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Featured Application: We demonstrate in this letter a laser-based accelerator that switches
between generating beams of either multi-MeV electrons or ions by a simple optical manipulation.
We analyze its applicability in terms of energy, charge, divergence, and repeatability. The
versatility of this accelerator may enable various applications in industry and research, which
are presented in the paper.

Abstract: The versatility of laser accelerators in generating particle beams of various types is often
promoted as a key applicative advantage. These multiple types of particles, however, are generated
on vastly different irradiation setups, so that switching from one type to another involves substantial
mechanical changes. In this letter, we report on a laser-based accelerator that generates beams of either
multi-MeV electrons or ions from the same thin-foil irradiation setup. Switching from generation
of ions to electrons is achieved by introducing an auxiliary laser pulse, which pre-explodes the foil
tens of ns before irradiation by the main pulse. We present an experimental characterization of the
emitted beams in terms of energy, charge, divergence, and repeatability, and conclude with several
examples of prospective applications for industry and research.

Keywords: laser electron acceleration; laser proton acceleration; high-intensity lasers; non-destructive
testing; elemental analysis

1. Introduction

The invention of chirped pulse amplification [1], for which the 2018 Nobel Prize
in Physics was awarded, introduced the era of multi-petawatt lasers [2] and led to new
regimes of light-matter interaction. The most striking feature of intense laser interaction
with solid targets is the emission of a variety of intense radiation types [3], including
electrons, ions, x-rays, and positrons. The relatively small scale of these lasers earned these
machines the moniker “tabletop accelerators” and triggered research ranging from small
portable machines [4] to large facilities [5] and accelerators at the energy frontier [6].

The relatively small size and cost of laser accelerators is often promoted as their
main advantage [7]. Another appealing characteristic is their ability to transport the beam
over optical mirrors for most of the way [8] and generate the particle beam close to the
interaction point. Consequently, radiation shielding of laser accelerators is simpler than
that of conventional accelerators with comparable energies [9].

The ultrashort nature of laser-accelerated particle bunches has also been deemed
advantageous for applications [10] and research [11]. This capability is further reflected by
the possibility of synchronizing the particle emission with another laser or particle pulse,
with sub-ps temporal jitter [12,13].

The lion’s share of laser-particle acceleration research focuses on acceleration of ions
and electrons. One distinct experimental difference between these two types of research is
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that electron acceleration usually involves gaseous targets, whereas most ion acceleration
experiments are conducted by irradiation of solids.

Laser acceleration of ions to MeV level energies was introduced more than 2 decades
ago [14,15] with the target-normal sheath acceleration (TNSA) [16] mechanism. Higher
laser intensities and improved pulse contrast promoted more robust acceleration mech-
anisms, such as the breakout afterburner [17], which rely on opaque plasma becoming
relativistically transparent, and radiation pressure acceleration [18] in which electrons are
compressed to a highly dense layer that in turn accelerates ions.

In all these experiments, the highest energy ions are generated from sub-pum-thick
foil targets. Several methods for replenishing such targets at a high rate were devised
in the form of, e.g., thin sheets of liquid ethylene glycol [19] or hydrogen, which solidify
when injected into vacuum [20], or with automatically positioned [21] micro-machined foil
targets [22].

Gas targets are naturally easier to refresh. High-energy ion beams resulting from
collisionless shockwaves induced in nearly critical gas targets were demonstrated by either
using long-wavelength laser pulses [23] or with very high-density gas [12,24-26]. Tailoring
the plasma profile around a solid foil target to enhance the emission of TNSA ions was also
recently investigated [27].

Gaseous targets are a common choice for laser generation of high-quality electron
beams. For the past 2 decades, the laser wakefield community focused on optimizing the
accelerated beam quality for higher particle energy [28], sharper energy spectrum [29],
higher charge [30], and improved repeatability.

A few early works identified an electron acceleration technique from solid foil targets,
referred to as “the exploding foil method (EXFM)” [31]. With EXFM, low-energy light
preceding the main pulse turns the foil into an expanding plume of plasma. Owing to the
expansion of the plasma, the electron density falls below the critical value and becomes
transparent to the main pulse, which arrives tens of ns later. The main pulse forms self-
guided laser wakefield structures [32], which generates ultra-collimated, multi-MeV beams
of electrons [33].

Compared to modern wakefield electron acceleration schemes, EXFM seemed non-
competitive on maximum energy and a peaked spectrum. Nevertheless, the laser-to-
electron energy conversion efficiency of this scheme is unprecedented, making it ideal for
generating a large number of photo-nuclear reactions [11,33].

In previous studies, foil targets were exploded by pre-pulses native to the laser system,
which could not be manipulated. Here we present a first experimental study in which
electron beams are generated with EXFM in an engineered manner, i.e., with an auxiliary
controlled pre-pulse. The study was enabled by the pristine intrinsic contrast of our laser
system presented in Figure 1. In this letter, we show how by the mere introduction of this
pre-pulse (illustrated in red in Figure 1), our setup switches from generation of TNSA ions
to generating EXFM electrons.
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Figure 1. The temporal profile of the NePTUN laser system (black), measured with a Sequoia third-
order auto-correlator [34]. The 10~1% background is the diagnostic noise level, forming a lower limit
att = —50 ps. The auxiliary pre-pulse is illustrated in red.
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2. Experimental Setup

We performed the experiments using the NePTUN 20 TW laser system [35] at Tel Aviv
University. A schematic drawing of the setup is shown Figure 2. Laser pulses of 29 fs at
reduced energy of 140 mJ were focused using an /2.5 off-axis parabolic mirror having
an effective focal length of 12.7 cm unto 800 nm-thick Au foil targets. A measurement
showed 70% of the laser energy to be contained within a circle of 4.1-um diameter, which
corresponds to an intensity of 1.2 x 10! W/cm?. The energy stability of the laser was
measured to be 1.3% (RMS). The study relied on our automatic target system [21], which
delivered the targets to the laser focus at a rate of 0.2 Hz.

Shutter i
m— | Main pulse
Spatial filter | I 140 mJ
Delay line Fre-pulse 800 nm
pd - md 29 fs

Collimator | 532 Nm
20 ps | . __|Electron orion

spectrometer

Frontend
pump residual Target

Figure 2. Schematic illustration of the irradiation setup. The main pulse (red) is focused using an
off-axis parabolic mirror. The pre-pulse (green) is injected collinearly with the main pulse. Either
a magnetic spectrometer or a Thomson parabola ion spectrometer is placed downstream to the
generated beam.

We employ the residual energy from the frontend pump laser as the light source
for the engineered pre-pulses. These A = 532 nm, E = 30 pJ, T = 20 ps laser pulses are
optically synchronized with the main pulse. The optical period and pulse duration of
these pre-pulses are much shorter than the plasma expansion time, so their exact values
should not affect the plasma heating in a significant manner. Our measurements found that
70 percent of the pre-pulse energy was contained within a circle of 8.1 pym diameter, which
corresponds to an intensity of 9.3 x 10" W/cm?. The energy stability of the pre-pulse was
measured to be 1.5% (RMS). The temporal jitter between the pre- and main-pulses was
measured be shorter than 20 ps. These properties correspond to a contrast ratio of 8 x 1078
between the pre- and main-pulses. Before focusing, the pre-pulses are spatially filtered,
collimated, and delayed in a variable delay line. A relative delay of 0-90 ns between the
pre- and main pulses is achieved using our multi-plane “Cat’s cradle” [36] delay line.

We measured the emitted electron and ion spectra for irradiation with or without
auxiliary pre-pulses preceding the main pulse by 4 ns to 30 ns. Electrons were measured
using a magnetic spectrometer with a field strength of 0.15 T and an angular acceptance of
0.12 msr. Ions were measured with a Thomson parabola ion spectrometer (TPIS) with a
similar design to that of Morrison et al. [37], operating with an electrode voltage difference
of 1kV and having an angular acceptance of 0.10 msr. For both spectrometers, spectra were
recorded by a charge-coupled device imaging a CsI(Tl) scintillator at the focal plane of the
spectrometer. We obtained the absolute charge calibration of the electron spectrometer
by acquiring the scintillation signal of a *Sr calibration beta emitter placed behind the
scintillator, using the same imaging system.

3. Results

Recorded raw spectrograms are shown in Figure 3, for shots with and without a
pre-pulse. The results feature two distinct modes of operation: for irradiation without a
pre-pulse, the TPIS trace matches an ion beam with proton cut-off energy of more than
1 MeV, while a very low signal is recorded by the electron spectrometer. With pre-explosion
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at t = —22 ns, a beam of electrons with energies exceeding 3 MeV is recorded, and nearly
no ions. The lack of TNSA ions indicates complete destruction of the target.
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Figure 3. Raw ion (top row) and electron (bottom row) spectrograms obtained with different pre-pulse delays. The
schematics of the two spectrometers are illustrated on the right.

The analyzed electron (blue) and proton (red) spectra are shown in Figure 4a. The
electron spectra were recorded for shots with a relative delay of t = —22 ns. The shaded
areas represent the standard deviation between 11 consecutive shots for the electrons and
14 consecutive shots for the protons. The electron spectrum recorded on a shot without
a pre-pulse is shown in dashed blue. The total electron charge is more than an order of
magnitude lower than the proton number and has a cutoff energy of about 1 MeV.
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Figure 4. (a) Proton spectra from 14 consecutive shots without pre-pulse (red) and electron spectra from 11 consecutive
shots with t = —22 ns pre-pulses (blue). The shaded area represents the standard deviation between shots. The recorded
electron spectrum of a shot without a pre-pulse is shown in dashed blue. (b) Charge spatial-spectral distribution of the
electron beam.

We measured the electron divergence by translating the electron spectrometer across
the beam in 7 different positions. The result, presented in Figure 4b, features an average
divergence of 10 msr.
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4. Discussion

Several potential applications may benefit from this irradiation scheme. Energy-
dispersive x-ray (EDX) [38] spectroscopy and particle-induced x-ray emission (PIXE) [39]
are two powerful techniques for material analysis. They are widely used in the semicon-
ductor industry [40,41] and in biomedical applications [42,43]. EDX reveals the elemental
composition of solid samples, while PIXE resolves ~um-deep stratigraphic structures. Both
methods rely on measuring x-rays emitted from a sample, following its irradiation with
particle beams in the keV-to-MeV energy range. Laser-driven EDX was recently demon-
strated [44], using a mixed beam of laser-accelerated electrons and protons emitted from
irradiated solid foils. Laser-driven PIXE was demonstrated on the same setup, by sweeping
out the electrons with a magnetic field. Our acceleration scheme, which would amount to
adding the controlled pre-pulse to this setup, can enable EDX with a 1000 times brighter
beam of electrons in the MeV range (compare dashed to solid blue curves in Figure 4a). If
necessary, removal of these excess electrons using magnetic deflection may be applied to
this setup as well. Proton energies of over 3 MeV, which are the requirement for conducting
PIXE, may be obtained using a 100 TW-class laser system.

Particle beams in the MeV energy range are also used for conducting non-destructive
testing (NDT). Example applications include the investigation of trucks and cargo contain-
ers [45] for detecting the contraband of explosives [46], narcotics [47], and special nuclear
materials [48]. The use of y-rays has already reached commercial maturity [49], but the
applicability of other beam types is limited by the titanic dimensions of conventional
particle accelerators.

With shadowgraphy, the simplest form of NDT, information is revealed by the fraction
of particles transmitted through the interrogated sample. Using multiple types of radiation
may reveal details that are not obtained by each beam type by itself [50]. We illustrate this
idea in Figure 5, which shows the simulated transmission of 10 MeV protons (left) and
electrons (right) through a sample of 600 pum thick coaxial cylinders made of Al, W, and Cu.
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Figure 5. Particle transport simulation of the transmission of 10 MeV proton (left) and electron (right) beams passing

through a sample of 600 um thick Al, W, and Cu. The color scale is normalized to the beam fluence.

The simulation was conducted with the FLUKA particle transport simulation code [51].
Figure 5 shows that the Al casts a ~50% shadow on the proton beam, whereas the W and
Cu shadows are absolute and indistinguishable. The electron beam, however, reveals a
difference between the two heavier metals, but the Al is nearly 100% transparent.

For nuclear physics research, the ability to switch between beams of electrons and
ions within >1 Hz may be applied to study AZ(p,x) reactions, on isotopes with O (1 s)
lifetimes. A sample of long-lived A*1Z isotope, e.g., %°Ni, may be irradiated with MeV
electrons to induce the *°Ni(y,n)>*Ni reaction by bremsstrahlung. The resulting >>Ni has a
half-life of Ty, = 204 ms [52]. Measurements of the 55Ni(p,y) reaction, which is important
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for determining whether the rp-process bypasses the °°Ni waiting point [53], may then be
made in situ.

5. Conclusions

In this letter, we reported on the applicable aspects of a laser particle acceleration
scheme, in which beams of either MeV electrons or ions are chosen by opening or closing
an optical shutter. The plasma dynamics governing EXFM has rich dependence on the
pre-pulse energy and delay, and on the target material and thickness. One aspect which is
important for applications, is the scaling of the electron energy with higher laser intensities
and the required pre-pulse parameters. On a Petawatt laser, for example, we generated
electron beams with a temperature of 10.5 MeV by irradiating plastic target foils with laser
energy of E = 90 ], pulse duration of 150 fs and an intrinsic pre-pulse energy of about 1 pJ
preceding the main pulse by 60 ns [11]. An investigation of these aspects will be the subject
of a future publication.
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