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Abstract: The classical adjoint-based topology optimization (TO) method, based on the use of a
random continuous dielectric function as design variable distribution is known to be one of the
timely efficient and fast optimization methods enable a very high performance functional optical
devices. It relies on the computation of the gradient of a figure of merit (FOM) with respect to
the design parameters. The gradient of the figure of merit (FOM) may then be used to update the
design vector element in several senarios. One of the most common use scenario consists of updating
simultaneously all the design parameter vector elements. In a linear problem case involving a simply
convex FOM-function shape, using the gradient information, it is a relatively easy to reach an optimal
solution. In the case of constrained and non linear problems stated in an infinite and indeterminate
design space, the conventional TO, a local optimizer, may require multiple restarts, with multiple
initial points and multiple runs. The algorithm strongly depends on the initial conditions. In this
paper, we report a global-like optimizer inspired by a wolf pack hunting, enabling efficient design of
metasurfaces through their geometrical parameters. We apply the method to design a non periodic
metasurface consisting of plasmonic metalenses, enabling a high energy flow focusing on a well-
defined 2D focus spot. Numerical results show that the proposed inverse design method has a low
sensitivity to initial conditions. In our design method of metalens, we optimize the full micro device
at once, and demonstrate that the proposed method may provide both symmetric and more creative
unexpected asymmetric on-axis metalenses even though under a normal illumination.

Keywords: inverse design; metasurfaces; metalens

1. Introduction

In the nanophotonics field, wavefront design is one of the timely ways of enabling
expected functionalities for a flat and thin metasurface. These flat functional metasurfaces
provide many applications such as beam deflection or focusing, etc., in which high effi-
ciencies devices are required. The inverse design method based on forward and adjoint
computations [1–8], has proven to be one of the most efficient in practice for achieving high
performance optimized structures. Like any gradient-based method, the adjoint-based-
inverse-design method relies on the computation of the gradient of a objective function
with respect to the design parameters. The gradient of the figure of merit (FOM) is used to
modify the design parameters in order to increase the figure of merit (FOM). The key point,
hence the main advantage of the adjoint-based strategy, is that it allows an evaluation of
the gradient of the FOM with a cost independent of the number of the design parameters.
In addition, this gradient vector is used, at each iteration, to simultaneously update all
the design parameters.The simultaneous-pushing process of design parameters, in each
iteration, lacks randomness and this may trap the gradient-based algorithm in basins of
local minimum. In linear problems with a simply convex shape merit function, using the
gradient information, it is relatively easy for some gradient-based algorithms to reach an
optimal solution. Therefore these gradient-based algorithms are eminently suitable for
finding an optimal solution when the starting point is close to a local minimum. However,
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in photonics, one often faces constrained and non linear problems stated in an infinite
and indeterminate design space. Therefore, the conventional gradient-based optimization
method requires multiple restarts initial points and multiple runs, hoping that a best single
solution may be discovered at the end of these runs. This process may require higher
computing memory capacity. On the other hand, global optimizers, continue to emerge,
providing researchers a large choice of tools, in several disciplines. Some of them, enable
an efficient random sampling of the design space, in each iteration, in order to detect and
always maintain several better solutions during the optimization. This is the case for some
metaheuristic algorithms [9–15]. Referring to the research-strategy, optimization algorithms
are mainly based on four approaches: complete, random, heuristic, and metaheuristic.
In the complete strategy, all possible combinations are evaluated in order to target the
best solution. This strategy allows finding optimal solutions but it is computationally
costly, which makes it impractical for high dimension problems. The random search is a
way to attempt to overcome the drawback raised by the complete research-strategy. This
strategy considers many initial candidates as possible solutions. In the best case, an op-
timal solution can be found earlier among these candidates, in the optimization process.
However, this random strategy may behave as a complete method in its worst case. In
heuristic algorithms, heuristic information which highly depends on the problem at hand
is enforced in order to indicate certain ways to find optimal solutions. This strategy cannot
be generalized since each problem involves (requires) a specific heuristic information.
In the metaheuristic algorithm, few assumptions about the optimization problem being
solved are made. This makes it possible to apply them for a variety of problems contrary
to the heuristic algorithms. These methods range from Genetic algorithm [9], particle
swarm optimization [10], ant colony optimization [11], differential evolution (DE) [12],
grey wolves, whales and Harris Hawks [13–15], and the slime mould algorithm [16]. In
general, they can be performed based on two approaches: a single-solution-based approach
and a population-based approach. In the single-solution approach, only a single candidate
(one solution) is generated, modified and updated during the optimization process, while
in the population-based approach, as its name indicates, a set of random initial candidates
(population) are generated and evolved during each iteration of the optimization phase.
This latter approach is mostly inspired by natural phenomena and may be usable for a
variety of problems without the need for the gradient information of the objective function.

In this paper, we propose a new nature-inspired optimization method taking advan-
tage of the information of the variation of the FOM, to evolve a single-initial generated
possible solution at each iteration. The proposed method is then a semi-complete single-
solution approach. The initial solution, the vector of the design parameters, is a vector of
geometric parameters characterizing the structure to design. As a semi-complete approach,
the proposed method focuses on modifying, at each iteration, some elements of this sin-
gle candidate (vector), in order to improve the FOM. To reduce the computational time
involved by this semi-complete strategy, we introduce a cooperative strategy inspired by
one of the smartest predators, wolves, hunting in a pack, an escaping prey. The proposed
wolf hunting-based algorithm is different from the grey wolf optimizer (GWO) [13] which
is a population-based gradient-free optimization technique. In the proposed method, at the
beginning of each iteration, the adjoint-based method (based on the reciprocity theorem)
is used to compute the variation of the FOM with respect to the variation of the design
parameters. This FOM variation is then associated with the fitness of the design param-
eters. In the topology optimization method based on homogenisation [17,18] or shape
optimization [19], the gradient of the FOM, is used to update simultaneously the design
parameters vector. This strategy consisting of simultaneously pushing the design vector
elements at each iteration, enforces the local nature of this kind of optimizer. Contrary to
local optimizers, in order to avoid the trap of local minima, in the proposed algorithm,
two unmissable phases of a global optimizer, namely exploration phase and exploitation
phase, are integrated. Once the sequence of fitness is evaluated, it is sorted from the most
sensitive agent to the lowest and categorized into three chasing-teams, operating, at each
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iteration, in exploitation phase or exploration phase. The exploration phase (soft research)
is related to global search as well as exploitation (intensive research) is related to local
deeply search.

In Section 2, we present the mathematical formulation of the proposed biomimicry
concept. In Section 3, we demonstrate its ability to design plasmonic metalenses. In
photonics, these devices generally refer to metallo-dielectric structures enabling focusing
light based on surface plasmons polaritons (SPPs) excitation. Here, only one-dimensional
micron-scale (50λ-width) flat devices are discussed and designed. The behaviour of these
lenses are based on the extraordinary optical transmission (EOT) phenomenon [20]. This
phenomenon consists of an enhancement of the transmission of light through a subwave-
length perforated opaque metallic film. Any incident TM-polarized plane wave that hits
the plasmonics film from free space, will be coupled into an upper and downer SPPs
mode (thick film) or a IMI mode (tiny film), and that field will be heading towards the
Fabry-Perrot cavity. While emerging through the slits array, the phase of that diffracted
(transmitted) field can be completely manipulated by fine-tuning the slit widths or slit
depths, resulting in a tailored lens with high resolution. Finally, in the case of symmetric
optimized device, to provide ultimate savings in time, we introduce a principle, called in
this paper a two-stitched-meta-cells principle. In this design strategy. the whole structure
is treated as a concatenation of two sub-meta-cells, geometries of which can be deduced
each from other by a simple symmetry. Only one sub-structure is specifically designed, as
a non-periodic off-axis-meta-lens. In addition, the completed on-axis-metalens is obtained
by stitching together the two meta-cells.

2. Methods: Concept and Mathematical Model

A wolf pack hunt can be viewed as a multi-agents system in which each wolf chases
a prey accounting for the fitness of each agent participating in the hunt. Wolves are
opportunistic predators which base their hunting process on a collective strategy. Wolves
may be considered to be operating in a pack when there are more than one wolf looking
for prey. The main rule controlling the movement of each wolf in the whole pack is not to
rely on a predefined hierarchy in the group but, from this collective behavior, emerges a
spontaneous hierarchy based on the fitness of each agent to achieve the task properly by
accounting for the locations of the other members, with respect to the prey’s position. This
assumes that, at each phase of the hunting process, each agent, while being autonomous,
is able to access and process main information concerning its own position and also the
positions of the other agents, with respect to the prey’s location. This hunting strategy can
be roughly divided in three phases:

1. Location phase
2. Stalking phase
3. Chasing phase

2.1. Location Phase

In this initial phase, the pack of wolves try to locate a prey or a pack of preys. The
efficiency of the wolf pack to locate prey in a given geographic location strongly depends
on several factors including the size of the wolves pack (number of wolves in the pack)
and the size of the territory occupied by the pack. In the initialization phase of the hunting,
let us consider a pack of Np + 1 randomly distributed wolves occupying d-width territory.
Let us consider there is a reference frame in which each wolf’s location (xk)k in the pack
may be defined with respect to an origin point x0. Here, we consider a one-dimensional
problem and we denote ek the distance between the agent labelled k and its closest neighbor
k− 1. The geographic distribution of the wolf pack can be characterized by a sequence



Appl. Sci. 2021, 11, 5436 4 of 17

of Np-tuple of random variables [ek]k inside a range [emin, emax]. These random variables

must satisfy ∑
Np
k=1 ek = d and they can be generated through the following formula:

ek = (emax − emin)rk + emin, generation

ek = d
ek

∑
Np
q=1 eq

, normalization (1)

where (rk)k is a sequence of random variables belonging to [0, 1]Np . As displayed in
Figure 1, the sequence of the position (xk)k-variables is linked to [(ek)k]k as:

xk = xk−1 + ek, k ∈ [1, Np], x0 = 0, xNp = d. (2)

(a)

(b)

Figure 1. (a) Sketch of variables ek distribution. (b) Sketch of design variables xk. In the proposed
optimization process, the increment of xk increasing favorably the FOM is kept as the best current
optimal profile.

Initially, the whole pack operates in exploration mode until the prey is located. Once
the prey is located, the stalking phase starts and some parts of the hunters will transit
from exploration to exploitation mode. The objective of the predator’s pack is to capture at
least one individual from the herd and this objective may be handled by a function called
the figure of merit (FOM). At each step of the hunting process, the FOM depends on the
sequence of the wolves positions (xk)k. The vector X which coordinates are xk is our single
design variable vector, coordinates of which will be modified and updated during the
optimization process.

2.2. Stalking Phase

The wolf pack begins the stalking phase by attacking the herd and trying to single
out and tracking the most vulnerable individual of the herd. While carrying out the
pursuit, each hunter can evaluate simultaneously its distance and the distance of the other
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agents with respect to the prey’s location. However, faced with the hunter’s attack, the
prey will try to escape and the prey’s position will continuously change according to the
predators actions. Let us denote (xold

k )k the sequence of each wolf position before the prey
reaction and (xnew

k )k the new sequence of (xk)k-variables when the prey operates some
countermeasures. Let us recall that during the stalking phase, each wolf can estimate
the fitness of any agent to help the group to achieve this collective task properly. Let us
denote (gk)k the sequence of fitness of each agent. Mathematically speaking, the vector
[gk] contains the values of the variation of the FOM with respect to the variables (xk)k. The
adjoint-based method shows their efficiency and effectiveness in computing the fitness
parameters with a cost of computation time that does not depend on the number of the
variables xk. At the tth iteration, this variation of the objective function, denoted g(t)(xi),
at all nodes xi of the design area is computed with two simulations. The key point of the
computation of g(t), already discussed in [21], is to consider that fictitious currents are
induced when the system under consideration transits from a state called old to a state
called new. This transition may be due to an evolution of the geometrical and/or the
physical parameters of the system. A more detailed discussion on the computation of the
gradient of the variation of the FOM, applied here, is provided in references [21]. Once
the sequence of fitness is evaluated, it is sorted from most sensitive agent to the least and
categorized into three chasing-teams as follows:

G̃1 = {gk / gk ≥ s1}
G̃2 = {gk / s2 ≤ gk ≤ s1}
G̃3 = {gk / gk ≤ s2}

(3)

In the next phase, the chasing phase, a part of the pack constituted of wolves belonging
to the G̃1 and G̃2 teams switches to an exploitation (intensive search) mode while agents
of G̃3-team remain in an exploration mode. In this paper, s1 and s2 are set to 25% and
1%, respectively.

2.3. Chasing Phase

If the selected prey escapes, the wolf pack will pursue it with the aim to capture it.
Wolves are known to be very fast sprinters over very long distances. However, instead of
relying on their athletic talents, wolves are able to craft a highly effective collective strategy
by gradually encircling the prey until it stops moving. This part of the hunting process is
driven by the two G̃1 and G̃2 teams using two different strategies. Wolves of the G̃1-team
constituted of hunting agents whose positions are the closest to the prey’s location, attack
and pursue the prey by pushing it towards the G̃2-team’s agents. The G̃2 group are also
close to the prey but slightly further compared to the positions of wolves operating in the
G̃1 team. In their exploitation mode, the wolves of the G̃1 and G̃2 teams push the prey
towards the G̃3 team, constituted of some agents pack lagging behind, which will capture
the prey as a last resort, in the event this prey had the bad idea to turn back or in the case
it turns round in circle. It is worth noting that here, the hierarchy of wolves that takes
place during the hunting process does not follow the predefined natural hierarchy rules.
During the hunt, wolves operate in the pack autonomously and can only be distinguished
from each other by the hunting team they belong to. Moreover, they are interchangeable
and the only information required for their classification and categorization into a given
hunting team is the sequence of the sensitivity values (gk)k. This sequence is re-evaluated
for the whole agents of the pack, at each time (iteration) t, as soon as the prey decides
and performs an action. Therefore as the hunt evolves, any agent located at a position xk
can switch from a group to another one, at any moment t, depending on the value of it
sensitivity gk at this moment.

2.3.1. Team G̃1 Strategy: Exploitation Mode with a Hard Besiege

Wolves in this situation are those with the highest sensibility, i.e., a fitness factor gk
greater than a fixed threshold s1. Each of them, can visualize and test the prey. They can
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detect any weakness or vulnerability and thwart any of the prey’s attempt to escape, by
developing countermeasures, involving some rapid pounces if needed, or come back to its
previous position. This behaviour can be formulated as follows:

xupdate
k =


x+k = xk + δxk right rapid pounce

x−k = xk − δxk left rapid pounce

xk no pounce

(4)

The sequence of parameters δxk depending on the fitness gk is introduced in Figure 2.
Each agent of the G̃1-team evaluates its next move based on the mechanism of Equation (4)
in order to increase the FOM. This is done iteratively, starting from the leader (agent
with the highest value in the gk-sequence) and going down the ranks of the pack fitness
hierarchy, until all of the wolves locations in the group are updated. It is worth noting that
for any agent of this group, at a given iteration t, the choice of the next best value of each
variable xk required three evaluations of the FOM: xk = best

{
x−k left , x+k right , xk no

}
pounce. This routine can be completely parallelized.

Figure 2. Flowchart of the proposed optimization method using a wolf pack biomimicry-gradient-based strategy.

2.3.2. Team G̃2 Strategy: Exploitation Mode with a Soft Besiege

Agents of this team are also actively pursuing the prey but being slightly behind
the members of the leading G̃1-team. Therefore the prey should be less sensitive to any
variation in their current locations. While pursuing their prey and trying to encircle it, these
agents can allow themselves some slight random left or right rapid pounces around their
current positions, and compare to their previous locations (no pounce), while improving
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the FOM. In this case, the next position of each wolf is updated using the following
Equation (5):

xupdate
k =


xk + bkδxk, bk ∈ [−1, 1] random left or right rapid pounce

xk no pounce
(5)

where bk = 2rk − 1, rk ∈ [0, 1] being a random number. Let us highlight that this second
team also operates in exploitation mode. However, contrary to the G̃1 team, for any agent,
only two evaluations of the FOM (parallel computing) are performed, in order to estimate
the next best position.

2.3.3. Team G̃3 Strategy: Exploration Mode

Finally, the G̃3 team is made up of agents whose movements have very little impact on
the process in progress. Therefore, these agents can allow a collective random positioning
before evaluating at once the effectiveness of this global action. If this collective action does
not effectively modify the figure of merit then the whole group collectively returns to its
initial position. This strategy can mathematically formulate as follows:

[xupdate
k ]k =

{
[xk]k + [ck][δxk]k random rapid pounces for the whole sequence
[xk]k no pounce

(6)

where ck is a sequence of random numbers in [−1, 1].
At the end of all these three-teams actions, a new geographic distribution [enew

k ]k can
be updated as

enew
k = xupdate

k − xupdate
k−1 , k ∈ [1, Np+1] (7)

2.4. Constraints Inside the Pack

During hunting, any wolf must update at any time information about all hunter agents,
but also, while moving towards the prey, a minimum distance to the closest neighbors
must be kept. This minimum distance between the wolves of the pack is required to avoid
collisions between neighboring agents, but above all, it allows guaranteeing a better local
range of action for all the members of the pack. A maximum distance constraint can be
also enforced in order to preserve the overall cohesion of the group and prevent the prey
from escaping between the lines.

2.5. Repeated Escape Attempt of the Prey

When the wolf pack attacks, the prey naturally attempts to escape from this threatening
situation. Different situations occur, according to the current state of the chasing, but one
of the most dangerous situations for the prey is that of encirclement. To escape from this
situation, the prey performs some rapid moves, the intensity and success of which strongly
and mainly depend on how much energy it has left. This prey’s residual energy, denoted
β(t), decays with respect to the iteration t. β(t) may also depend on several other factors
such as the maximum number of iterations tmax, the density of the wolf pack characterized
by the minimum distance between two wolves. This is modeled as:

β(t) = atanh
(

1− t
tmax

)
min

(
[enew

k ]k
η

)
(8)

The term min
(
[enew

k ]k
η

)
holds information about the minimum distance between two

wolves. The parameter η drives the density of the wolf pack. This repeat escaping action of
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the prey leads to a disturbance of the old wolf pack features. These geographic features are
then re-evaluated through the following formulas:

eold
k = enew

k + β(t)(2rk − 1); (9)

where rk ∈ [0, 1] is a random number that changes at any iteration t. The flowchart of the
proposed geometric parameters optimization method based on wolf pack biomimicry hunt
strategy is presented in Figure 2. In the next section, the proposed algorithm is applied
to design plasmonic lenses, consisted of a relatively high number of design elements
(parameters), enabling near and far field focusing.

3. Results and Discussions
3.1. Numerical Method: Polynomial Modal Method

Let us consider in a Cartesian coordinates system (ex, ey, ez) the structure of Figure 3a
which is consisted of a metallic film with arrayed nanoslits (air-gap) with a constant depth
h but variant widths (ek)k. Our design’s objective consists of optimizing the (ek)k-sequence
in order to obtain a focusing of the incident field at a desired space location.

(a)

(b)

Figure 3. design of a one dimensional flat metalens. (a) Schematic of dispersive metal film perforated
with a non periodic subwavelength array of 1D nanoslits. (b) the adjoint-based optimization method
involved two different sources: an electric dipole and a polarized incident plane wave. (a) Sketch of
the plasmonic dispersive metalens; (b) Assessment of the FOM variation computing.
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The Aperiodic Polynomial Modal Method (APMM) is used to perform the forward
and the backward problems in two simulations. See Figure 3b. For audiences who are
not familiar with this method, let us briefly outline the main steps of the polynomial
Modal Method (PMM) based on Gegenbauer polynomials GΛ

n (x) expansion [22–26]. In
the PMM/APMM, the structure is divided into Np intervals I(k)x , k = 1 : Np in the (Ox)

direction and Nz layers I(l)z , l = 1 : Nz in (O, z) direction. In the current example Nz = 3.
In each layer I(l)z , each component of the electromagnetic field is expanded on a set of
eigenfunctions, i.e.; solutions |ψq〉 of an eigenvalue equation; that is in the current case, the
following TM propagation equation Equation (10):

L(l)(ω)|ψ(l)
q (ω)〉 = (γ

(l)
q (ω))2|ψ(l)

q (ω)〉 (10)

with
L(l)(x, ω) =

( c
ω

)2
ε(l)(x, ω)∂x

1
ε(l)(x, ω)

∂x + ε(l)(x, ω). (11)

In each layer l the H(l)
y (x, z) component is then written as linear combination of the

eigenfunctions ψq of Equation (10):

H(l)
y (x, z, ω) = ∑

q
A(l)

q (ω)e−ik0(ω)γ
(l)
q (ω)zψ

(l)
q (x, ω). (12)

The relative permittivity of the upper and the lower regions are denoted by ε(1) = 1
and ε(3) = 1.45 respectively. Silver and gold are considered in our simulations and the
Drude-Lorentz model [27,28] is used to describe their dispersive relative permittivity
function ε(metal). Our design objective involves two electromagnetic sources: an electric
dipole source for the direct or forward problem and a polarized incident plane wave for
the reciprocal or backward problem. The forward and backward configurations, used
to compute the variation of the FOM are sketched in Figure 3b. Practical details for the
numerical treatment of the dipole source implementation in modal method can be found
in [29].

3.2. Plasmonic Lens Design

We design metalenses consisting of a perforated metal film, capable of focusing a
normally incident TM plane wave (with λ = 0.637 µm), at a focal distance z f = 15λ in the
vacuum (ν(1) = 1). The perforated film with a height h = 400 nm is deposed on a SiO2
substrat. To ensure the convergence of the polynomial expansion, n = 4 polynomials are
used on each subinterval I(k)x , k = 1 : Np.

As initial conditions of the algorithm, we use 10 various random initial sequences
of nsnr (nanoslits and nanoridges) with elements widths [(eold

k , enew
k )]k, generated accord-

ing to equation Equation (1). The maximal number of iterations tmax is set to 20. In
this first example, each initial layout is made of Np = 105 nsnr elements distributed on
a d = 10.75 µm-wide interval. The minimum size constraint is set to 50 nm. The other
numerical used-defined parameters are α0 = 0.1, s1 = 25% and s2 = 1%. Results are
presented in Figure 4. These figures show, in the focal planes, the line scans of the nor-
malized magnetic field intensity along the Ox-axis (z = 0) (Figure 4a) and along the
Oz-direction x = 0 (Figure 4b). Although any gradient-based method is known to be
very sensitive to the initial conditions, as show these figures, for all the ten random
initial conditions, that a very large part of the ten designed metalenses maintain satis-
factory efficiencies close to 30% for the current lossy plasmonic lens. Both the lens size
and the number Np of nsnr elements can be exploited to manage the focus spot size
as is clearly shown in Figure 5. In these figures, we plot, the line scans of the normal-
ized magnetic field intensity in the transverse (z f = 0) (Figure 5a) and in the longitu-
dinal x = x0 (Figure 5) focal plane respectively, for four values of the couple (Np, d):
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(Np, d) ∈ {(105, 10.75 µm), (125, 12.75 µm), (165, 16.75 µm), (185, 18.75 µm)}. Regarding
these results, the ratio of the focal intensity to the intensity of incident wave increases with
an increasing number of (Np, d) couples. In the case of (Np, d) = (105, 10.75 µm), this
efficiency is close to 29%. While it reaches 38% for a 18.75 µm-width lens composed of
Np = 185 metallic-nanorods/nanoslits.
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Figure 4. Design of a 10.75 µm-wide plasmonic metalens consisting of Np = 105 silver-nanoridges and nanoslits focusing a
normal incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 15λ. Line scans of the normalized
magnetic field intensity in the transverse (z f = 0) (a) and in the longitudinal x = 0 (b) focal plane respectively, for ten
random realizations of initial conditions. Numerical parameters: λ = 0.637 µm, Np = 105, h = 400 nm, TM polarization.
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Figure 5. Design of d-wide silver plasmonic metalense consisting of Np silver-nanoridges and air-gap focusing a normal
incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 15λ. Line scans of the normalized magnetic
field intensity in the transverse (z f = 0) (a) and in the longitudinal x = x0 (b) focal plane respectively, for four values of
the couple (Np, d): (Np, d) ∈ {(105, 10.75 µm), (125, 12.75 µm), (165, 16.75 µm), (185, 18.75 µm)}. Numerical parameters:
λ = 0.637 µm, h = 400 nm, TM polarization. (a) |Hy(x, 0)|2/

∫
I |H
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y (x, zs)|2dx; (b) |Hy(x0, z)|2/

∫
I |H
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Now we analyse the impact of the (Np, d) couple on both the LFWHM (lateral full
width half maximum) and on the AFWHM (axial full width half maximum). As shown
in Figure 5a,b, the LFWHM hardly depends on the lateral feature of the metalens. In
Figure 5a the LFWHM is approximately equal to 565.2 nm. Contrary to the LFWHM,
the AFWHM strongly depends on the width of the metalens. As shown in Figure 5, the
AFWHM decreases when the lens size d and number of patterns Np increase. For example,
in the case of the silver-plasmonic metalens considered in our investigation, the AFHW
is equal to 6916.9 nm for (Np, d) = (105, 10.75 µm) and it decreases to 2704.2 nm for
(Np, d) = (185, 18.75 µm), yielding a better high-quality cylindrical focal spot.

It is worth noting that some optimized devices yield original unexpected asymmetric
on-axis metalenses, even though they are under a normal incidence. Figure 6a,b presents the
cartography of the normalized magnetic field’s intensity in the plane (X, O, Z) associated
with the optimized geometry of Figure 6a. In Figure 6a, we report the values of the
(nanorodes, nanoslits)-widths sequence [ek]k with respect to their locations labelled by k. No
symmetry property can be extracted from these results, indicating that sophisticated energy
exchange between the modes in the design area takes place and these interactions cannot be
explained or/and modeled thanks to some trivial rules. The modes contained in the design
area of the structure are not symmetric but their combination yields a symmetric spatial
distribution of the electromagnetic far field. Without enforcing some symmetry properties,
the optimization process freely evolves towards unexpected exotic structures. From the
above study, we anticipate that a high-quality focusing spot can be reached by increasing the
size and the nsnr-number Np of the structure under optimization. However, numerically
speaking, increasing the lens’s geometric features is computationally expensive, since
both the number of the design variables Np and the number of basis functions required
for the electromagnetic field numerical approximation increase also. To circumvent this
drawback, we introduce a computationally less expensive approach termed the two-meta-
cells-stitched approach. In this approach, a metalens constituted of Np-nsnr elements is
viewed as an arrangement of two interlocked subsections, [A, D] ∪ [B′, A′] denoted meta-
cells, as is shown in Figure 7. Only the meta-cell [A, D] constituted of np nsnr-elements is
simulated as a off-axis aperiodic metalens. The complementary np − 2 meta-cell [B′, A′]
is built as the symmetric of the a np − 2 nsnr elements of a sub-meta-cell [A, B] of the
meta-cell [A, D] ([A, B] ∪ [A, D]).
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Figure 6. Design of a plasmonic silver-flat-metalens of d = 18.75 µm-wide consisting of Np = 185 silver-nanoridges and
air-gap focusing a normal incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 15λ. (a) shows
the values of the (nanorodes, nanoslits)-widths sequence [ek]k with respect to their locations labelled by k. (b) presents
the cartography of the normalized magnetic field’s intensity in the plane (X, O, Z). Numerical parameters: λ = 0.637 µm,
Np = 52, ez = 400 nm, TM polarization. (a) |Hy(x0, z)|2/

∫
I |H

inc
y (x, zs)|2dx; (b) |Hy(x, 0)|2/

∫
I |H

inc
y (x, zs)|2dx.
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Figure 7. Design of a one dimensional flat metalens: illustration of the two-metacells-stitched approach.

To illustrate the efficiency of the above idea of two-meta-cells stitched principle,
we design two types of metalenses of different widths, d = 24.99 µm and d = 41 µm
constituted of Np = 248 = 125 + 125− 2 and Np = 408 = 205 + 205− 2 nsnr elements
respectively. The other parameters are h = 400 nm, and the focal length is set to 15λ. For
each example, first we design a L-wide [A, D] metacell to achieve efficient far field focusing
of the transmitted field at (x0, zs) so that the focus spot is located at the extreme limit
of the computation domain. Typically, x0 is chosen very close to L. Second, the second
sub-metacell namely [B′, A′] is created from the previous optimized off-axis metalens
[A, D] = [A, B]

⋃
[B, D] as the symmetric of the [A, B] subsection. The completed final on-

axis device is then obtained by stitching together the [A, D] and [B′, A′] subsections. First,
Let us consider the case of 24.99 µm-wide metalens made of 248 nsnr elements which [A, D]
subsection is a 12.55 µm-wide metacell made of 125 nsnr elements. Figure 8a presents the
normalized transmitted field’s intensity distribution on (X, O, Z) plane. A clear off-axis
focus spot appears at the predicted location, which agrees with our design’s objective.
Let us also notice a transmission efficiency of about 25%. Now let us apply the stitching
operation as described previously. The result of this post-processing is displayed in
Figure 8b where we plot the field’s intensity distribution of the completed lens excited by
an incident TM plane wave at normal incident. It is worth noting that this two metacells
stitched process leads to an increase, in both the size and the number of the constituent
elements of the metalens. In this first example, a (L, np) = (12.55 µm, 125) metacell yields
(d, Np) = (24.99 µm, 248) metalens with more than two times transmission efficiency
enhancement: the efficiency of the stitched device increases from 25% to 60%. Figure 8c,d
show the values of the (nanoridges, nanoslits)-widths sequence [ek]k with respect to their
locations labelled by k. Now let us increase the metalens feature, i.e., both the size and
the number of nsnr elements. In this second example, the structure is a d = 41 µm-wide
metalens constituted of Np = 408 = 205 + 205− 2 nsnr elements. The primary metacell,
i.e., the [A, D] subsection, is specifically designed as a 20.55 µm-wide off-axis metalens
with 205 nsnr elements. Figure 9a presents the normalized transmitted field’s distribution.
The deflection of focal point to the extreme limit of the design domain, with an efficiency of
30% is clearly visible. As shows Figure 9b, by stitching together both aperiodic metacells,
namely the subsection [A, D] and [B′, A′], the on-axis intensity is highly improved from
30% to 70%. Figure 9c,d show the values of the (nanoridges, nanoslits)-widths sequence
[ek]k with respect to their locations labelled by k.
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Figure 8. Design of a plasmonic silver-flat-metalens of d = 24.99 µm-wide consisting of Np = 248 silver-nanoridges and
nanoslits focusing a normal incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 15λ. (a,b) presents
the cartography of the normalized magnetic field intensity in the plane (X, O, Z). (c,d) shows the values of the (nanoridges,
nanoslits)-widths sequence [ek]k with respect to their locations labelled by k. Numerical parameters: λ = 0.637 µm, Np = 125,
ez = 400 nm, TM polarization. (a) d = 12.55 µm; (b) d = 24.99 µm; (c) np = 125; (d) Np = 248 = 125 + (125− 2).
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Figure 9. Design of a plasmonic silver-flat-metalens of d = 41 µm-wide consisting of Np = 248 silver-nanoridges and
nanoslits focusing a normal incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 15λ. (a,b) presents
the cartography of the normalized magnetic field intensity in the plane (X, O, Z). (c,d) shows the values of the (nanoridges,
nanoslits)-widths sequence [ek]k with respect to their locations labelled by k. Numerical parameters: λ = 0.637 µm, Np = 205,
ez = 400 nm, TM polarization. (a) d = 20.55 µm; (b) d = 41 µm; (c) np = 205; (d) Np = 408 = 205 + (205− 2).

Finally we present a case of an optical near-field subwavelength spatial focusing
originated from the interference of higher spatial harmonic field distribution. The focus
length is set zs = 3λ in the free space. Since the foci is closed to the structure, it is possible
to obtain a high-focusing of an incident light by enhancing the near field (evanescent
field) contribution. We show in Figure 10 the results of a configuration of a gold metalens.
As can be seen in Figure 10a,b, a subwavelength LFWHM can be reached: the LFWHM
is equal to 304.5 nm ≤ λ/2 in the case of the gold plasmonics metalens designed here.
Figure 11a presents the cartography of the normalized magnetic field intensity in the plane
(X, O, Z). Figure 11b shows the values of the (nanoridges, nanoslits)-widths sequence
[ek]k with respect to their locations labelled by k. Some other results not presented in this
paper, including information of required cputimes, some .gif animations, are available on
https://photonicsnum.com (accessed on 15 May 2021).
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Figure 10. Design of d-wide gold plasmonic metalens consisting of Np gold nanoridges and nanoslits focusing a normal
incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 3λ. Line scans of the normalized magnetic
field intensity in the transverse (z f = 0) (a) and in the longitudinal x = x0 (b) focal plane respectively, for four values
of the couple (Np, d): (Np, d) ∈ {(65, 6.75 µm), (85, 8.75 µm), (105, 10.75 µm), (125, 12.75 µm)} . Numerical parameters:
λ = 0.637 µm, h = 400 nm, TM polarization. (a) |Hy(x, 0)|2/

∫
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Figure 11. Design of a plasmonic gold-flat-metalens of d = 12.75 µm-wide consisting of Np = 125 gold-nanoridges and
air-gap focusing a normal incident TM-polarized plane wave at a wavelength λ = 0.637 µm at a distance of 3λ. (a) presents
the cartography of the normalized magnetic field intensity in the plane (X, O, Z). (b) shows the values of the (ridges,
air-gaps)-widths sequence [ek]k with respect to their locations labelled by k. Numerical parameters: λ = 0.637 µm, Np = 125,
ez = 400 nm, TM polarization. (a) |Hy(x, 0)|2/

∫
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inc
y (x, zs)|2dx; (b) |Hy(x0, z)|2/

∫
I |H

inc
y (x, zs)|2dx.

4. Conclusions

In this paper, we reported a biomimicry-gradient-based optimization algorithm. The
method was successfully applied to perform the design of a functional metasurface which
is a plasmonic metalens enabling a high energy flow focusing on a well-defined cylindrical
focus spot. This is accomplished through the introduction of a set of a few, but key, design
parameters allowing the fine-tuning of a given metasurface geometrical features. These
parameters are updated exploiting both available gradient information and intelligent
cooperative chase strategy. The full plasmonic device is optimized in one time, and showed
that the efficiency of the optimized device is less sensitive to initial conditions. We also show
that the proposed approach provides both expected symmetric devices and more creative
unexpected asymmetric on-axis metalenses; even though under normal illumination.

There is no unique and universal method that allows efficiently solving PDEs obtained
from Mawxell’s equations in the general case. However, for certain categories of electro-
magnetic problems with specific geometries and symmetries, it is possible to identify a
class of numerical methods allowing solving accurately and efficiently these PDEs. One-
dimensional metasurfaces often consist of an arrangement of rods deposited on a substrate,
and Modal Methods have proven to be very effective in solving such problems. These
approaches consist in describing the electromagnetic field in terms of the eigenfunctions of
an operator that represents the propagation through the structure. These eigenfunctions
are expanded on a set of a given basis of functions. For example in the particular case
of the Fourier Modal Method (FMM), the Fourier basis functions are used. However,
the main drawback of the FMM [30–33] remains the representation of non smooth fields
through finite Fourier sums resulting, inevitably, in slow convergence rates. In addition,
the worst cases are those of diffraction problems involving metals structures. These cases
often require a high number of Fourier basis functions to converge which increases the
computational times. To remedy this situation, we replace, the FMM with the Polynomial
Modal Method equipped with Perfectly Matched Layers (PMLs). The proposed method,
which is expected to contribute to the effort of photonics novel devices inverse design
novel, proves to be suitable and robust in designing micron-scale devices. However, it
cannot be extended at it is to the design of very large-scale structure without some approxi-
mations. In regards of positive outlook, we envision extending the method to design such
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structures namely 2D and very large-scale structures, in the framework of modal method,
by incorporating the stitching technique, presented in [8]. In addition, we expect this will
help to quickly and efficiently solve some classes of current photonics concern.
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