA version with a max speedup of 1.44; (2) for Form B, when the
number of nodes is smaller than 59k, SoA version shows a better performance; and when
the number of nodes is larger than 59k, AoS version shows a better performance with a
max speedup of 1.23.

The above results illustrate that the AoS is more efficient than SoA for mesh models
with a large number of nodes. This is consistent with our previous studies [23,28,29]; the
GPU version with AoS data layout has better performance is due to the aligned global
memory accesses. Therefore, in complex application scenarios, we recommend using AoS
data layout when accelerating the Laplacian mesh smoothing algorithm on the GPU.

Appl. Sci. 2021, 11, 5543 12 of 18

5k 10k 59k 77k 109k
0

1000

2000

3000

4000

5000

6000

7000

R
u

nn
in

g
 T

im
e

(/
m

s)

 AoS
 SoA

(a) Form A

5k 10k 59k 77k 109k
0

1000

2000

3000

4000

5000

6000

7000

R
u

nn
in

g
 T

im
e

(/
m

s)

 AoS
 SoA

(b) Form B

Figure 9. Running time when using different data layouts.

5.1.2. Efficiency Analysis of Iteration Forms

As shown in Figure 10, the algorithm when using the Form B iteration always runs
faster than Form A, both in the AoS data layout version and the SoA data layout version.
In total, Form B runs 1.2 to 3.1 times faster than Form A. There are two main reasons
why the Form B iteration is more efficient. First, Form A needs to exchange intermediate
node coordinates during the iteration process; thus, it needs to access global memory
more frequently and allocate additional memory to store the updated coordinates for
each iteration, which greatly reduces the GPU computing power. Second, the iterative
convergence rate of Form A is much lower than Form B. As the scale of test data becomes
larger, the number of iterations of Form A becomes larger, and the running times become
longer. Therefore, when running the adaptive Laplacian mesh smoothing algorithm on the
GPU for tetrahedral meshes, it is more logical to use the Form B iteration method.

Appl. Sci. 2021, 11, 5543 13 of 18

5k 10k 59k 77k 109k
0

1000

2000

3000

4000

5000

R
u

n
ni

ng
 T

im
e

(/
m

s)

 Form A
 Form B

(a) AoS data layout

5k 10k 59k 77k 109k
0

1000

2000

3000

4000

5000

R
u

n
ni

ng
 T

im
e

(/
m

s)

 Form A
 Form B

(b) SoA data layout

Figure 10. Running time and speedup when using different iteration forms.

5.1.3. Efficiency Analysis of Multiple Block Iteration

In this paper, we analyzed and compared the performance of the kernel with a single
block and multiple blocks based on a GPU with the CPU version. As seen in Figure 11,
the GPU version runs faster than the CPU version, up to approximately 20 times faster,
and the multiple block version runs faster than the single block version overall. In addition,
we compared the single block version and the multiple block version individually. The re-
sults are shown in Figure 12. The performance advantage of the multiple block version
becomes more apparent as the size of the experimental data increases. When the input
mesh has 109k nodes, the speed can reach approximately 2.0 times. Thus, it can be seen
that a kernel with multiple block can significantly improve iteration efficiency and make
full use of the efficient parallel performance of the GPU.

However, it is important to note that although multiple block iteration is more efficient,
this kernel design method does not always guarantee that there will be no data conflicts

Appl. Sci. 2021, 11, 5543 14 of 18

between the q iteration and the q + 1 iteration; thus, in practical applications, how to
choose the iteration method will depend on the user’s requirements. For simple mesh
models with few nodes, the kernel with a single block has better performance, and for
complex and multinode meshes, the kernel with multiple blocks more easily ensures
computational efficiency.

5k 10k 59k 77k 109k
0

10000

20000

30000

40000
R

u
n

nn
in

g
 T

im
e

 (
/m

s)

Size

 Single Block
 Multiple Blocks
 CPU

Figure 11. Comparison of the running time in serial and parallel versions.

5k 10k 59k 77k 109k

0

1000

2000

3000

4000

R
u

n
ni

ng
 T

im
e

(/
m

s)

Size

 Single Block
 Multiple Blocks

Figure 12. Running time when using single block and multiple blocks.

5.2. Comparative Analysis of Mesh Quality

To verify the accuracy of the proposed algorithm, we evaluated the quality of the
original input mesh (Figure 13a), the mesh after ordinary Laplacian smoothing (Figure 13b),
and the mesh after adaptive Laplacian smoothing (Figure 13b).The experimental results
show that the mesh quality is significantly improved after adaptive Laplacian smoothing,

Appl. Sci. 2021, 11, 5543 15 of 18

and the value of the aspect ratio of the mesh tetrahedrons is approximately 0.15 times
higher than the input mesh overall.

As shown in Figure 13b, it should be noted that the ordinary Laplacian smoothing
algorithm cannot improve the quality of tetrahedrones with a radius ratio between 0 ∼ 0.2,
which leads to the quality distribution of the smoothing mesh not being continuous. It is
clearly in Figure 13b, there are approximately 2000 tetrahedrons with aspect ratios close
to 0.0. However, the number of tetrahedrons with very poor quality in the input mesh is
only approximately 1500, proving that the ordinary Laplacian mesh smoothing algorithm
cannot improve the quality of very poor tetrahedrons.

However, the proposed adaptive algorithm in this paper is very obvious for improving
the tetrahedrons with very poor quality, and the quantity of these tetrahedrons was reduced
to approximately 1000. As shown in Figure 13c, the tetrahedron mesh quality after adaptive
smoothing is relatively continuous. Therefore, the adaptive Laplacian smoothing algorithm
for tetrahedral mesh proposed in this paper is very efficient to mesh tetrahedrons with
very poor quality, which also means that the proposed algorithm in this paper has a wider
range of applications.

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

F
re

q
u
e
n
c
y

Metric: Radius ratio

 Before Smoothing

(a) Before Laplacian smoothing

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

F
re

q
u
e
n
c
y

Metric: Radius ratio

 After Ordinary Smoothing

(b) After the ordinary Laplacian smoothing

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

F
re

q
u
e
n
c
y

Metric: Radius ratio

 After Adaptive Smoothing

(c) After the adaptive Laplacian smoothing

Figure 13. Statistical distribution of the tetrahedral mesh quality.

Appl. Sci. 2021, 11, 5543 16 of 18

5.3. Shortcomings and Advantages of Parallel Adaptive Laplacian Mesh Smoothing

One of the essential ideas behind the Laplacian mesh smoothing is to update the new
positions of vertices to the geometric center of neighboring nodes. However, in practical
application scenarios, the influence proportion of each neighboring node is different. Thus
it is unreasonable to simply select the geometric center as the new vertical coordinate.
Moreover, in the proposed adaptive parallel Laplacian mesh smoothing algorithm, the as-
pect ratio was used as a metric to evaluate the quality of the tetrahedral meshes during
the smoothing iteration process. Different metrics have different computing methods
and criteria, which will have some impact on the computational efficiency of the mesh
smoothing algorithm and the optimized results of the mesh model. Therefore, more metrics
should be employed and evaluated for careful consideration.

Overall, experimental results demonstrated that the proposed adaptive Laplacian
mesh smoothing achieved better efficiency and accuracy compared with the baseline
algorithm, and compared with the ordinary Laplacian algorithm, the adaptive algorithm is
more applicable, which can effectively improve tetrahedrons with extremely poor quality.

5.4. Outlook and Future work

In future work, we will propose an appropriate metric to judge the influence weight
of each neighboring node of the calculating vertex, and more metrics for mesh quality will
be discussed. Moreover, we will further expand the application scopes of the adaptive
Laplacian mesh smoothing algorithm accelerated on the GPU for more complex and
irregular hexahedral mesh models. In fact, hexahedral meshes have higher accuracy
and applicability; at present, the generation and optimization technologies of tetrahedral
meshes are relatively mature, but because studies on hexahedral mesh less common, we
will focus on the optimization of hexahedral meshes in the future.

6. Conclusions

In this paper, by exploiting the parallelism features of the GPU, we specifically de-
signed a parallel adaptive Laplacian smoothing algorithm for improving the quality of
large-scale tetrahedral mesh models. In the proposed parallel adaptive Laplacian smooth-
ing, we added a judgment of tetrahedral mesh quality in the Laplacian smoothing process.
The adaptive algorithm avoids the shortcoming of the ordinary Laplacian algorithm to
create potential invalid elements in the concave area. In this paper, we conducted five
groups of comparative experimental tests and compared and analyzed the operational
performance of the two iteration methods and two data layouts. Moreover, we analyzed the
efficiency of the iteration of a kernel with a single block and a kernel with multiple blocks.
We found that (1) the proposed algorithm is up to 23 times faster than serial algorithms;
(2) the accuracy of the tetrahedral mesh is improved after the proposed adaptive Lapla-
cian smoothing; and (3) the proposed adaptive Laplacian mesh smoothing has broader
applicability than ordinary Laplacian smoothing. This indicates that the proposed parallel
algorithm can be applied to improve the mesh quality in large-scale and complicated
application scenarios.

Author Contributions: Conceptualization, N.X., L.X., G.M., Y.S.; Methodology, N.X., L.X., G.M., Y.S.;
Writing—Original Draft Preparation, N.X., G.M.; Writing—Review & Editing, N.X., G.M., L.X., Y.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was jointly supported by the National Natural Science Foundation of China
(Grant No. 11602235), the Fundamental Research Funds for China Central Universities (2652018091),
and Major Program of Science and Technology of Xinjiang Production and Construction Corps
(2020AA002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2021, 11, 5543 17 of 18

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the editor and the reviewers for their contributions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FEM Finite Element Method
CPU Central Processing Unit
GPU Graphics Processing Unit
SoA Structure-of-Arrays
AoS Array-of-Structures
CUDA Compute Unified Device Architecture
SIMD Single Instruction Multiple Data
FLAC Fast Lagrangian Analysis of Continua

References
1. Conley, R.; Delaney, T.J.; Jiao, X.M. Overcoming element quality dependence of finite elements with adaptive extended stencil

FEM (AES-FEM). Int. J. Numer. Methods Eng. 2016, 108, 1054–1085. [CrossRef]
2. Li, Q.; Chen, Y.; Huang, Y.; Wang, Y. Two-grid methods for nonlinear time fractional diffusion equations by L 1-Galerkin FEM.

Math. Comput. Simul. 2021, 185, 436–451. [CrossRef]
3. Huang, T.; Yang, Z.H.; Li, B. New algorithm of FEM automatic mesh generation for TWTs’ electron optics system. In Proceedings

of the 2004 4th International Conference on Microwave and Millimeter Wave Technology, Beijing, China, 18–21 August 2004;
IEEE: New York, NY, USA, 2004; pp. 507–510.

4. Huang, L.; Zhao, G.; Wang, Z.; Zhang, X. Adaptive hexahedral mesh generation and regeneration using an improved grid-based
method. Adv. Eng. Softw. 2016, 102, 49–70. [CrossRef]

5. Wang, B.; Mei, G.; Xu, N. Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL.
MethodsX 2020, 7, 101061. [CrossRef]

6. Yang, H.J.; Jeon, K.; Kim, H.H. Efficient mesh generation utilizing an adaptive body centered cubic mesh. J. Comput. Phys. 2021,
436, 110292. [CrossRef]

7. Freitag, L.A.; Ollivier-Gooch, C. Tetrahedral mesh improvement using swapping and smoothing. Int. J. Numer. Methods Eng.
1997, 40, 3979–4002. [CrossRef]

8. Liu, Y.; Chang, J.; Guan, Z. Enhanced 3D optimal Delaunay triangulation optimization method for tetrahedral mesh quality.
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J. Comput. Aided Des. Comput. Graph. 2012, 24, 949–953.

9. D’Amato, J.P.; Lotito, P. Mesh Optimization with Volume Preservation Using GPU. Lat. Am. Appl. Res. 2011, 41, 291–297.
10. Zegard, T.; Paulino, G.H. Toward GPU accelerated topology optimization on unstructured meshes. Struct. Multidiscip. Optim.

2013, 48, 473–485. [CrossRef]
11. Li, Y.; Zhou, B.; Hu, X. A two-grid method for level-set based topology optimization with GPU-acceleration. J. Comput. Appl.

Math. 2021, 389, 113336. [CrossRef]
12. Hai, Y.; Cheng, S.; Guo, Y.; Li, S. Mesh smoothing algorithm based on exterior angles split. PLoS ONE 2020, 15, e0232854.

[CrossRef]
13. Durand, R.; Pantoja-Rosero, B.G.; Oliveira, V. A general mesh smoothing method for finite elements. Finite Elem. Anal. Des. 2019,

158, 17–30. [CrossRef]
14. Yang, F.; Zhang, D.; Ren, H.; Xu, J. 2D Mesh smoothing based on Markov chain method. Eng. Comput. 2020, 36, 1615–1626.

[CrossRef]
15. Sastry, S.P.; Shontz, S.M. A parallel log-barrier method for mesh quality improvement and untangling. Eng. Comput. 2014, 30,

503–515. [CrossRef]
16. Field, D.A. Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 1988, 4, 709–712. [CrossRef]
17. Huang, Z.-J.; Ding, J.-M.; Xiang, S.-Y. Suspension Footbridge Form-Finding with Laplacian Smoothing Algorithm. Int. J. Steel

Struct. 2020, 20, 1989–1995. [CrossRef]
18. Freitag, L.A. On Combining Laplacian and Optimization-Based Mesh Smoothing Techniques; American Society of Mechanical Engineers,

Applied Mechanics Division: New York, NY, USA, 1997; Volume 220, pp. 37–43.
19. Huo, Z.; Mei, G.; Xu, N. juSFEM: A Julia-based open-source package of parallel Smoothed Finite Element Method (S-FEM) for

elastic problems. Comput. Math. Appl. 2021, 81, 459–477. [CrossRef]
20. Qin, J.; Mei, G.; Cuomo, S.; Guo, S.; Li, Y. CudaCHPre2D: A straightforward preprocessing approach for accelerating 2D convex

hull computations on the GPU. Concurr. Comput. 2020, 32, e5229. [CrossRef]

http://doi.org/10.1002/nme.5246
http://dx.doi.org/10.1016/j.matcom.2020.12.033
http://dx.doi.org/10.1016/j.advengsoft.2016.09.004
http://dx.doi.org/10.1016/j.mex.2020.101061
http://dx.doi.org/10.1016/j.jcp.2021.110292
http://dx.doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9
http://dx.doi.org/10.1007/s00158-013-0920-y
http://dx.doi.org/10.1016/j.cam.2020.113336
http://dx.doi.org/10.1371/journal.pone.0232854
http://dx.doi.org/10.1016/j.finel.2019.01.010
http://dx.doi.org/10.1007/s00366-019-00786-1
http://dx.doi.org/10.1007/s00366-014-0362-1
http://dx.doi.org/10.1002/cnm.1630040603
http://dx.doi.org/10.1007/s13296-020-00396-4
http://dx.doi.org/10.1016/j.camwa.2020.01.027
http://dx.doi.org/10.1002/cpe.5229

Appl. Sci. 2021, 11, 5543 18 of 18

21. Ding, Z.; Mei, G.; Cuomo, S.; Xu, N.; Tian, H. Performance Evaluation of GPU-Accelerated Spatial Interpolation Using Radial
Basis Functions for Building Explicit Surfaces. Int. J. Parallel Program. 2018, 46, 963–991. [CrossRef]

22. Ye, J.H.; Wang, J. Application of GPU-based parallel computing method for DEM in large engineering structures. Gongcheng
Lixue/Eng. Mech. 2021, 38, 1–7.

23. Zhao, K.; Mei, G.; Xu, N.; Zhang, J. On the accelerating of two-dimensional smart laplacian smoothing on the GPU. J. Inf. Comput.
Sci. 2015, 12, 5133–5143. [CrossRef]

24. Dahal, S.; Newman, T.S. Efficient, GPU-Based 2D Mesh Smoothing. In Proceedings of the IEEE SOUTHEASTCON 2014, Lexington,
KY, USA, 13–16 March 2014.

25. Jiao, X.; Alexander, P.J. Parallel feature-preserving mesh smoothing. In Proceedings of the International Conference on Computa-
tional Science and Its Applications, Singapore, 9–12 May 2005.

26. Antepara, O.; Balcázar, N.; Oliva, A. Tetrahedral adaptive mesh refinement for two-phase flows using conservative level-set
method. Int. J. Numer. Methods Fluids 2021, 93, 481–503. [CrossRef]

27. Shang, M.M.; Zheng, Y.; Chen, J.J.; Zhu, C.Y. A multi-threaded parallel algorithm for quality improvement of tetrahedral meshes.
Jisuan Lixue Xuebao/Chin. J. Comput. Mech. 2016, 33, 613–620.

28. Mei, G.; Tipper, J.C.; Xu, N. A Generic Paradigm for Accelerating Laplacian-Based Mesh Smoothing on the GPU. Arab. J. Sci. Eng.
2014, 39, 7907–7921. [CrossRef]

29. Xiao, L.; Yang, G.; Zhao, K.; Mei, G. Efficient Parallel Algorithms for 3D Laplacian Smoothing on the GPU. Appl. Sci. 2019, 9, 5437.
[CrossRef]

30. Liu, T.; Chen, M.; Song, Y.; Li, H.; Lu, B. Quality improvement of surface triangular mesh using a modified Laplacian smoothing
approach avoiding intersection. PLoS ONE 2017, 12, e0184206. [CrossRef] [PubMed]

31. Stanko, T.; Hahmann, S.; Bonneau, G.P.; Saguin-Sprynski, N. Surfacing curve networks with normal control. Comput. Graph. 2016,
60, 1–8. [CrossRef]

32. Aupy, G.; Park, J.; Raghavan, P. Locality-Aware Laplacian Mesh Smoothing. In Proceedings of the 2016 45th International
Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016; pp. 588–597.

33. Vollmer, J.; Mencl, R.; Müller, H. Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 1999, 18, 131–138.
[CrossRef]

34. Mei, G.; Tian, H. Impact of data layouts on the efficiency of GPU-accelerated IDW interpolation. SpringerPlus 2016, 5, 1–18.
[CrossRef] [PubMed]

35. Strzodka, R. Abstraction for Aos and Soa Layout in C++. In GPU Computing Gems Jade Edition; Morgan Kaufmann: Burlington,
MA, USA, 2012; pp. 429–441.

36. Qi, P.; Mei, G.; Xu, N.; Tian, H. A parallel solution to finding nodal neighbors in generic meshes. MethodsX 2020, 7, 100954.
[CrossRef] [PubMed]

37. Spasov, V. Generation of quality tetrahedral meshes for the finite element method and multigrid method. In Proceedings of the XVth
International Symposium on Electrical Apparatus and Technologies, SIELA 2007, Proceedings, Plovdiv, Bulgaria, 31 May–1 June 2007.

38. Si, H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 2015, 41, 1–36. [CrossRef]

http://dx.doi.org/10.1007/s10766-017-0538-6
http://dx.doi.org/10.12733/jics20106587
http://dx.doi.org/10.1002/fld.4893
http://dx.doi.org/10.1007/s13369-014-1406-y
http://dx.doi.org/10.3390/app9245437
http://dx.doi.org/10.1371/journal.pone.0184206
http://www.ncbi.nlm.nih.gov/pubmed/28886110
http://dx.doi.org/10.1016/j.cag.2016.07.001
http://dx.doi.org/10.1111/1467-8659.00334
http://dx.doi.org/10.1186/s40064-016-1731-6
http://www.ncbi.nlm.nih.gov/pubmed/26877902
http://dx.doi.org/10.1016/j.mex.2020.100954
http://www.ncbi.nlm.nih.gov/pubmed/32596136
http://dx.doi.org/10.1145/2629697

	Introduction
	Background
	Laplacian Mesh Smoothing
	Ordinary Laplacian Mesh Smoothing
	Adaptive Laplacian Mesh Smoothing
	Two Forms of Smoothing Iteration

	Data Layouts in GPU Computing

	Parallel Adaptive Laplacian Mesh Smoothing on the GPU
	Overview
	Step 1: Searching for First-Order Neighbors of Nodes
	Step 2: Determining Boundary Nodes
	Step 3: Adaptive Smoothing Iteration

	Results
	Experimental Setup
	Experimental Results

	Discussion
	Efficiency of the Parallel Adaptive Laplacian Mesh Smoothing
	Efficiency Analysis of Data Layouts
	Efficiency Analysis of Iteration Forms
	Efficiency Analysis of Multiple Block Iteration

	Comparative Analysis of Mesh Quality
	Shortcomings and Advantages of Parallel Adaptive Laplacian Mesh Smoothing
	Outlook and Future work

	Conclusions
	References

