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Abstract: Despite the fact that a large number of research studies have been conducted in the field of
search and rescue robotics, significantly little attention has been given to the development of rescue
robots capable of performing physical rescue interventions, including loading and transporting
victims to a safe zone—i.e., casualty extraction tasks. The aim of this study is to develop a mobile
rescue robot that could assist first responders when saving casualties from a dangerous area by
performing a casualty extraction procedure whilst ensuring that no additional injury is caused by
the operation and no additional lives are put at risk. In this paper, we present a novel design of
ResQbot 2.0—a mobile rescue robot designed for performing the casualty extraction task. This
robot is a stretcher-type casualty extraction robot, which is a significantly improved version of the
initial proof-of-concept prototype, ResQbot (retrospectively referred to as ResQbot 1.0), that has
been developed in our previous work. The proposed designs and development of the mechanical
system of ResQbot 2.0, as well as the method for safely loading a full-body casualty onto the robot’s
‘stretcher bed’, are described in detail based on the conducted literature review, evaluation of our
previous work, and feedback provided by medical professionals. We perform simulation experiments
in the Gazebo physics engine simulator to verify the proposed design and the casualty extraction
procedure. The simulation results demonstrate the capability of ResQbot 2.0 to carry out safe casualty
extractions successfully.

Keywords: rescue robotics; search and rescue; robot design; mobile robot; patient transfer;
casualty extraction

1. Introduction

Responses to natural or human-made disasters—such as chemical, biological, radio-
logical, and nuclear (CBRN) incidents—are always a race against time. Extracting casualties
from a hazardous scene is such an example of an emergency case in which a significant
amount of pressure and risk is placed on the people working as the first responders. Ef-
ficient and timely action is crucial since it is known that the mortality rate increases and
reaches a peak after 48 h, implying that the chance of survival drops significantly after
this period [1–5]. While it is crucial to act fast, ensuring the rescue operation is safely
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performed is also critical. Apart from ensuring the safety of the first responders, minimis-
ing the possibility of creating further damage or additional risk to the casualties is a high
priority [5].

Currently, research and development in robotics and its applications is an actively
growing field, including the development of robotics applications in assisting first re-
sponders in rescue missions, in which the main objective is to improve the search and
rescue (SAR) operation to become faster and safer. A wide range of robotics design has
been introduced and deployed for specifically performing SAR missions [4–11]. Most of
these robots are designed to assist with some specific tasks that can be grouped into four
general categories according to their purpose in the SAR response process, namely search,
extraction, evacuation, and treatment [5].

The field of search robotics has received the most attention so far, particularly un-
manned aerial vehicles (UAVs), which have been used in many rescue operations [12–18],
collecting evidence about the position of a missing person, but not interacting with the
casualty. However, the field of casualty extraction using rescue robots is significantly less
mature, with fewer applicatFions and proposed designs. The main reason for this is that
these robots are often significantly larger and more complex due to the medical casualty
handling requirements [9]. Other than academic institutions, most of the research and
many technical implementation proposals were carried out by military organisations [6].

This paper presents a novel design of a mobile rescue robot, called ResQbot 2.0, capable
of safely rescuing a casualty lying on the ground (i.e., casualty extraction procedure). This
robot design is a significantly improved version of the initial proof-of-concept prototype—
ResQbot (retrospectively referred to as ResQbot 1.0)—that has been developed in our
previous work, and has been presented in [19–23]. The main contributions of this work can
be summarised as follows:

(1) The novel ResQbot 2.0 design comprises seven main novel components: A differential-
drive mobile base; a stretcher bed tilting mechanism; a stretcher bed sliding mecha-
nism; a motorised stretcher bed conveyor module, a pair of motorised stretcher strap
modules; and a neck securing device module.

(2) The proposed methodology of casualty extraction procedure using ResQbot 2.0 for
safely loading a full-body casualty onto the robot’s ‘stretcher bed’.

(3) Validation of the proposed design and the casualty extraction procedure via simula-
tion experiments in the Gazebo physics engine simulator.

The remaining of this paper is organised as follows: In Section 2, we review the state of
the art on the major work related to the existing mobile rescue robots designed for casualty
extraction. In Section 3, we describe the design specification and development of the robot,
as well as the medical and safety considerations. The proposed robot design and method of
casualty extraction procedure using the proposed robot design are described in Section 4.
Furthermore, the results and discussion of the proposed design are presented in Section 5.
Finally, we conclude our findings in Section 6.

2. Related Work

In this section, we present an overview of the existing mobile rescue robots designed
for casualty extraction. The summary of major contributions to the field of casualty
extraction is depicted in Figure 1 [23–31].

One of the very first casualty extraction proposal incorporating a mobile robot is the
iRobot Valkyrie project, as presented in [26,32]. In this proposal, the idea is implementing
a flexible stretcher that is tethered to a multi-purpose mobile robot (see Figure 1, iRobot
Valkyrie [24]). First, an operator or medic is remotely operating the robot to find the
casualty. Then, the casualty needs to roll with its own strength onto the stretcher. After
the casualty rolls safely on the stretcher, the robot then pulls away the stretcher to the safe
place for further treatment [26].
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Figure 1. Timeline of the major contributions to the field of casualty extraction (photos on the diagram
are adapted from [23–31]).

The US Department of Defence then introduced the robotic extraction (REX) and
robotic evacuation (REV) rescue robot system for casualty extraction missions as presented
in [25]. This system combines several differently-sized, unmanned ground vehicles (UGV)
to perform a rescue mission. A small, mobile manipulator (REX) is used for short-range
extraction from the site of injury to a larger and faster vehicle (REV), which transports the
casualty to a medical facility (see Figure 1, REX and REV). The system is part of a more
extensive tactical amphibious ground support system (TAGS). This project was proposed
to extract battlefield casualties from hostile environments and from under fire, designed
mainly for outdoor battlefield terrain [6].

One of the most sophisticated robot platforms designed and developed specifically
for casualty extraction procedures is a robot with a semi-humanoid design. The humanoid
robot is roughly the size of a human male. Its upper torso is equipped with a heavy-duty
dual-arm manipulator built on top of a mobile base with tank tracks on its thighs and
calves. The battlefield extraction assist robot (BEAR) developed by Vecna Technologies [6,7],
the combat robotic nursing assistant (cRoNA) [8] from Hstar Technologies [33], and the
humanoid rescue robot for calamity response (HURCULES) robot [29] developed by the
Agency for Defense Development, South Korea [34,35] are examples of a semi-humanoid
form mobile robot platform, designed and developed specifically for casualty-extraction
procedures (see Figure 1, BEAR, cRoNA, HURCULES). Compared to all previous designs,
these robots are designed to be highly agile while performing casualty extraction using
their arms by scooping, lifting up, and carrying the casualty (see Figure 2a). While this
casualty extraction procedure seems to be flexible, feasible, and mimics how a normal
person handles a casualty, medical safety remains an unsolved issue as this design does
not stabilise the sensitive areas, including the casualty’s spine, neck, and head.
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Figure 2. Casualty extraction procedures using two different types of casualty extraction robots. (a) Humanoid-type robot
construction. The casualty extraction procedure has been presented in [29]. We found that there are at least three safety
concerns in the typical humanoid-type robot construction procedure, the impact during the casualty scooping process could
possibly bend the casualty’s body sideways, the lifting process could make the casualty’s body bend forward, and provide
minimal support for the casualty’s head and neck during the transportation phase. (b) Stretcher-type robot construction.
The presented casualty extraction procedure introduced as the loco-manipulation approach has been presented in [23].

In [29], the authors highlight that one of the noticeable features in the mechanical
design of the HURCULES robot is to use the worm gear in the joint to maintain the safety
of the casualty even with the power off and to reduce the energy through a selected
operating mode. Moreover, unlike the upper body of a conventional humanoid robot, a
chest plate is installed and used to properly distribute the casualty’s weight to the dual-arm
manipulator and the chest plate when carrying the casualty. Nevertheless, the lack of
body support (especially spine, neck, and head) during the procedure, in comparison to
the conventional stretcher, remains a critical concern. In addition, in terms of operating
the robots, controlling such complex robots performing intricate and sensitive tasks is a
significant challenge. Teleoperating such a complex system most likely requires more than
one highly skilled and experienced operator with complex teleoperation devices.

Alternative designs using stretcher-type constructions or litters that aim for a smoother
pick-up and transportation process of casualty extraction procedure have also been inves-
tigated. Examples of proposals for such systems are the robot presented by Iwano et al.
in [36–38] and the Tokyo Fire Department [39]. These robots are designed to perform
casualty extraction using a conveyor belt mechanism to pick up a casualty without having
to move the body significantly in the process. Once the casualty is properly loaded on
top of the robot, the conveyor belt base then properly supports the casualty’s body so it
can additionally serve as a stretcher bed. Thus, this robot design and method for casualty
extraction is expected to be safer and would minimise the possibility of causing additional
injuries to the casualty during the casualty extraction process.

Ning in [28] has also presented a similar design of a stretcher-type casualty ex-traction
robot. A unique feature of this design is that it incorporates a wheel-legged structure that
can be raised or lowered using linear actuators. The purpose of the design is to improve
the robot’s adaptability in a complex disaster scene. On the other hand, a very recently pub-
lished work in [30,40] presents a casualty extraction robot design called semi-autonomous
victim extraction robot (SAVER) [41,42]. This robot is equipped with two manipulator
arms and a head support system. The arms are designed for the telemanipulation process
to gently adjust the pose of the casualty prior to the loading process. The head support
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system is designed to grasp the injured person and stabilise the head and neck while gently
pulling the casualty on board.

In our previous works presented in [19–23], we have developed a proof-of-concept
mobile rescue robot for casualty extraction, called ResQbot (see Figure 1, ResQbot 1.0). This
robot is a stretcher-type mobile rescue robot designed to safely load a casualty using the
loco-manipulation approach [23] that uses a combination of the robot’s wheeled locomotion
and the belt conveyor mechanism to load a casualty (i.e., manipulation task), as illustrated
in Figure 2b. The loco-manipulation approach allows the robot to load the casualty while
ensuring that key safety thresholds (based on [43,44]) are adhered to and avoiding potential
causes of additional injury to the casualty, such as head, neck or spinal cord injuries [23].
The stretcher bed conveyor of this robot is also equipped with a stretcher strap mechanism
to safely secure the casualty during transportation.

Despite the promising results obtained from the evaluation experiments on the loco-
manipulation approach using ResQbot 1.0 [23], ResQbot 1.0 is only capable of securing
half the body of the casualty (i.e., upper body) onto the robot’s stretcher bed module (see
Figure 3a). During the casualty extraction mission, the robot will drag the casualty’s legs
during transportation (Videos of ResQbot 1.0 are available at https://www.imperial.ac.uk/
robot-intelligence/robots/resqbot/ (accessed on 15 May 2021)). Even though we believe
that in an emergency, this procedure is still highly acceptable—in fact, first responders also
frequently perform the same procedure [45–47]—this procedure could potentially cause
severe damage to the casualty.

Figure 3. Two critical concerns of the ResQbot 1.0 design: (a) ResQbot 1.0 can only load and secure
half of the casualty’s body (i.e., upper body). (b) The initial contact between the robot and the
casualty’s head during the casualty loading process remains a critical safety concern (the potential
cause of head or neck injury).

Another critical concern on the ResQbot 1.0 design is the fact that the loading process,
as part of the casualty extraction routine, is initiated from the head of the casualty. Based
on the experimental evaluations, the process can satisfy the safety metric (we refer readers
to [19,23] for more details about the experiments). Nevertheless, the process (i.e., initiating
loading the casualty from the head) is still raising a safety concern in terms of potential
damage to the casualty’s head and neck during the initial contact between the robot and
the casualty’s head (see Figure 3b).

3. Design Specification
3.1. Design Objectives

The design specification is based on the literature review, evaluation of our previous
work, and feedback provided by medical professionals. Based on our previous work, there
are at least two main concerns: ResQbot’s inability to safely load the casualty’s entire body
and safety regarding the robot’s initial contact with the casualty’s head during casualty
extraction procedures. Therefore, in this study, we focus on three main design objectives:

• Optimising the design mechanism to safely load a casualty’s entire body onto the
robot’s stretcher bed.

https://www.imperial.ac.uk/robot-intelligence/robots/resqbot/
https://www.imperial.ac.uk/robot-intelligence/robots/resqbot/


Appl. Sci. 2021, 11, 5414 6 of 18

• Designing a mechanism that provides more protection to the casualty’s head and neck
during the extraction process.

• Optimising the robot’s compact design and manoeuvrability in narrow environments.

3.2. Design Assumptions

In order to limit the scope of this work, the following assumptions about the robot’s
deployment environment were made at the start of the design process:

• The robot would be working in an urban environment with flat surfaces. Some
possible scenarios include areas of gas leaks and radiation/chemical contamination.

• The robot would not have to deal with stairs.
• The casualty would be lying flat with hands at the sides (in readiness for loading the

casualty onto the robot).
• The methodology for controlling the ResQbot 2.0 platform (e.g., teleoperation or

autonomous modes) lies beyond the scope of this paper.

3.3. Medical Considerations and Research

As mentioned in the introduction, one of the main priorities in casualty extraction
procedures is to ensure minimal harm or risk. One of the main design considerations
is to minimise any possible traumatic injuries during the casualty extraction procedure.
Any unfavourable handling might aggravate injuries, particularly to the neck, head, and
spinal cord (which includes the cervical spine). For this reason, medical professionals were
consulted during all design stages of ResQbot 2.0, and a survey of the literature was carried
out [48–57].

According to our literature review, it was found that spinal cord injuries and unstable
fractures are some of the major concerns. Such injuries can occur either at the tetraplegic
(the neck region) or paraplegic level (lower back region) [48–57]. Injuries at the tetraplegic
level can cause impairment or loss of motor or sensory functions in the cervical segments
of the spinal cord, affecting arms and legs [48]. To avoid this type of injury, any additional
backward (hyperextension) or forward (hyperflexion) bending of the neck, as well as
compression or rotation must be avoided [48]. To prevent potential paraplegic traumas,
any forward or backward bending of the lower back must also be avoided, although this is
less critical.

Possible existing injuries must be taken into account when performing a casualty
extraction, especially the possibility of secondary spinal cord injuries, including neurogenic
shocks, post-traumatic ischemia or failure to stabilise and immobilise an unstable fracture,
which might cause bone fragments to move towards, put pressure on or cut the spinal
cord [48]. One of the standard operating procedures is to place the cervical spine in a
neutral position and attach a stabilisation unit to the patient, as proposed in [30]. The main
objective of this procedure is to minimise translation and rotation of the head in order
to avoid the aggravation of spinal injuries during lifting or transportation. In classical
ambulant care, post-trauma stabilisation usually includes fitting a cervical collar to the
patient’s neck as a frame to immobilise the head. However, recent work has illustrated
that a cervical collar is not indispensable, and might even restrict a patient’s airway [50,51].
Therefore, cranio-thoracic stabilisation methods, such as sandbags or stabilisation blocks
that maintain the cervical spine straight without a cervical collar [52,53], have received
increased attention.

Another safety consideration related to casualty extraction procedures, as shown
in Figures 2b and 3b, is the possibility of head injury during contact between the robot
and the casualty’s head. A number of research studies have focused on evaluating and
developing methods and technical devices that could protect against both spinal cord
and head injuries [43,44]. In [43], Engsberg presents an investigation into the possible
spinal cord and head injuries caused by an impacting force. This study evaluates several
impact-testing methods as well as a selection of injury threshold limits. In a separate
study, EURailSafe [44] presented a report on the evaluation of bot head and neck injuries,
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including injury mechanisms, criteria, and tolerance levels. We used the data from [43,44]
to obtain the key safety thresholds and validate our design results.

4. Proposed Design and Method
4.1. Proposed Method and Design for Casualty Loading

In this study, we adopted the loco-manipulation approach presented in our previous
work [23] for the casualty extraction method. This method was evaluated in the study
presented in [19,23]; it has shown potential for the safe loading of casualties and satisfies
several safety measures [43,58]. One of the objectives of this study is to propose a robot
design to safely load an average-size person’s entire body onto the robot’s stretcher bed
and secure it safely.

In order to achieve this objective, the size of the robot’s stretcher bed and conveyor
must be increased. This increase in length would lead to an increase in the overall size of
the robot. Figure 4a,b illustrates the different robot sizes. The size of the stretcher bed can
be increased without a significant change to the robot’s design. There are at least two major
problems with this design: (1) The robot’s overall length increases by 1.5 times the length of
the original ResQbot 1.0. This will cause the robot to struggle while manoeuvring in typical
indoor environments, and (2) the more extended stretcher bed module (potentially loaded
with a casualty) towed behind the differential-drive mobile base would make it difficult
to manoeuvre the robot and keep the stretcher bed stable, since the mobile base would
require much more effort to turn with an asymmetrical load towed behind the mobile
base. Moreover, slight turns by the mobile base would cause much more movement on the
stretcher bed, making it challenging to keep the stretcher bed stable during transportation.

Figure 4. Illustration showing the ResQbot 1.0 stretcher-bed conveyor in comparison to the longer
stretcher-bed conveyor designs that enable safe loading of the casualty’s entire body onto the stretcher
bed. (a) ResQbot 1.0 original size. (b) ResQbot 1.0 with an expanded stretcher bed. (c) The ideal
position of the stretcher bed on the differential-drive mobile base (i.e., proposed design).

Figure 4c illustrates the ideal position of the stretcher bed on the mobile base. In this
position, the load would be uniformly distributed to the robot’s mobile base. In comparison
with the original ResQbot 1.0 configuration (Figure 4a), upgrading the robot’s stretcher
bed size would result in a similar overall length when configured as shown in Figure 4c.
Moreover, since the robot’s configuration in Figure 4c is symmetrical, the mobile base’s
manoeuvrability will be improved seeing as it is a mobile base with a differential-drive
wheel mechanism with the driving wheel placed in the middle. Consequently, the stretcher
bed would be more stable while manoeuvring the robot during transportation—even when
loaded with a casualty.
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To accommodate the configuration shown in Figure 4c and retain the robot’s loco-
manipulation capability to load the casualty, we propose adding tilting and sliding mecha-
nisms to the stretcher module on the mobile base platform. Figure 5 illustrates the stretcher
bed sliding and tilting mechanisms proposed for ResQbot 2.0.

Figure 5. Illustration of proposed tilting mechanism and sliding mechanism adapted in the ResQbot
2.0 proposed design. These mechanisms were adapted in order to accommodate the upgraded size of
the stretcher bed—capable of loading the entire body of an average-size casualty—while maintaining
the overall compact design of the robot.

With these additional mechanisms, ResQbot 2.0 could perform casualty extraction in a
similar manner to ResQbot 1.0, but with a slightly modified procedure. Figure 6 illustrates
the proposed new casualty extraction procedure using ResQbot 2.0.

Figure 6. Illustration of the proposed casualty extraction procedure using ResQbot 2.0 comprising of seven main sequential
phases: (1) Aligning the robot’s pose with respect to the casualty’s orientation. (2) Approaching the casualty in the desired
target position in readiness to load the casualty. (3) Changing to the loading configuration by tilting and sliding the robot’s
stretcher bed to the desired configuration. (4) Synchronising the robot’s mobile base and the conveyor belt movements
enables the robot to gently load the casualty onto the stretcher bed. (5) Once the casualty is correctly positioned on the
robot, the stretcher’s strap mechanism securely fastens, stabilises, and safely immobilises the casualty on the stretcher bed.
(6) Changing back to the compact configuration by sliding up and tilting down the robot’s stretcher bed. (7) The robot is
ready to transport the casualty to the medical area for further treatment.
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This procedure involves several major phases:

(1) Relative pose adjustment: The robot aligns its relative pose with respect to the victim
in preparation for the loco-manipulation routine.

(2) Approaching the target casualty: The robot gently and safely approaches the casualty
and makes contact with the casualty’s head to initiate loading.

(3) Changing to the loading configuration (i.e., sliding and tilting the stretcher bed): The
robot’s stretcher bed frame tilts up to the desired loading angle and then slides down
until it touches the ground in readiness to load the casualty.

(4) Loading the target casualty: By balancing the movement of the base and the motion
of the belt conveyor, the robot smoothly loads the casualty onboard.

(5) Fastening the stretcher strap: Once the casualty is fully onboard, the strapping
mechanism secures, stabilises, and immobilises the casualty, minimising the risk
of additional harm due to undesired movements.

(6) Changing to the compact configuration: Once the casualty is properly secured, the
stretcher bed slides up and tilts down to its original compact configuration.

(7) Transportation: The robot is now ready for the transportation phase. The casualty is
brought to the medical area for further treatment.

4.2. Neck Securing Device

Another critical concern about the ResQbot 1.0 design is the loading process, which
begins with the casualty’s head. In our previous work, presented in [19,23], we deemed the
process to be safe and to satisfy the safety metrics, based on the experimental evaluations
(we refer readers to [19,23] for more details on the experiments). Nevertheless, this process
still raises safety concerns in terms of potential damage to the casualty’s head and neck
upon initial contact (see Figure 2b).

To address this safety issue, we propose a novel neck securing device (NSD) as a new
safety feature of ResQbot 2.0, which required a new and innovative design. The main
purpose of the NSD module is to properly secure the neck and critical parts of the head to
avoid excessive bending of the cervical spine and hard impact during loading. We propose
an NSD that uses inflatable material. There are at least two main works (see Figure 7a,b)
that inspired our design of the inflatable NSD module. In [30,40], the authors proposed
a head support system for the SAVER robot designed to grasp the injured person and
stabilise the head and neck while gently pulling the casualty onboard. This mechanical
system comprises a linear actuator, a tension spring, a string-rigged pulley differential
mechanism, and a pair of head pads. The string-rigged pulley differential mechanism is
a device that connects the head support pads in order to apply force equally to the right
and left sides of the head. Each pad can assume an asymmetric final position, which gives
the device the ability to stabilise the head and neck in the position in which the patient is
originally encountered. The tension string minimises discomfort and allows a safe and
stable hold while restricting the motion of the head. The concept for this head support
mechanism is shown in Figure 7a.

Inflatable systems such as airbags and life jacket mechanisms were investigated for
possible implementation in the proposed NSD system. The Hovding inflatable cycling
helmet presented in [59,60] is one of the inflatable systems considered for the proposed
NSD system. It has a collar that is worn around the neck that inflates when sensors indicate
that a crash has occurred. Another option is the work presented in [61], which shows
various inflatable objects that can be fabricated by the Printflatables platform.

This work combines the design concept inspired by [30,40] and the inflatable object
technology shown in [59,61] to develop the NSD for ResQbot 2.0. Figure 7c illustrates the
proposed concept, which uses inflatable material. We investigated several designs, all with
the same fundamental concept that the inflatable device should cover and surround the
casualty’s head and neck up to the shoulders, as illustrated in Figure 7c.
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Figure 7. Several concepts of protecting the head from possible injuries. (a) The head support system
proposed in [30,40] to immobilise the head during casualty extraction. (b) Hovding inflatable cycling
helmet, as presented in [59,60], that protects the cyclist’s head during a crash. (c) Proposed neck
securing device (NSD), using the inflatable mechanism proposed for the ResQbot 2.0 design.

The requirement for the integration of the NSD in the stretcher bed (belt conveyor)
system was that the NSD should be able to slide down along the bed to the ground and
slide back up around the bed end. The NSD does not require a separate actuator for the
sliding movement. The movement of the NSD relies on friction between the NSD and the
conveyor belt. The NSD is placed on top of the conveyor and attached to linear guides
on both sides of the NSD to constrain its movement only along the stretcher bed. Figure 8
illustrates the updated procedure to load casualties by means of the NSD system. This
procedure is an extension of Step 4 in Figure 6.

Figure 8. Illustration of the updated procedure to load casualties by means of the NSD system. This
procedure is an extension of Step 4 in Figure 6. (4a) Once the robot achieves the desired loading
configuration, the NSD module is sliding down, approaching the casualty. (4b) The NSD frame
is placed in the desired position so that the casualty’s head and neck are in the NSD frame centre.
(4c) The inflatable system of the NSD then slowly inflates and stabilises the casualty’s head and
neck. (4d) Initiating the casualty loading process by synchronising the movement of the base and the
motion of the belt conveyor.
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5. Results and Discussion
5.1. ResQbot 2.0 Design Results

Figure 9 shows the final CAD design for ResQbot 2.0—a novel mobile robot stretcher
bed with an inflatable neck securing device. ResQbot 2.0 consists of six main modules:

• A differential-drive mobile base that provides mobility and flexible manoeuvrability
in typical urban and indoor terrains.

• A stretcher bed tilting module that enables ResQbot 2.0 to adjust the optimal loading
angle for safe casualty extraction procedures. This module is driven by a linear
actuator, and a bar linkage mechanism adjusts the bed’s tilting angle.

• A stretcher bed sliding module that enables the robot’s stretcher bed to slide up and
down in order to switch between the loading configuration (for loading a casualty) and
the compact configuration (for general robot navigation and casualty transportation).
This module consists of rail mechanisms at both sides of the robot’s stretcher bed that
allow the bed to slide smoothly along its frame and a lead-screw mechanism that
drives the bed’s linear movement.

• A motorised stretcher bed conveyor module is essential in order to enable ResQbot
2.0 to gently load a casualty by synchronising the conveyor belt’s loading movement
with the movement of the mobile base (see the loco-manipulation approach presented
in [19,23]).

• A pair of motorised stretcher strap modules that enable ResQbot 2.0 to secure, stabilise,
and immobilise the casualty on the robot’s stretcher bed in order to prevent any
undesired movement that could cause additional harm to the casualty.

• A neck securing device module that consists of a rigid frame and several components
that inflate and surround the casualty’s head and neck up to the shoulders in order to
prevent any undesired impact during the casualty loading procedure. It also stabilises
and immobilises the casualty’s head and neck during the extraction process.

Figure 9. The ResQbot 2.0 design comprises seven main novel components: A differential-drive mobile base; a stretcher bed
tilting mechanism; a stretcher bed sliding mechanism; a motorised stretcher bed conveyor module; a pair of motorised
stretcher strap modules; and a neck securing device module.

5.2. The ResQbot 2.0 Assembly

Figure 10 shows the fully assembled ResQbot 2.0 in the compact (Figure 10a) and
loading configurations (Figure 10b). In the following subsections, we discuss each main
module and mechanism.
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Figure 10. The fully assembled ResQbot 2.0. (a) The compact configuration is used for general
navigation and casualty transportation. (b) ResQbot 2.0 in the loading configuration, allowing the
robot to adjust its configuration to the optimal loading angle to perform the casualty extraction
procedure safely.

5.2.1. Differential-Drive Mobile Base

ResQbot 2.0 is designed to use a differential-drive mobile base module for mobility.
This module provides fast and flexible manoeuvrability in flat terrain typically found
in urban and indoor environments. The mobile base platform is a customised version
of a commercially available powered wheelchair—Quickie Salsa-M—manufactured by
Sunrise Medical [62]. This mobile base has a versatile design and is stable since it was
designed to transport a disabled person both indoors and outdoors. The differential-drive
wheels are located at the centre to enable a compact turning circle. In order to ensure
its stability and safety while manoeuvring, this platform is equipped with an all-wheel
independent suspension and anti-pitch technology suitable for use on rough or uneven
terrain. Moreover, this platform was designed to carry loads up to 140 kg, which makes
it suitable for the ResQbot 2.0 application: To carry an average-size casualty weighing
approximately 80–100 kg [62]. Other important reasons for choosing this mobile platform
are its mission range and its maximum operational speed. This mobile base can cover up
to 32 km with a 60 Ah battery [62], and it has a maximum speed of 10 kph [62]. Figure 11a
shows the differential-drive mobile base module.

Figure 11. ResQbot 2.0 main modules. (a) Differential-drive mobile base module. (b) Stretcher bed tilting module. (c) The
bed’s sliding-rail mechanism. (d) The motor drive and the lead-screw mechanism that enable the stretcher bed to slide.
(e) The motor drive and transmission system of the conveyor module. (f) The rotary encoder of the conveyor module, which
allows feedback control to synchronise the conveyor and mobile base speed during the casualty loading process. (g) DC
motor to drive the strap fastening and securing mechanism. (h) The stretcher strap module attached to the stretcher bed.
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5.2.2. Stretcher Bed Tilting Module

The bed’s tilting mechanism is the powered seat-tilt mechanism used on the Quickie
Salsa-M. This tilting mechanism can be adjusted to an angle between 0 and 30 degrees [62].
The tilting mechanism is driven by a linear actuator connected to bar linkage systems. This
mechanism enables ResQbot 2.0 to assume the optimal loading angle for safe casualty
extraction. Figure 11b shows the bed’s tilting mechanism.

5.2.3. Stretcher Bed Sliding Module

The bed’s sliding module is designed to allow the stretcher bed to slide down (load-
ing configuration) and slide up (compact transport configuration) during the casualty
extraction process (see Figure 6). This module consists of two main mechanisms: The rail
mechanism (see Figure 11c) and the lead-screw mechanism (see Figure 11d).

The sliding rail mechanism holds the stretcher bed on the fixed frame and allows it
to slide along one axis. The mechanism bears the maximum load of the bed. Eight pairs
of chrome steel metal dual V-wheels are used for the roller mechanism that holds the
aluminium V-slot extrusion (i.e., the rail). This mechanism is recommended for accurate
linear motion and has a high load capacity [63]. We installed four pairs of V-wheels on
each side of the bed (eight pairs in total) to support a maximum load of 120 kg, including
the casualty’s weight.

To drive the sliding module, the bed’s sliding-rail mechanism is connected to a lead-
screw mechanism driven by a motor with a modular belt-pulley transmission system that
allows the bed to slide up and down in order to load a casualty. During the design process,
we considered several different mechanisms for this module: A ball screw, rack and pinion,
lead screw, and winch were considered. Insights from the literature and expert opinions
were obtained in order to evaluate the advantages and disadvantages of the different
options, particularly with regards to cost-effectiveness, reliability and size, and the lead-
screw mechanism was considered to be the most suitable. Even though it is not the most
efficient in terms of friction, it allows for precise movement control, easy assembly, and is
the most cost-effective solution, given budget constraints. Obviously, precise movement
control is a critical parameter in the ResQbot 2.0 design specification since it is directly
linked to safety.

5.2.4. Stretcher Bed Conveyor Belt Mechanism

Similar to its predecessor (ResQbot 1.0), ResQbot 2.0 is equipped with an active
stretcher bed module that actively pulls the casualty’s body up during the casualty extrac-
tion procedure. While the stretcher-bed module in ResQbot 1.0 is only capable of loading
half of the casualty’s body, the stretcher bed module in ResQbot 2.0 is designed to load the
entire body of an average-size human casualty.

This stretcher-bed module incorporates a conveyor belt capable of transporting a
maximum payload of approximately 100 kg at its maximum power. The conveyor belt is
powered by a 240 V DC motor controlled through a driver module powered by a 240 V
AC onboard power inverter. A pulse-width modulation (PWM) control signal is used to
control the motor’s speed. Figure 11e shows the electric motor and pulley-belt transmission
system driving the conveyor belt.

In order to allow a closed-loop control for the conveyor belt’s speed, the conveyor belt
module is equipped with an incremental rotary encoder connected to the conveyor’s pulley
(see Figure 11f). This closed-loop control is essential in order to synchronise the conveyor
belt’s speed and the speed of the mobile base during the casualty loading process, which
uses the loco-manipulation method, as explained in Section 4.

5.2.5. Stretcher Strap Mechanism

For safe transportation, the casualty has to be safely placed onto the stretcher bed, and
the stretcher strap modules secure the casualty during transportation. The ResQbot 1.0
stretcher strap design was effective, catering to many different body sizes as well as being
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safe. However, the ResQbot 2.0 two stretcher strap modules are attached to the stretcher
bed module to accommodate a casualty’s entire body. One strap module secures and
stabilises the casualty’s torso, and the other secures the legs. Each strap module is driven
by a 24 V DC motor (see Figure 11g). These motors are controlled to fasten and unfasten the
straps during the casualty-extraction procedure. The straps’ fastening force is controlled by
regulating the motors’ power so that it is sufficient to secure the casualty without exerting
too much pressure on the casualty’s body. Figure 11h shows the stretcher’s strap module.

5.2.6. Neck Securing Device Module

The neck securing device (NSD) features three main components/mechanisms: (1) A
frame designed to be as compact as possible and encase all the safety mechanisms im-
plemented on the NSD; (2) inflatable components that are the main protection against
any cervical spine and head injuries during the loading procedure; and (3) a sliding rail
mechanism that guides the NSD when it moves up or down along the belt.

The NSD frame was designed to cover the casualty’s head and neck up to the shoul-
ders, as illustrated in Figure 7c. The frame’s design allows sufficient space between the
casualty’s head, neck, and the frame in order to prevent any direct contact. The NSD slides
along the bed to the ground and slides back up around the bed end. For that reason, the
back of the device is curved to allow a smooth up and down motion (see Figure 12a).

Figure 12. Design of the NSD module. The NSD module features three main components: An NSD
frame, inflatable components, and a sliding guide mechanism. (a) The design has a curved shape
to enable smooth loading up and down during the operation. (b) Design of the NSD inflatable
components that support the casualty’s head and neck during the extraction procedure. (c) The NSD
module. (d) The NSD sliding rail mechanism that allows it to slide up and down along the stretcher
bed module.

The NSD inflatable components consist of three separate inflatable modules: One lifts
and supports the back of the head, and two support the neck, as shown in Figure 12b. The
inflatable modules are inflated by means of a pressurised air chamber that is controlled
by a solenoid valve. In order to fully support the neck and head, the inflatables curve
around the neck to stabilise the head and prevent unwanted movement. The neck support
modules support the neck from each side, and during inflation, the modules slightly lift
the neck and support it from the bottom. This allows the head to bend back slightly to
facilitate unblocking the respiratory tracts. Figure 12c shows the inflatable components of
the NSD module.
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In order to guide the NSD up and down the stretcher bed, a pair of sliding guides
were developed. They consist of two long rails attached to each side of the stretcher bed, a
rod that slides up and down along the rails, and two pin joints connecting each side of the
NSD frame to the sliding rod. Figure 12d shows the NSD sliding rail mechanism.

5.3. ResQbot 2.0 Casualty Extraction Simulation

In order to evaluate the ResQbot 2.0. design, we built a model using the Gazebo
physics engine simulator to simulate the casualty extraction procedure (illustrated in
Figures 5 and 7). Figure 13 shows the sequential snapshots (a,b,c) of ResQbot 2.0 carrying
out a simulated casualty extraction. The simulation demonstrates the proposed casualty
extraction method introduced in Section 4. The snapshot images show that the ResQbot
2.0 design enables it to successfully carry out the complete casualty extraction procedure.
Additionally, upon the publication, we will upload any additional experiment results and
videos to the ResQbot web page, including the link to the open-source Gazebo simulation
model of ResQbot 2.0 (https://www.imperial.ac.uk/robot-intelligence/robots/resqbot/
(accessed on 15 May 2021)) [64].

Figure 13. Sequential snapshots (a–c) of ResQbot 2.0 carrying out a simulated casualty extraction, as
proposed in Section 4.

6. Conclusions and Future Work

In this work, we propose ResQbot 2.0, a novel design for a mobile rescue robot used
for casualty extraction. It is a stretcher-type casualty extraction robot capable of safely
performing casualty extraction using a loco-manipulation approach that is synchronised
with a conveyor belt (a component of the ResQbot 2.0 stretcher bed module) and a mobile
base to gently load a casualty from the ground onto the robot’s stretcher bed. We propose
a new casualty extraction procedure using the novel features in ResQbot 2.0 in order to
ensure a safe casualty extraction routine. We verified the proposed design and the casualty
extraction procedure by conducting simulation experiments in the Gazebo physics engine
simulator. Based on the simulation results, the ResQbot 2.0 design is a feasible option to
successfully carry out a safe casualty extraction.

Ongoing work has been focused on the design and development of the ResQbot 2.0
platform. Unfortunately, due to the COVID-19 pandemic, currently we are only able to
verify the design and development results using Gazebo, a physics engine simulator. In
future work, we are eager to conduct an extensive number of physical experiments that
we have developed to evaluate the ResQbot 2.0 performance during casualty extraction
tasks in terms of safety, reliability, efficiency, and its limitations under various conditions.

https://www.imperial.ac.uk/robot-intelligence/robots/resqbot/
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Human-robot teaming in several rescue scenarios could also be studied in depth in order to
enable humans to successfully work together with ResQbot and increase the performance of
the rescue missions. Moreover, since we have developed the open-sourced full model of the
ResQbot 2.0 design for the Gazebo simulator, more advanced simulation experiments, such
as a complete scenario of autonomous casualty extraction experiments, can be explored in
the future works. The future generation of ResQbot evolution could support concurrent
therapies, such as supplemental oxygen and other patient life supports, as well as the easy
accessories attachment, such as air monitoring devices in CBRN incidents and cameras in
other incidents.
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