
applied  
sciences

Article

Virtual Geosite Communication through a WebGIS Platform:
A Case Study from Santorini Island (Greece)

Federico Pasquaré Mariotto 1 , Varvara Antoniou 2,* , Kyriaki Drymoni 3, Fabio Luca Bonali 4,5,
Paraskevi Nomikou 2 , Luca Fallati 4 , Odysseas Karatzaferis 2 and Othonas Vlasopoulos 2

����������
�������

Citation: Pasquaré Mariotto, F.;

Antoniou, V.; Drymoni, K.; Bonali,

F.L.; Nomikou, P.; Fallati, L.;

Karatzaferis, O.; Vlasopoulos, O.

Virtual Geosite Communication

through a WebGIS Platform: A Case

Study from Santorini Island (Greece).

Appl. Sci. 2021, 11, 5466. https://

doi.org/10.3390/app11125466

Received: 23 May 2021

Accepted: 9 June 2021

Published: 12 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Human and Innovation Sciences, Insubria University, Via S. Abbondio 12, 22100 Como, Italy;
pas.mariotto@uninsubria.it

2 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens,
Panepistimioupoli Zografou, 15784 Athens, Greece; evinom@geol.uoa.gr (P.N.);
odysseas.karatzaferis@gmail.com (O.K.); othonvl@gmail.com (O.V.)

3 Department of Earth Sciences, Queen’s Building, Royal Holloway University of London, Surrey,
Egham TW20 0EX, UK; Kyriaki.Drymoni.2015@live.rhul.ac.uk

4 Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza 4,
20126 Milan, Italy; fabio.bonali@unimib.it (F.L.B.); luca.fallati@unimib.it (L.F.)

5 CRUST-Interuniversity Center for 3D Seismotectonics with Territorial Applications, 66100 Chieti Scalo, Italy
* Correspondence: vantoniou@geol.uoa.gr

Abstract: We document and show a state-of-the-art methodology that could allow geoheritage sites
(geosites) to become accessible to scientific and non-scientific audiences through immersive and
non-immersive virtual reality applications. This is achieved through a dedicated WebGIS platform,
particularly handy in communicating geoscience during the COVID-19 era. For this application,
we selected nine volcanic outcrops in Santorini, Greece. The latter are mainly associated with
several geological processes (e.g., dyking, explosive, and effusive eruptions). In particular, they
have been associated with the famous Late Bronze Age (LBA) eruption, which made them ideal
for geoheritage popularization objectives since they combine scientific and educational purposes
with geotourism applications. Initially, we transformed these stunning volcanological outcrops into
geospatial models—the so called virtual outcrops (VOs) here defined as virtual geosites (VGs)—
through UAV-based photogrammetry and 3D modeling. In the next step, we uploaded them on an
online platform that is fully accessible for Earth science teaching and communication. The nine VGs
are currently accessible on a PC, a smartphone, or a tablet. Each one includes a detailed description
and plenty of annotations available for the viewers during 3D exploration. We hope this work will
be regarded as a forward model application for Earth sciences’ popularization and make geoheritage
open to the scientific community and the lay public.

Keywords: virtual outcrop; geosite; Santorini; photogrammetry; GIS; WebGIS

1. Introduction

Virtual reality techniques can be used for 3D visualization in geoinformation, and
geological sciences [1,2], where the virtual scenario (or landscape) can be based on open
or ad hoc created geospatial datasets [3], including digital terrain/surface models and
bathymetric data [4]. We focused our attention on key parts of virtual landscapes, the
so-called virtual outcrops, which can also be called “virtual geosites” (VGs) as defined in
a recent work [5]. In our work, VGs are 3D representations of surface geology [6,7] that
are suitable for (i) popularizing geoheritage for a general audience by highlighting active
geoenvironmental processes and (ii) engaging the young audience, which is particularly
interested in cutting-edge forms of communication [8]. For the sake of clarity, in the
following sections, we will use the term VG exclusively, as defined in [5].

As stated above, VGs may be regarded as particularly suitable for showcasing the
geological heritage, or geoheritage, of a certain area. Geoheritage has been described and
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discussed in several papers during the last two decades [7,9–15]. Geoheritage is strictly
related to geological heritage sites or geosites. These can be regarded as elements of the geo-
sphere, which can contribute to a better knowledge and understanding of Earth’s history;
they are also geological features, marked by a cultural, scientific, social, aesthetic, and eco-
nomic value [16]. Geosites can be both geological and geomorphological features [17] and
may be individual outcrops, mines, caves, tectonic structures, and volcanic landforms [18].
On the basis of their features, geosites can have local, regional, or global importance [19].
They also can be characterized based on their appearance: they may be outcrops, faults, and
dikes, or isolated mountain peaks. It is worth noting that they can be subdivided into two
categories based on whether they are active features/processes or inactive ones. During the
last twenty years, many authors have focused on assessing geosites utilizing a wide gamut
of criteria. Almost all assessments make use of the scientific value [20], made of three
categories: representativeness, uncommonness [21], and the level of knowledge about the
geosite, represented by published papers [15]. Representativeness regards how a geosite
is representative of the geological phenomena that may be observed there. Concerning
uncommonness, this represents how a geosite is uncommon at the local or worldwide
level [21].

Furthermore, other values, which are “additional” [22,23], can be identified and
determined: cultural, ecological, aesthetic, economic, and educational values. Among
these, it is worth mentioning the educational one, which [15] is composed of a few aspects:
educational potential (how easily the lay public can understand the features of a geosite),
accessibility, and safety.

The present paper aims to showcase nine virtual geosites (VGs) belonging to the San-
torini volcanic complex, representing a stunning volcanotectonic environment, the result
of multiple caldera collapses associated with major explosive activity [24], using both VR
applications and web-based GIS technologies. Web-based GIS platforms have succeeded in
enhancing data access and dissemination, spatial data exploration, and visualization capa-
bilities and provide additional options for processing, analyzing, and modeling available
datasets [25]. This has led to the ever-increasing popularity of WebGIS in various fields.
Several initiatives have previously utilized WebGIS functionalities to promote areas of
interest and boost their tourism attractiveness. Using dynamic and interactive web-based
maps to promote tourism resources [26], utilizing a participatory WebGIS platform to
stimulate the promotion of a historical city center [27], and designing a narrative-oriented
web map to showcase a geosite [28] are only a few of the numerous relevant applications.
Moreover, ref. [29] has assessed the climate change strategies of the world’s countries
and their spatial configuration and underlined the power of geovisualization through
open access WebGIS tools. Another study [30] focused on presenting the geovisualization
of spatial environmental databases using the open source WebGIS system and Google
application programming interfaces (APIs). With recent developments in VR technology
and functionalities, researchers and developers are armed with additional visualization
and promotional options of spatially explicit information. VR applications allow for an
interactive application through which the user is immersed in a site of interest [31]. At the
same time, digital visitors can navigate freely through an area using their smartphones
or VR specific equipment [32]. Implementing VR technologies can greatly enhance an
application both in terms of promoting tourist activities [33] but also as a means of creating
added educational value for geoplatforms [34].

To summarize, the purpose of our work is (i) to illustrate and describe the selected
VGs, (ii) to perform a qualitative assessment of the selected VGs, and (iii) to show how
a dedicated, WebGIS platform can be used to make the VGs available worldwide, thus
contributing to the promotion and valorization of such invaluable elements of the Greek
geoheritage.
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2. Geological Setting

The active volcanic arc in Greece lies in the southern part of the Aegean microplate
and results from the subduction of the African plate below the Eurasian plate [35,36]. The
aforementioned geodynamic setting generates an extensional to transtensional field [37,38]
in the central part of the arc where many normal and strike-slip regional faults permeate the
thin crust [39]. In this part of the arc, especially at its southernmost portion, the Santorini
volcanic field was formed [40].

The island of Santorini is arranged around a flooded caldera and consists of five main
islands (Figure 1c): the main island of Santorini (or Thera), the island of Therasia, Aspronisi,
and two post-caldera centres, i.e., the Palaia and Nea Kameni volcanoes. The active post-
caldera volcano (Nea Kameni) and Kolumbo submarine volcano lie along a NE–SW volcanic
line in the Christianna–Santorini–Kolumbo rift zone [41,42] parallel to two volcanotectonic
lines: the Kameni line in the centre of the island and the Kolumbo line to the north [43,44]
(Figure 1c). Current activity in Santorini has taken place at the Nea Kameni centre since
1570 [45]. In 2011–2012, the latter experienced unrest, not followed by an eruption [46,47].

Figure 1. (a) Panorama of the northern caldera wall dike swarm showing the heterogeneous and
anisotropic crustal segment composed of lava flows and pyroclastic materials. The latter are dissected
by 91 dike segments. (b) View of Athinios Port with details of the pyroclastic successions derived from
the two main eruptive phases, the Minoan and middle pumice layers, which formed the characteristic
landforms and erosional surfaces; caldera walls are ~400 m high and extend underneath the water
level, to a depth of 390 m (photo courtesy: Agust Gudmundsson). (c) Simplified geological map
of Santorini (modified from [43]) showing the stratigraphy, main volcano–tectonic lineaments, and
location of the virtual geosites (VG1–VG9) presented here. Ko-VT: Kolumbo volcanotectonic line,
Ka-VT: Kameni volcanotectonic line, CSK: (Christiana–Santorini–Kolumbo rift zone).

The Santorini complex has been active since the Quaternary and formed by numerous
pyroclastic and effusive eruptions (Figure 1b), dike-fed volcanism [43], and multiple
caldera collapse events [24,48]. This activity generated a plethora of onshore and offshore
volcanotectonic morphological structures [49–52], such as a large caldera, volcanic craters,
cinder cones, levees, lava domes, and a local dike swarm in the northern part of the
island (Figure 1a) [53]. All the above make this complex an open-air physical laboratory
for studying fossilized geological processes. The combination of the volcanotectonic
and erosional activity has sculpted the subaerial deposits, resulting in a series of unique
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geomorphological features onshore and offshore around the island. Some of the most
distinctive sites are the LBA deposits, the northern caldera wall dike swarm, and the Nea
Kameni volcano [49,54–56].

2.1. The Evolution of the Santorini Volcanic Activity

The sequence of effusive and explosive products of the eruptions, so far, compose a
heterogeneous and anisotropic crustal segment, which is made of basaltic to rhyodacitic
lava layers, tuffs, scoria, hyaloclastites, and phreatomagmatic ash [43]. At the same time,
the nonvolcanic basement can be found in the southern and center of the island and is
represented by metapelites and limestones [57]. In general, the island formed over at least
650 ky; based on geological mapping and chronological (K–Ar,40Ar/39Ar) investigations,
the following stages can be defined [43,58] (Figure 1c):

(a) The early centres and cinder cones of the Akrotiri peninsula (650–550 ka) in the south
where marine activity at shallow depth as well as onshore activity, predominantly
resulting in dacites and rhyodacites, was followed by an about 200 m uplift;

(b) The construction of the Peristeria stratovolcano (andesitic stratocone complex) (530–
430 ka) in the northern part of the island;

(c) A first explosive cycle represented by pyroclastic eruptions and shields;
(d) A second explosive cycle with pyroclastic eruptions leading to the formation of the

Simandiri, Skaros shields, and the Therasia dome complex;
(e) The post-caldera Kameni shield made of the Palaia and Nea Kameni centres.

2.2. The Geological ”Chronicles” of the Minoan Eruption

Santorini experienced several Plinian eruptions so far, with the Minoan eruption being
the latest [59–61]. Previous volcanological studies related to this Plinian activity reported a
distinct sequence of events represented by a precursory stage (P0) followed by four more
phases [45,48,60], which are described as follows:

(i) P0 Phase: This phase indicates the precursory events that resulted in the deposition
of two lapilli fallout layers from a 7–10 km high subplinian plume. The latter formed
a phreatomagmatic ash cloud deposited in the island’s SSE part [48].

(ii) Phase 1: This phase produced a 6–10 cm thick pumice fall deposit on the central
and southern part of the island, resulting from a 36 ± 5 km high plume [59,60,62].
The bottom part of the deposit is reverse-graded (phase P1a) and covered by a coarse
unbedded part, partly bedded at the top, and mixed with scoria (phase P1b) [60].

(iii) Phase 2: Mixing with seawater initiated a phreatomagmatic eruption that produced
up to 12 m-thick stratified surge deposits [59,63]. These contain multiple bedsets
and represent the phase 2 products. In addition, they are interrupted by dune-like
bedforms and bomb sag horizons [48,64]. The bottom unit comprises fine-grained
accretionary lapilli (P2a), whereas the upper part is coarser-grained (P2b).

(iv) Phase 3: The formation of low-T pyroclastic flows, which gradually developed into
mudflows, characterizes this phase. The flows constructed a shield-like single flow
deposit [59,65].

(v) Phase 4: High-T pyroclastic flows produced fine-grained ignimbrites, covering the
caldera cliffs and the coastal areas [43,48,57]. The main product is a pink-coloured
ignimbrite (called ”tan” ignimbrite) [59], which is up to 80 m thick in some parts of
the island, representing the most dominant unit of the Minoan eruption [66].

3. Building the Vitual Geosites

Our 3D model building method comprises the application of the structure from motion
(SfM) photogrammetry technique, largely used in Earth and environmental sciences (includ-
ing studies in volcanic areas), for both research and communication purposes [54,67,68].
This technique enables obtaining high-resolution photorealistic 3D models as final products
by producing three-dimensional structures from two-dimensional image sequences [69,70].



Appl. Sci. 2021, 11, 5466 5 of 22

As some of the 3D models presented here result from our previous research, we, therefore,
summarize the overall methodology.

Generally, our methodology is subdivided into three main steps: (i) drone-based
image collection, (ii) photogrammetry processing, and (iii) 3D model export for online
sharing as VG.

3.1. Drone-Based Image Collection

Step one focused on image collection, using unmanned aerial vehicles (UAVs), also
called drones. We chose two different types of multirotor vehicles: (i) the DJI Spark (UAV1),
a 300 gr drone supplied with a small CMOS sensor (1/2.3 inch), suitable for taking pictures
with a resolution of 12 megapixels and (ii) the DJI Phantom 4 PRO (UAV2), a 1388 gr
drone supplied with a larger CMOS sensor (1 inch), suitable for collecting pictures with
a resolution of 20 megapixels. The latter’s flight time is approximately 30 min and can
be remotely controlled. Both can capture images, comprising the exchangeable image
file format (EXIF) information and the location of the pictures reported in geographic
coordinates (DATUM WGS84). Both have very stable hovering and a stabilized camera.
They can be easily carried in the field and collect pictures flying at a very low height,
resulting in a greater ground resolution and proving very useful for VGs reconstruction [71].
In addition, UAV2 is also designed for automatized flight missions, a peculiarity that is
especially suitable for modeling large areas (further details in [72]). Generally speaking,
the pictures collected using drones or cameras need to have a high overlap ratio, usually
greater than 75–80% with the following pictures and must be orthogonally oriented to the
target [73].

Regarding the specific area where we collected the pictures, it is recommended to
fly the drones with the straight sun overhead (zenith), so the middle part of the day; it is
also helpful to reduce shadows around elevated features. Moreover, it is also suggested to
perform this kind of activity during the low-wind season; in Santorini, this corresponds
to mid-spring (April–May) and late summer, or the beginning of autumn (September–
October). Taking into account logistics, we have adopted different approaches for the
different VGs:

(i) For VG1 and VG3, we used UAV1; images were taken by flying the drone at a height
lower than 30 m, with the camera in nadir and oblique orientation, respectively.
The drone was manually flown, keeping the velocity at 2 m/s, and pictures were
taken in equal interval mode (every two seconds). Further details are provided in [73].

(ii) For VG2, VG4, VG5, VG8, and VG9, we used UAV2; pictures were taken in a range
of elevations between 25 and 120 m, with the camera orthogonal to the caldera wall
(oblique orientation); the drone was manually flown at a constant velocity of 2 m/s
and pictures were captured every two seconds. Further details are provided in [2].

(iii) For VG6 and VG7, we ran two different surveys. The first one aimed to cover the
entire area with an automatized flight mission and the camera in nadir settings. The
second mission was devoted to collecting pictures all along the mine’s vertical wall,
with the camera oriented orthogonally to it (oblique orientation); in the latter case, the
drone was manually flown at a constant velocity of 2 m/s and pictures were collected
every two seconds. Further details are provided in [71].

3.2. Photogrammetry Processing for 3D Model Building

We processed the collected images using Agisoft Metashape (http://www.agisoft.
com/ (accessed on 10 June 2021)), which is software aimed at processing images to generate
3D spatial data. This software has been increasingly employed for UAV-based photogram-
metry 3D modeling, thanks to the simple and easy to use workflow, excellent graphic
user interface, and high-quality results regarding dense clouds [74]. In a later section,
we describe the steps through which we produced our VGs. The first step was to import
and prepare the pictures, ensuring that all the areas outside the target (e.g., sky and clouds)
are masked to achieve a better alignment and obtain a greater sparse and dense cloud [54].

http://www.agisoft.com/
http://www.agisoft.com/
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Subsequently, we ran an initial low-quality alignment of the images, taking into account
both generic and reference preselection settings; after this, we deleted the images with low
quality (quality value less than 0.8) or out-of-focus through visual inspection. Then, we
aligned the remaining pictures based on high-quality settings (both generic and reference
preselection), thus obtaining the sparse cloud. The following step regarded the reconstruc-
tion of the dense point cloud (setting the quality as medium) that results from the sparse
point cloud; in doing this, we applied a depth filtering set to mild. We first applied the
“filter by confidence” tool on the resulting dense cloud to remove the wrong points, select-
ing those with a value equal to one. Then, we removed possibly persisting wrong points
by visual inspection. Finally, although not an essential task for visualization purposes, it
was worth referencing and scaling the resulting dense cloud [70,75–78], if possible, by col-
lecting some ground control points (GPCs) with high-resolution (centimetric) GPS, which
were added in the model. It is advisable to add at least four artificial referenced markers
near the corners of the model. An additional marker needs to be positioned in the centre;
this procedure aimed at reducing any “doming” effects resulting from photogrammetry
modeling. More details regarding our workflow are in [54,68,72]. As explained in the
previous section, some models are derived from previous work. We summarized all details
in Table 1, including the number of GPCs we used and the resulting texture resolution.

Table 1. Summary of the relevant details for the nine VGs, including the number of pictures collected,
the number of GCPs used for referencing and scaling, and the final texture resolution.

Virtual Geosite Nr. of Pictures Nr. of GCPs Texture Resolution (cm/pix)

VG1 1231 4 1

VG2 929 4 4

VG3 493 4 2

VG4 350 4 4

VG5 300 4 4

VG6 6736 34 2

VG7 1500 4 1

VG8 36 0 6

VG9 35 0 6

3.3. Three Dimensional Model Export for Online Sharing as Virtual Geosites

We created the 3D model from the dense cloud using the following steps and settings.
In step 1, we built the mesh, characterised by several faces in high-quality settings, noting
that the maximum number of faces cannot exceed 2,100,000. Then, it was necessary to
create the texture to cover the mesh with a photorealistic aspect; this was accomplished by
creating two different 4096 × 4096 pixel files for the texture. Subsequently, the 3D model
was exported into a Collada file format [79], resulting in one file for the mesh (.dae file
extension) and two for the texture (.jpg file extension). These settings were designed to
obtain an overall file size within the 200 MB limit imposed by the educational license for
Sketchfab and still providing excellent quality, as shown in the VGs section. The texture
resolution in our models was always between 1 and 6 cm/pixel.

4. Virtual Geosites Sharing (WebGIS Platform)

In this section, we present an innovative approach to make Santorini’s VGs accessi-
ble worldwide through the internet, together with a wealth of information suitable for
highlighting and explaining the geological features and processes observed on the island.
To this end, we combined a WebGIS platform with 3D models available in virtual reality, as
detailed below.
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To more efficiently disseminate all available models amongst the cooperating parties
and the general public, we had to use a dedicated media through which the models can
be properly grouped and shared. After looking into the available options, and thanks
to the consortium’s previous extensive experience with ESRI products, the ArcGIS Hub
platform (https://hub.arcgis.com/ (accessed on 10 June 2021)) was deemed the best choice.
ArcGIS Hub, developed by ESRI in 2020, is a platform that allows for the creation of
interactive sites through which an organisation can share its spatial content. All team
members can customize and enhance the developed site with 2D and 3D maps, smart
layouts, templates, and multimedia content that can be configured to better showcase the
available information. External media, and other applications developed within the ESRI
platform, can be added. An educational account was used to create the virtual geosites hub
accessible at: https://arcg.is/1e4erK0 (accessed on 10 June 2021).

In the present case, narration starts with an eye-catching photograph of the Santorini
panorama combining natural and anthropogenic environments, followed by a short in-
troduction on the hub’s purpose. Scrolling down, the user can view an interactive 2D
morphological web map outlining the location of the selected geosites (Figure 2). A 5 m
resolution digital elevation model from the National Cadastre and Mapping Agency S.A.
of Greece was rendered according to elevation. A multidirectional shaded relief map was
also used to represent the onshore morphology. Concerning offshore morphology, a 16 m
resolution grid [41,50] and a multidirectional shaded relief were combined to show the
unique seabed of the area thoroughly. The users may select a VG location on the map to
obtain further details.

Figure 2. Screenshot showing part of the hub created for Santorini’s virtual geosites. An interactive
2D morphological webmap outlines the location of the VGs. The users can select a location to obtain
more information.

https://hub.arcgis.com/
https://arcg.is/1e4erK0
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A brief overview of the island’s volcanic history, accompanied by a 3D simplified
geological map, modified from Druitt et al. [43], are provided. The viewers can use the
tools on the map to zoom in and out, or right-click anywhere on the map to tilt and rotate
the scene, observing it from different points of view (Figure 3). Both the two-dimensional
and three-dimensional (scene) web maps were created through the ArcGIS Online platform
(www.arcgis.com (accessed on 10 June 2021)).

Figure 3. Screenshot showing the part of the hub dedicated to the volcanic history of the island.
The users can tilt and rotate the 3D interactive map to view the scene from different points of view.

The final part is dedicated to a gallery that includes all nine virtual geosites (Figure 4).
Buttons allow the user to access a StoryMap application about each VG. The value of using
such applications to illustrate and promote the proposed geosites was based on previous
related applications of this kind and especially the ones employed by some of the authors
of the present work [73–75].

ESRI provides several configured apps (https://storymaps-classic.arcgis.com/en/
app-list/ (accessed on 10 June 2021)) and a new StoryMap template (https://storymaps.
arcgis.com/ (accessed on 10 June 2021)) combining popular features from those previously
mentioned, to be used as story maps. The second approach, called ArcGIS StoryMaps, was
employed, featuring a user-friendly interface that has a responsive design and enhanced
capabilities to incorporate 3D visualization. Furthermore, the ArcGIS StoryMaps template
has many important accessibility functions to support viewers with impaired vision or
limited mobility. Each StoryMap developed combines descriptive information and the
corresponding 3D model; credits and references are also mentioned in each one (Figure 5).

www.arcgis.com
https://storymaps-classic.arcgis.com/en/app-list/
https://storymaps-classic.arcgis.com/en/app-list/
https://storymaps.arcgis.com/
https://storymaps.arcgis.com/
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Figure 4. Screenshot showing the part of the hub where the users can access each VG. Using each
button, the viewers can access, inside the hub, a dedicated StoryMap application, where descriptive
text and the 3D model can be found.

Figure 5. Representative screenshot of the StoryMap that corresponds to the Cape Epta Paides virtual
geosite. Users can return to the main page by using the “Virtual Geosites” button in the upper-left
side.
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To be embedded in the StoryMap, a model must first be uploaded on an online 3D
viewer. The Sketchfab platform (educational license), allowing for a stunning viewing
experience through the immersive virtual reality (VR) [1,2,80], was used for our work.
The viewer can access 3-D visualization on a computer [6], tablet, or smartphone, in this
case, through non-immersive VR. Furthermore, augmented reality (AR) items can be
added as scientific annotations [81]. According to [82], the uploaded material can be
used for non-immersive VR experience of each model on a PC screen or a mobile device
without head-mounted displays; on the other hand, a fully immersive VR experience can be
obtained, which guarantees more effective interactivity, utilizing head-mounted displays
such as goggles and VR headsets. To enable the viewer to experience a 3-D visualization,
each VO was uploaded on the Sketchfab platform with a straightforward drag-and-drop
procedure; Sketchfab automatically builds the 3-D scene, which is almost ready for non-
immersive visualization; a number of settings can be adjusted, regarding the initial view,
field of view, model orientation, light/shadow, etc.

Furthermore, by employing the Sketchfab platform, each model can be explored
through the embedded immersive virtual reality (VR) tool; VR contents can be made avail-
able for many devices: Google Cardboard and more generic VR Goggles for mobile phones,
HTC Vive, Oculus Rift, and others (https://sketchfab.com/virtual-reality (accessed on
10 June 2021)). To make it possible to enjoy a more effective, immersive VR experience,
the viewer’s starting point, the height, and the direction of observation, need to be set
(e.g., Figure 6). The user can observe the model through an immersive VR experience and
move across the scene by selecting the annotations to explain the most relevant features in
each model.

Figure 6. Example of an annotated 3-D model, in which the viewer’s starting point and height are
shown, as well as the direction of observation.

The hub concludes with a footer, naming the consortium members and providing
contact information.

5. Description of the Selected VGs and Related “Scientific Virtual Geotours”

In this section, we present each VG, including a brief geological description.

5.1. 1570–1573 AD Volcanic Crater

The Kameni islands (Nea and Palea Kameni) foredate the Minoan caldera. This most
destructive collapse (3.6 ka) shaped the island into its current form, and the Kamenis can be
characterized as the subaerial deposits of a recent submarine shield [60]. They are located in
the centre of the flooded Santorini caldera and are at 470 m above sea level, covering an area

https://sketchfab.com/virtual-reality
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of 21 km2 [73]. During the last decade, data taken from bathymetric imagery techniques
revealed several submarine flows (pillow lavas), enabling an assessment of a broader area,
including the actual morphology and final volume that totals 4.85 ± 0.7 km3 [83].

The magmatic and morphological evolution of the Kameni islands was determined by
nine effusive and explosive eruptions, dated from 197 BCE to 1950 [45], which led to the
outpouring of dacitic flows that formed domes, craters, levees, layering, folding, and rafty
and blocky lavas [49,52]. Moreover, historical eruptions with ash plumes and ballistic ejecta
took place [45]. Virtual Geosite 1 (VG1) shows a 3D model of the 1570–1573 AD volcanic
crater of Mikra Kameni island, which became connected with Nea Kameni during the
1925–1928 eruption. Mikra Kameni is situated in the NE corner of Nea Kameni (Figure 7).
It was extruded during Surtseyan activity that produced ashfall and block fallout deposits
and the buildup of a small dacitic lava dome [84]. The latter has an elliptical and elongated
shape (102.52 × 95.33 m) and strikes in a N 5◦ E direction, with a depth of 31.43 m. As
suggested by [71], its elongation is consistent with the line connecting the collapsed points
of the crater’s rims (pinmark 1), suggesting a possible N 5◦ E striking magma-feeding
fracture. No fumaroles have yet been detected, so there are no signs of recent activity. The
summit area is marked by abrupt slopes and the rocks are dacitic in composition with
different textures, e.g., compact and scoriaceous (pinmark 3). An open tectonic fracture
trends NE–SW (pinmark 2), striking parallel to the inferred magma-feeding fracture.

Figure 7. Three-dimensional model of the 1570–1573 AD volcanic crater on Nea Kameni volcano
(view towards the northeast) (pinmarks 1–3).

5.2. Dikes on Santorini’s Northern Caldera Cliff

A well-exposed local dike swarm is visible on the northern caldera cliffs and represents
the volcanic activity in the area during the time span 530–522 ka [43,55,56]. In detail, five
main volcanic phases can be recognized: (i) the Peristeria volcanic activity (530–530 ka),
(ii) the Simandiri shield (172 ka), (iii) the Megalo and Kokkino Vouno cinder cones (125–
180 ka), (iv) the Skaros shield (70–54 ka), and the Therasia dome complex (54–22 ka).
These phases formed a succession that consists mainly of breccia, hyaloclastite, tuff, lava
flows, and scoria deposits. Moreover, the host rock is dissected by normal and strike-slip
faults [43,56].

Virtual Geosite 2 (VG2) encompasses an area of 730 × 300 m in the NE section of the
cliffs (view towards the NE, Figure 8a) of the northern caldera wall, where an active fault
zone (pinmark 1, Figure 8b) is observed [85], along with other inactive faults (pinmark 2,
Figure 8b) into which dikes are preferentially deflected [56].
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Figure 8. (a) A 3D model of the NE corner of the northern caldera wall (view towards the northeast).
The cliff is 190 m high. (b) A closer look of the left part of the outcrop where dikes are emplaced in
the caldera wall, with some showing deflection into the fault zones. (c) A 3D view of a dike that
dissects the caldera wall.

In detail, the model shows a panorama of the northern caldera cliff, cut by several
subvertical dikes (extensional magma-filled fractures) (pinmark 3, Figure 8b). The one
to the east (right) strikes about NE–SW (pinmark 4, Figure 8c) while a silicic, 8 m-thick
dike (left) lies between the fault zones (pinmark 5, Figure 8b). The dikes are found to
follow different pathways while they were emplaced on the caldera wall, as a consequence
of the differences in material properties of the crustal segments through which magma
propagated (highly heterogeneous and anisotropic). The contrasting stiffness and variable
thickness of the layers, the mechanical properties of the pre-existing fractures (e.g., faults),
and the geometrical parameters of the host rock can deviate a dike’s path towards the
surface, resulting in deflected, arrested, or feeder dikes [55,56].

5.3. Vlychada Beach: Minoan (LBA) Deposits

The geosite of Vlychada beach is located along the southern coastline of Santorini,
and it is originated from the famous Late Bronze Age (LBA) eruption [73] (Figure 9a). The
LBA eruption markedly influenced the decline of the Minoan civilization in the Aegean
Sea and Crete; thus, it represents an emblematic event during the archaeological era [60,86].
The eruption discharged between 30 and 80 km3 DRE [87] of rhyodacitic magma, mainly in
the form of ignimbrite deposits [66]. Volcanic products from the Minoan P2 to P4 phases can
be found along the coast (Figure 9a,b). Pyroclastic surge deposits represent a small portion
of phase P2 (at the bottom) (pinmark 1). Phase P3, the coarse-grained phreatomagmatic
ignimbrite, can be found in the middle (pinmark 2) [60]. Phase P4, which stands at the top,
led to the deposition of the so-called tan ignimbrite [60] (pinmark 3). Virtual Geosite 3 (VG3)
extends across an area of 125 × 55 m, with a maximum height of 38 m. It is possible to
notice the contact and morphology of the three phases (2–4) mentioned above.
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Figure 9. (a) A 3D model panorama view along Vlychada beach (view towards the north) and (b)
a closer look at the Minoan eruption phases and morphological features (pinmarks 1–3).

5.4. Sandy Beach

Virtual Geosite 4 (VG4) is a 3D model of the sandy beach located between Cape
Aspronisi and Cape Loumavari in the southern part of the main volcanic island. The model
extends across an area of 420 × 250 m, with a height of 91 m. The outcrop comprises the
cinder cones of the Akrotiri peninsula with welded pyroclastic deposits and lava flows to
the east. To the west are found the Cape Riva tuffs (rhyodacitic pumice) in the upper part
(pinmark 1—Figure 10a), a part of upper scoria 2 (US2) (pyroclastic deposits) in the middle
part (pinmark 2—Figure 10b), and the middle tuffs (andesitic to dacitic pyroclastic deposits)
close to the beach (pinmark 3—Figure 10c); all are volcanic products of the second explosive
cycle [43,88].

5.5. Scoria Deposit and Dikes

Virtual Geosite 5 (VG5) is located in the Oia village and shows a section of the
northern caldera cliff. The 3D model covers an area of 185 × 160 m and a height of 95 m
(Figure 11a). The view shows a cliff section, which comprises pyroclastic deposits at the
bottom (pinmark 1, Figure 11b) and the middle parts (pinmark 2, Figure 11b). At the top
lies US2, dominated by red agglomerate and subordinate lithic breccias laid down by
scoria flows [57,89] (pinmark 3, Figure 11c). A vertical basaltic andesitic magma-filled
fracture can be observed, emplaced on the caldera wall (pinmark 4, Figure 11d). Combined
volcanotectonic and petrological studies have shown that the dike was likely arrested and
did not feed any volcanic activity at the surface [55].
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Figure 10. (a) A panorama of the sandy beach 3D model (view towards the south). A closer look at (b) the Cape Riva tuffs,
(c) the US2 deposit dominated by grey scoria flow, and (d) the middle tuffs.

Figure 11. (a) A northern caldera wall outcrop close to the Oia village. (b) A closer look of the contact between the
rhyodacitic pyroclastic deposits and the less evolved ones (andesitic to dacitic), (c) a view towards the north of the US2
deposit, and (d) a basaltic andesitic dike with a variable dip that dissects the products of the second explosive phase.

5.6. Metaxa Mine

Metaxa Mine (or Mavromatis Mine) lies close to Megalochori village in the central
part of the island. The owner of the mine “HERMES” SA, Anastasios Mavromatis, began
pumice mining activity in 1973–1974, which lasted until 1984. Currently, it is a well-known
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volcanological geosite (Figure 12a) that exposes the products of the Minoan eruption.
It also can be regarded as an industrial heritage site. In the mine, the outcrops form
distinct morphologies of vertical cliffs, debris-flow deposits (pinmarks 1, 2—Figure 12a–
c), and anthropogenic interventions (pinmarks 3, 4, 5—Figure 12a,c). In contrast, across
the floor there are numerous tiny hills of excavated materials (pinmarks 6, 7—Figure 12a–
c). Five distinct phases of the eruption can be seen at the entrance of the mine across
a length of 150 m at the so-called Late Bronze Age (LBA) famous section (pinmark 8—
Figure 12a,b) [73]; elsewhere in the mine, only Phase 2 (pinmark 9—Figure 12a,c) and Phase
4 can be recognized [54].

Figure 12. (a) A view of the Metaxa Mine (view to the north), (b) detail of the area where the Minoan
products crop out, representing all the phases of the Minoan eruption, (c) detail of the area where
debris flows deposits and anthropogenic interventions mostly occur.

5.7. The Late Bronze Age Famous Section

Virtual Geosite 7 (VR7) represents, in 3D, the volcanic products of the pre-Minoan
(pinmark 1) and Minoan phases. In detail, from the bottom to the top, the following can
be observed: P0 phase, the lapilli fallout of the precursor LBA eruption (pinmark 2), and
P1, the reverse-graded pumice fallout (pinmark 3). P2 is subdivided into P2a, fine-grained
accretionary lapilli (pinmark 4) and P2b, pyroclastic surge deposits (pinmark 5). Finally, P4,
the fine-grained, nonwelded ignimbrite (pinmark 6) covers the area on top (Figure 13) [43].

5.8. Cape Epta Paides

Virtual Geosite 8 (VG8) displays another part of the northern caldera wall at the Cape
Epta Paides (Figure 14). In detail, the model shows the bottom (av1) and upper units
(av3) of the Peristeria stratovolcano [43], which consists of scoria layers (pinmark 1, 2),
av1 lava flow (pinmark 3), av3 lava flows (pinmarks 4, 5), tuffs (pinmark 6), and an angular
unconformity (pinmark 7), dissected by dikes that strike approximately N–S. To the west
(left side) an offset dike (pinmark 8) can be observed, and towards the eastern sector (right
side) a 1 m-thick dike (pinmark 9) dissects the whole stratigraphy. Both dikes propagate
higher in the succession.
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Figure 13. (a) A view of Metaxa Mine (view to the south), (b) a closer look at the pre-Minoan
(pinmark 1) and post-Minoan (2–4) units, (c) a closer look at the Minoan surge deposits and the
nonwelded ignimbrite.

Figure 14. Panorama of the Cape Epta Paides 3D model.

5.9. Skaros Shield

Virtual Geosite 9 (VG9) shows a section of the caldera cliffs between the Oia and
Imerovigli villages (Figure 15). The outcrop exhibits the thinly bedded deposits of the
Skaros shield (70–54 ka), which are mainly composed of andesitic and basaltic lava flows
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(pinmark 1). Atop lies the Minoan tuff unit (pinmark 2) that covered the island during the
Minoan eruption [43].

Figure 15. Panorama of the Skaros shield 3D model. The outcrop has an elevation of 240 m.

6. Qualitative Assessment of the Selected Virtual Geosites (VGs)

All the VGs described in this work represent the volcanic environment because they
were produced in a still active volcanic complex. All are aerially well-defined outcrops
and landforms, making it easy to define their overall value. Their relevance may be
regarded as global because they belong to a volcanic complex that produced a world-
renowned eruption that altered the course of ancient history. All the selected VGs are fully
representative of several volcanic processes and eruptive phases, which can be observed
elsewhere in the world, but here are particularly easy to access and can be found reasonably
close to each other within a relatively limited area. All the VGs considered representing
currently inactive processes, although the Santorini complex is far from being extinct, as
attested by the presence and activity of the Kameni islands described above. Regarding
their representativeness, all nine VGs are fully representative of a number of volcanic
processes.

Concerning the second criterion that constitutes the scientific value, i.e., rarity, out
of the nine VGs, three may be considered very uncommon: first, VG3, represented by
Vlychada beach volcanic deposits of the Minoan (LBA) eruption. Here, three out of the
four phases of this gigantic eruption can be observed in stunning detail. Second, VG6,
represented by Metaxa Mine, a world-renowned volcanological geosite; third, VG7, located
within VG6, i.e., the Late Bronze Age (LBA) famous section, bearing evidence of the wide
gamut of volcanic phases that characterized the giant Minoan eruption. The third criterion
that composes the scientific value is the level of scientific knowledge about a geosite. In this
case, details of seven geosites, VG1 to VG7, are described in international scientific papers,
VG3 and VG7 being the most represented in the scientific literature.

Concerning the so-called “additional values” used to assess geosites, two can be
identified: economic and educational. Concerning the first, it can be assessed for VG6,
Metaxa Mine, which is representative not only of the geological heritage of the island, but
of the industrial one, a site that was long exploited for economic purposes. Regarding
the educational value, we wish to point out that all of the VGs selected can be used to
clearly explain a wide gamut of processes that are typical of the volcanic environment,
including subvolcanic bodies such as dikes, which play a key role in feeding magma to
the surface. Moreover, it is worth noting that our approach is aimed at targeting a large
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number of different-aged end-users, using two strategies: first, all VGs are made accessible
on the internet and are navigable through all classical devices, including mobile phones
and tablets; second, they are made available on a user-friendly, WebGIS platform.

7. Conclusions

We described an approach devoted to making volcanic features available to the scien-
tific community and the lay public, based on a new, cutting-edge methodology for sharing
virtual geosites (VGs). This is a major tool for popularizing and explaining geological
features and processes; by using the methodology described above, viewers can remotely
navigate across the outcrops as if they were directly working in the field. To show the broad
applicability of this approach, we chose nine VGs belonging to the island of Santorini, a
world-renowned, active volcanic complex in the Aegean Sea, Greece. The VGs selected
belong to the category of volcanic features, among which particularly important, for our
case study, are the volcanic successions derived from a gigantic eruption (the Minoan
eruption) that shaped the course of history in the Mediterranean region. We accurately and
extensively described the nine VGs in a “virtual geotour mode” and made them available
online, in such a way as to allow access to the readers and based on our descriptions, to gain
a better knowledge of volcanic features and processes. Moreover, we briefly assessed the
nine VGs and highlighted their major scientific and educational value. Finally, we showed
the use of a WebGIS platform, which represents an added value compared with previous
research in this field, to make our VGs available and accessible to the viewers. The platform
enables viewers to observe overall the VG aerial distribution and arrangement in the field.
We hope our work represents a model for the future, which will lead to similar efforts
devoted to popularizing Earth science and making geoheritage contents accessible online
to both scientists and the lay public.
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