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Abstract: We describe a method for robotic cell optimization by changing the placement of the robot
manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the
overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more
than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of
each joint during the whole trajectory, which depends on the joint angular velocity and torque. The
method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot
joints for individual robot positions. Verification of the method was performed using CoppeliaSim
and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with
proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from
22% to 53% depending on the trajectory.

Keywords: robot; manipulator; robotized workplace; robotic cell; optimization; wear

1. Introduction

The design of robotized work cells or lines is a complex multidisciplinary task that
is influenced by many external factors and conditions. During the designing process, it
is necessary to make many decisions that greatly affect the resulting performance of the
workplace and its properties, including the cycle time, velocity of individual parts, dynamic
effects, vibrations, lifetime, ground area, and energy consumption.

Crucial for the design of a robotic cell is the selection of an appropriate industrial or
collaborative robot and its placement in relation to other subsystems. The length of the de-
signing stage of robotic cells is still shortening, which leads to the copying of existing layouts
of workplaces with similar parameters and their adaptation to the actual requirements.

Any type of advanced optimization is almost impossible in this approach. However,
this is the phase where it is possible to achieve some interesting savings of energy con-
sumption, ground area, or the lifetime of some systems. The recent progress in complex
simulation tools, such as Tecnomatix, Matlab—Robotics System Toolbox, CoppeliaSim
(V-Rep), Gazebo, and Webots; methods for the creation of digital twins of the designed robo-
tized workplace; and whole manufacturing lines [1] open up new room for the realization
of complex multicriteria optimizations in the early stages of design.

Optimizations of robotized workplaces to achieve the reduction of running costs
are currently mostly realized in systems that are already in operation. These typically
include modifications of the end-point trajectory according to a chosen criterion, such as
the manipulation time [2,3] or the overall productivity and running costs of the robot [4].
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The optimization of the kinematic properties of the manipulator movement can also
lead to the reduction of torques in individual joints and, thus, also the reduction of the
overall energy consumption. For example, the authors in [5] used interval analysis to find
the global minimum jerk trajectory of a robot manipulator in a joint space using cubic
splines, resulting in a smoother and vibration-free robot movement.

A similar approach was proposed in [6], where the objective function included not
only the integral of the squared jerk values but also the total execution time of the trajectory.
The authors in [7] used the 12-phase sine profile for trajectories of a fast-moving robot,
which leads to a more stable and accurate movement without sudden changes of torques,
albeit at the cost of a slightly higher overall energy consumption. Trajectory optimization
with the single goal of cycle time reduction using the chicken swarm optimization (CSO)
method was described in [8].

Another optimization goal is the reduction of the workplace layout size [9] because
the usable area of the factory building is extremely valuable. There are also some methods
for the multicriteria optimization of robotic work cells or lines for energy consumption—
even for lines with up to 12 robots, based on the Gurobi simplex method [10]. Another
method of multi-robot cell optimization for time and energy reduction using a custom
mechatronic model of the robots in Modelica/Dymola was described in [11]. The authors
in [12] proposed a methodology for assembly line energy consumption optimization
based on the implementation of energy-optimal trajectories, and, in [13], this method
was improved by modification of the actuator brake release time for additional energy
consumption reduction.

A systematic methodology for the on-site identification and energy-optimal path
planning of an industrial robot is presented in [14] with a focus on a specific type of ABB
industrial robot. Improved robot programming reduced the energy consumption compared
to the built-in controller routines by up to 4%.

Further improvements and torque reduction for a robotized work cell can also be
achieved by modification of the position and orientation of the robot base in relation to
the optimized trajectory [15]. This can be interesting, especially for applications where it
is not possible to modify the end-point trajectory and velocity for technological reasons
(the application of adhesives, edging, welding, etc.). In these cases, it is necessary to
create a complex simulation model—a digital twin of the workplace [16,17] and perform a
multicriteria optimization.

The Concept of Robot Wear

Gearboxes are often mentioned as the component that is frequently responsible for
a failure of rotary machines [18], including industrial robots [19]. The most critical com-
ponents of a gearbox are the gears and bearings. The deterioration of a gear appears
at the teeth [20,21], harmonic drive gears are damaged by fatigue fractures [22], and
bearings are typically subjected to failures at the rolling elements or the inner or outer
race [21]. The damage accumulates over time and is caused mainly by load (forces and
velocity) [23,24], high temperature [25], bad lubrication [26], or manufacturing defects. The
performance, accuracy, and lifetime of a robot relies on the good condition of these critical
components [27].

The authors in [28] proposed a method for estimating the wear of a robot by monitor-
ing the temperatures in the joints, while [29] suggested a more complex solution, where
other parameters are also monitored in order to predict the lifetime of a multi-component
system. Other common properties monitored to predict the lifetime of a machine include
vibrations and noise [21]. A generic framework for predictive maintenance based on sim-
ulation models with degradation curves discovered from real data was proposed in [27].
Our approach, on the contrary, attempts to minimize wear by the use of a quite simple
simulation in the design stage of a robotized workplace instead of monitoring an already
existing one.
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As mentioned above, the gearbox in the robot manipulator joint can be considered the
most important source of the wear of the joint. The electric motor in the joint is subject to
deterioration as well [30]. As far as the above-mentioned sources of wear are concerned,
the most important is the load combined with movement velocity, because a higher velocity
creates higher temperatures. This applies to both the gearbox and the motor. The influence
of bad lubrication or manufacturing defects are almost impossible to anticipate or even
simulate and, thus, are not considered in this work.

A typical robot joint contains structural bearings that provide the mutual rotational
movement of the joints. However, obtaining the values of the reacting forces required to
calculate the wear of these bearings is not an easy task, even when using a dynamic simula-
tion. This requires an exact simulation model of the robot with a detailed representation of
the inner parts and mechanisms, accurate values of the mass properties, acceptably realistic
values of the friction coefficients, and a good dynamic simulation engine. Although it is
usually possible to obtain 3D models of commercially available industrial and collaborative
robots, and sometimes even simulation models prepared for common simulation systems,
these models typically are simplified and do not contain the inner mechanisms of the arms.

On the other hand, wear of the gearbox and motor can be expressed as torque that the
motor must generate (and that the gearbox must transfer to the joint) over some trajectory
of motion. These values depend on physical quantities that are much easier to obtain from
a simulation—the overall path of motion (kinematics) and the required driving torque
required to achieve the given acceleration (dynamics).

The hypothesis of our research is that the lifetime of a robot in a robotized workplace
can be improved in the design stage by designing the workplace (namely the location of
the robot) in such a way to ensure lower wear of the robot joints.

2. Materials and Methods

To determine the optimal placement of a robot manipulator within a robotic cell with
the goal of reducing and balancing joint wear, it is necessary to propose a suitable optimiza-
tion criterion, the whole optimization process, and an experiment to verify the results.

2.1. Optimization Criterion

In this work, we consider only the wear of the robot drive chain (see the previous
section). We will also restrict the following notation to rotational joints (which are much
more common than translational joints in robotics) and to six degrees of freedom (the most
common number in robotics); however, the principles can be applied in general.

An industrial or collaborative robot in a robotized workplace usually performs a
limited set of movements. Typically, there is a given trajectory that the robot end-point
should follow during the work cycle, and the robot joints are controlled using inverse
kinematics to adhere to this trajectory. The idea of wear being caused by a torque acting over
a trajectory corresponds with the concept of mechanical work, which can be expressed as

W =
∫ φ2

φ1

τdφ, (1)

where τ is the magnitude of the torque vector, φ is the angle of rotation about the vector
representing the joint axis, and φ1 and φ2 are the starting and ending angles of rotation,
respectively.

The integral (1) is path-dependent and the mechanical work is defined as the change
of energy. Thus, if we assume φ1 = φ2, which is true for a closed-loop trajectory of the
robot end-point (all individual joints have to start and end in the same angle of rotation),
the resulting value of W would always be equal to zero. It is, thus, more convenient to
express mechanical work as the integral of mechanical power over time
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W =
∫ φ2

φ1

τdφ =
∫ t2

t1

τωdt, (2)

where ω is the angular velocity of motion and t1 and t2 are the starting and ending time,
respectively. However, this integral (2) is still path-dependent, and the calculation would
result in W = 0. Thus, it is necessary to introduce the absolute value of both the torque
and the angular velocity

W =
∫ t2

t1

|τω|dt, (3)

which allows us to calculate the work over the whole trajectory, while in fact, considering
the trajectory divided into segments separated by the change of direction of movement
or the change of the sign of τ. This modification moves away from the concept of the
conservation of energy toward the concept of wear caused by mechanical work. The idea
is that the drive chain of a robot joint is worn down even when the torque is negative (the
motor is actively braking) or when the angle of rotation is decreasing or moving back.

The simulation is numerical with a definitive value of ∆t (simulation step size) instead
of dt. Therefore, the integral (3) is replaced by a sum

W =
n

∑
i=0
|τiωi|∆t, (4)

where i = 0, 1, . . . , n is the simulation step, τi is the instant torque, and ωi is the instant
angular velocity in the i-th simulation step. The mathematical meaning of the value W is
shown in an example in Figure 1.

Figure 1. Example of the time progression of joint torque τ and angular velocity ω; the dotted area
represents the meaning of the value W calculated as the integral of absolute value |τω|.

The value of W was calculated individually for each joint over the whole robot
trajectory, yielding W1, W2, . . . , W6 for the most common number of 6 degrees of freedom.

We attempted to optimize two factors:

• to minimize the overall wear of all joints, and
• to balance the wear of all joints.

Therefore, it is necessary to consider the values Wj together. However, the joints
of a robot manipulator are typically not equal from the mechanical point of view, and
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their capabilities are different—the lower joints are larger and stronger, and the joints
near the end-effector are lighter. The same magnitude of W could, in reality, mean much
higher stress and wear for a smaller joint than for a larger one. We, therefore, introduce a
variable called the relative wear factor wj, which is calculated by normalizing the individual
Wj values

wj =
Wj

τmj ωmj

, wj ≥ 0, (5)

where j = 1, 2, . . . , 6 is the joint number, τmj is the maximal permissible torque, and ωmj is
the maximal angular velocity of the j-th joint (both values are specified by the manufacturer
of the robot).

To minimize the overall wear of the robot, we chose to use the arithmetic mean of the
relative wear factors of all joints and to find the minimal value of this mean,

A =
1
6

6

∑
j=1

wj, (6)

and balance is achieved by finding the minimal value of the standard deviation

σ =

√√√√1
6

6

∑
j=1

(
wj − A

)2. (7)

The chosen fitness function (optimization criterion) f f places the same weight on both
these factors; therefore,

f f =
A
2
+

σ

2
. (8)

2.2. Optimization Process

The proposed method requires a simulation model capable of evaluating the move-
ment of a robot manipulator through a given end-point trajectory while computing the
values of joint angles and torques in individual time steps. This is possible, for example,
in the popular robotic simulation system CoppeliaSim (formerly known as V-Rep), which
was also chosen for our work.

The scripting capability of CoppeliaSim allows programming a robot’s end-point
movement through a given trajectory and time, and the built-in physics engine (i.e., Bullet
2.78) is able to check for collisions and evaluate joint torque values. The inverse kinematics
(IK) are calculated using the integrated pseudoinverse IK solver. The CoppeliaSim API
(Application Programming Interface) framework (RemoteAPI) can be used to remotely
configure the simulation, which, in our case, includes particularly the process of changing
the robot placement relative to the trajectory, as we are trying to determine the optimal
placement of the robot. A custom application was written in Visual C++ for this purpose.

Due to the long simulation times in CoppeliaSim, especially in the cases when the
IK calculation fails (the robot cannot reach some parts of the given trajectory), all valid
positions of the robot relative to the given trajectory were pre-calculated in the C++ ap-
plication and CoppeliaSim was used only to calculate the fitness function value in those
positions. The valid locations were found using a simple kinematic simulation inside the
C++ application, which can quickly verify the ability of the robot to fulfill a given task from
the specific location, including collision checking.

The search space is represented as a discrete 3-dimensional grid with the spacing in all
three dimensions equal to s = 0.03 m. The system returns the valid robot positions as a list
of points, where each point represents the location of the center of the robot base (see the
coordinate system in Figure 2a) in the workspace. Verification of the whole robot trajectory
in this simulation system took approximately 1800-times less time than the same task in
CoppeliaSim, and invalid robot locations were discarded even faster.
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(a) (b)

Figure 2. The UR3 robot. (a) The simulation model in the CoppeliaSim environment with a path
representing the end-point trajectory and a coordinate system in the center of the robot base. (b) The
real robot used in the experiments.

For the reproducibility of the research, this supplementary custom simulation system
is not necessary, as its main purpose is simply to shorten the overall simulation time.
However, it is necessary to have an external application or a script in CoppeliaSim that
successively places the robot in the locations from the above-mentioned search space (grid),
executes the CoppeliaSim simulation, and calculates and stores the results.

The reason for choosing a 3-dimensional grid for the potential locations of the robot
base instead of a 2-dimensional plane (representing the factory floor) is that the proposed
method is intended to be as general as possible, and limiting the search to a 2-D grid could
likely miss some interesting solutions. In reality, robots are commonly mounted on a stand,
table or a console; therefore, the height of the robot can be chosen. However, the results can
be easily limited to, for example, a 2-dimensional plane, if the actual application requires
such a limit.

2.3. Experiment Setup

The proposed method was demonstrated and verified on a Universal Robots UR3 col-
laborative robot with 6 degrees of freedom (see Figure 2), first in a CoppeliaSim simulation
configured according to the previous chapter, and finally also on a real physical robot. The
values of the maximal allowed joint torque τmj and joint angular velocity ωmj (5) for the
UR3 robot are listed in Table 1.

Five testing movement paths of the robot end-point were demonstrated, each in two
variants with different velocities of the end-point (0.1 and 0.2 m/s), giving a total number
of ten trajectories labeled A1, A2, B1, B2, . . ., E2; where A–E is the path type, 1 stands for
0.1 m/s, and 2 stands for 0.2 m/s.

Table 1. The joint parameters for the UR3 robot; τmj is the maximal permissible torque, and ωmj is
the maximal permissible angular velocity of the j-th joint.

j τmj [Nm] ωmj [s−1]

1 56 π
2 56 π
3 28 π
4 12 2π
5 12 2π
6 12 2π
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The trajectories are a combination of real use-cases and artificially created simple
trajectories that contain various elements (linear segments of different lengths, circle arcs,
sections with frequent speed, direction changes, etc.), see Figure 3. Various velocities of the
end-point cause a difference in the solution of possible robot base locations, because every
robot has some velocity limits for individual joints (see Table 1), and they also represent
different cases regarding the proposed wear factor calculation.

(a) trajectories A1, A2 (b) trajectories B1, B2

(c) trajectories C1, C2 (d) trajectories D1, D2 (e) trajectories E1, E2

Figure 3. Visualization of the five testing robot end-point paths; the UR3 robot is shown as a
scale reference.

The selected trajectories were of a smaller size, and there were no obstacles in the
environment (except for the table that the robot was mounted onto), which leads to a larger
number of different valid robot locations relative to the trajectory and, thus, also a larger
data set of results.

The chosen robot UR3 is a small robot with a reach of only 500 mm and although
using larger trajectories combined with several obstacles in the environment would be
possible, the valid locations of the robot would be very limited and it would be difficult
to make a statistical evaluation. In general, the proposed optimization method does not
depend on the size of the trajectory. A longer trajectory, requiring a longer time to traverse,
would produce larger values of the discrete integral (4); however, this is true for all robot
locations relative to the particular trajectory, and thus the optimization remains valid.

In a real case, the simulation model would have to contain also all collision objects
in the workplace, which could limit the valid robot locations considerably—the principle
of the method is, however, still applicable. The concept of choosing the robot location is
demonstrated on Figure 4 for the trajectory A1. The figure shows the grid of valid robot
locations—each blue point represents a possible position of the robot base; the robot is able
to reach the whole trajectory from each of these valid locations. For better clarity, the robot
is shown in several selected locations.
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Figure 4. Example of a grid of valid robot locations for a given trajectory (A1). Each blue point
represents a possible position of the robot base center point; the robot is displayed in four distinct
sample locations. GCS represents the global coordinate system.

3. Results

For each of the ten trajectories, the values of w0, w1, . . . , w6 (5), and then f f (8) were
calculated based on the CoppeliaSim simulation for each particular possible robot location
in the grid. The important values are summarized in Table 2, particularly the lowest fitness
function value f f

B in the best robot location, which should, thus, be the selected location
for the robot, provided it is physically possible. The table also shows the percentage of
improvement that the best location offers compared to the worst location,

impB
W = 100×

(
1−

f f
B

f f
W

)
, (9)

which theoretically represents the greatest possible improvement in robot wear reduction.
If we consider a random robot location versus the best one, the average improvement can
be calculated compared to the average value

impB
A = 100×

(
1−

f f
B

f f
A

)
. (10)

Figure 5 shows the distribution of f f values in all possible robot locations for each
trajectory in the form of a standard box-plot diagram. The height of each shaded rectangle
represents the interquartile range (third quartile minus first quartile), which indicates that
50% of all f f values lie inside the rectangle. The small circles in each column represent the
outliers—the topmost one corresponds to the worst location with f f

W .
Arrangements of the robot locations in the 3D space around the corresponding tra-

jectories are displayed in Figure 6—the color coding indicates the f f values using the
gradient red–yellow–green, where green is the best location ( f f

B), and red is the worst
( f f

W). This image also shows the positions of the best (“B”), worst (“W”), and three other
robot locations (“1”, “2”, and “3”) that will be used later in the experiments on a real robot.
Note that the small cubes rendered in Figure 6 as a visual representation of the possible
robot locations are shifted away from the ideal grid positions by a small random offset
(less than half the grid spacing). This is to achieve better visual clarity by preventing moiré
patterns and reducing the concealment of more distant cubes.
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Table 2. Results for the 10 testing trajectories showing the number of valid robot locations n, the
fitness function value in the best location f f

B, in the worst location f f
W , the average value f f

A; and
improvement of the best location against the worst impB

W (9) and the average impB
A location (10).

Traj. n f f
B f f

W f f
A impB

W impB
A

A1 800 0.0730 0.2053 0.1239 64.4% 41.1%
A2 564 0.0773 0.1577 0.1046 51.0% 26.1%
B1 2265 0.0217 0.1090 0.0461 80.1% 52.9%
B2 2236 0.0210 0.1067 0.0448 80.3% 53.1%
C1 2365 0.0769 0.1998 0.1239 61.5% 37.9%
C2 2214 0.0757 0.1828 0.1170 58.6% 35.2%
D1 866 0.0907 0.1994 0.1163 54.5% 22.0%
D2 828 0.0841 0.1829 0.1097 54.0% 23.3%
E1 2224 0.0279 0.1028 0.0532 72.8% 47.4%
E2 2151 0.0247 0.0984 0.0502 74.9% 50.7%

Figure 5. Statistical distribution of the f f values in all possible robot locations for the ten testing trajec-
tories (standard box-plot diagram—each box is bounded by the first and third quartile, the horizontal
line represents the median, the × represents the arithmetic mean, and circles represent outliers).

To better demonstrate the meaning of the proposed optimization criterion, Figure 7
shows, for the two trajectories A1 and B1, the individual values of the relative joint wear
factors w1, w2, . . . , w6 (5) for the best (wj

B) and worst (wj
W) robot location, together with

the corresponding total fitness function value f f (8). In the first example (trajectory A1), it
is clear that, in the worst location, the third joint was extremely stressed and the six wi

W

values differ quite considerably. In the best location, joints 2, 3, and 6 have almost the same
wi

B values and, although the relative wear factor of the 6th joint increased, the overall f f
B

value was much lower.
A similar situation can be seen in the second image (trajectory B1). Here, the relative

wear factor values in the best location are not so well balanced–the overall fitness function
value was reduced considerably nonetheless because the average value A (Equation (6))
lowered.
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The reason for the big improvement in the third joint relative wear factor w3 for both
these trajectories can be seen in Figure 8—the green and red solid lines show the immediate
power values for the best and worst robot location, respectively. The difference in the
magnitude is evident.

(a) trajectory A1 (b) trajectory B1 (c) trajectory C1

(d) trajectory A2 (e) trajectory B2 (f) trajectory C2

(g) trajectory D1 (h) trajectory E1

(i) trajectory D2 (j) trajectory E2

Figure 6. All valid robot locations in the grid; the color-coding indicates the f f values using the
gradient red–yellow–green, where green is the best location (B) and red is the worst (W). Locations
numbered 1, 2, and 3 are the three other locations used in the experiment with a real robot.
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(a) trajectory A1 (b) trajectory B1

Figure 7. Detailed comparison of the components forming the fitness function value in the best (B, green) and worst (W,
red) robot locations for two selected trajectories; displayed are the relative wear factors of each joint (wj) and the total fitness
function value ( f f ).

(a) trajectory A1

Figure 8. Cont.
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(b) trajectory B1

Figure 8. Comparison of the angular velocity ω3, torque τ3, and immediate power ω3τ3 of the third
joint during the whole trajectories A1 and B1 for the best (B) and worst (W ) robot locations.

4. Verification on a Real Robot

To experimentally verify the impact of the chosen fitness function on the real wear
of the robot joints, it would be necessary to perform simultaneous long-term testing on
multiple robots and then analyze the mechanical degradation of important components
of the joint construction. This type of experiment was not feasible for us at this moment.
Instead, we used experiments on a real robot to verify the accuracy of dynamical simulation
in CoppeliaSim.

The real experiments were performed on the same robot as was previously used
for the simulations—the Universal Robots UR3 collaborative robot. The robotic arm was
mounted on a table (Figure 2), and, instead of changing the robot base location relative to
the trajectory, the trajectory was appropriately shifted in relation to the robot. There were
no tools nor other equipment mounted to the output interface flange, which corresponds
to the simulation model described above.

The robot controller (CB3 controller, firmware version 3.10.0) provides state messages
via the RTDE (Real-Time Data Exchange) protocol based on TCP/IP communication. This
protocol allows reading the actual state of the robot with a frequency of 125 Hz. The
RTDE messages can be configured and include the actual and target values of kinematic
parameters, such as the position, velocity, and acceleration, as well as the currents of
individual joints, the overall current of the whole robot, and the target torque values—
which are needed for our experiment.

The experiment was executed for the optimal (best) robot location found by the
simulation, for the worst robot location, and for three other locations that were manually
selected from the set of possible locations to cover various sections of the whole space. The
locations are hereafter referred to as “B” (best), “W” (worst), and “1”, “2”, and “3” (the
other locations). The three numbered locations are sorted from the lowest to the highest
f f values according to the simulation results (a lower f f value indicates a better robot
location). For each trajectory and robot location, the robot was programmed to go through
the whole trajectory five times in a row. During this time, the integral (sum) was calculated
according to (4), and the final value was then divided by five.

All tested real robot locations are depicted in Figure 6. Numerical values of the f f
values in all five locations for all ten trajectories are listed in Tables 3 and 4. Table 3 shows
the results from the simulation, the values here are sorted from lowest to highest (“B”, “1”,
“2”, “3”, and “W”). Table 4 shows the values from real experiments—as can be seen, the
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best locations were identical; the worst locations were also mostly identical, except for
trajectory D2.

Table 3. Fitness function values in the five robot locations for individual trajectories—results from
the simulation. Color gradient red–yellow–green is used for better visual representation of the value
(green is the best, red is the worst).

B 1 2 3 W
A1 0.0730 0.1256 0.1281 0.1241 0.2054
A2 0.0774 0.1025 0.1156 0.1434 0.1578
B1 0.0217 0.0357 0.0389 0.0484 0.1090
B2 0.021 0.0289 0.0310 0.0588 0.1068
C1 0.0770 0.1074 0.1195 0.1421 0.1998
C2 0.0758 0.0939 0.1040 0.1160 0.1828
D1 0.0907 0.1045 0.1077 0.1187 0.1995
D2 0.0841 0.0967 0.1157 0.1203 0.1830
E1 0.028 0.0358 0.0388 0.0642 0.1028
E2 0.0247 0.0371 0.0585 0.0606 0.0985

Table 4. Fitness function values in the five robot locations for individual trajectories–results from
the real robot. Color gradient red–yellow–green is used for better visual representation of the value
(green is the best, red is the worst).

B 1 2 3 W
A1 0.0506 0.0799 0.0815 0.0848 0.1343
A2 0.054 0.0752 0.0799 0.0900 0.1155
B1 0.019 0.0312 0.0317 0.0278 0.0681
B2 0.0191 0.0263 0.0280 0.0348 0.0679
C1 0.0635 0.0760 0.0828 0.0874 0.1176
C2 0.0621 0.0625 0.0810 0.0808 0.1124
D1 0.078 0.0877 0.0940 0.0783 0.1015
D2 0.0777 0.0869 0.1038 0.0857 0.0958
E1 0.0239 0.0310 0.0348 0.0457 0.0599
E2 0.025 0.0355 0.0481 0.0446 0.0621

Table 5 shows the ratios between the real and simulated values; ideally, these values
should all be equal to 1. In general, it can be stated that the f f values acquired by the
real experiments were lower than the values from the simulation, and the average ratio
was r = 0.745 with the standard deviation equal to σr = 0.126. Figure 9 displays a
comparison of the simulated and real values in the form of a bar graph, together with the
ratio r. In this image, it can be observed that, for the same trajectory, the ratio r typically
lowers (deteriorates) with increasing the f f values. This will be further discussed in the
Discussion section.
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(a) trajectory A1 (b) trajectory A2

(c) trajectory B1 (d) trajectory B2

(e) trajectory C1 (f) trajectory C2

(g) trajectory D1 (h) trajectory D1

(i) trajectory E1 (j) trajectory E2

Figure 9. Comparison of the fitness function values acquired from simulation and experiments on
the real robot; the black lines represent the ratio between the values.
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Table 5. Ratios between the real and simulated values of fitness function in the five robot locations
for individual trajectories. Color gradient red–white is used for better visual representation of the
value (white is the ideal ratio of 1.0, red is the ratio 0.5).

B 1 2 3 W
A1 0.6932 0.6359 0.6362 0.6833 0.6541
A2 0.6985 0.7334 0.6912 0.6278 0.732
B1 0.8743 0.8722 0.8168 0.5735 0.6244
B2 0.9056 0.9096 0.9025 0.5915 0.6359
C1 0.8246 0.7075 0.6933 0.6151 0.5887
C2 0.8199 0.6657 0.7792 0.6965 0.6149
D1 0.8594 0.8393 0.8728 0.6591 0.5087
D2 0.9243 0.8984 0.8968 0.7126 0.5238
E1 0.8541 0.8658 0.8960 0.7118 0.5825
E2 1.0100 0.9590 0.8224 0.7360 0.6303

5. Discussion

The paper describes the grid approach to finding the optimal robot location, where
all possible robot locations are evaluated using a simulation in CoppeliaSim, and then the
location with the best (lowest) fitness function f f value is selected. In our case, there was
an additional preprocessing step that found all valid robot locations using a simple and
fast custom-made simulation system to increase the speed of the process. This step is not
required, and therefore the research can be reproduced without this custom simulation
system.

The grid approach can alternatively be replaced by using some optimization algo-
rithms, for example, the Particle Swarm Optimization (PSO) [31], which could further
reduce the time needed to find the optimal solution. However, PSO would not provide the
same type of comprehensive analysis of the whole space around the trajectory, and could
also possibly return a local minimum instead of the global one.

The method was demonstrated and tested on ten sample trajectories and the collabo-
rative robot UR3. As can be seen from the results in Table 2, the percentage improvement
in the fitness function between the worst and the best possible robot location ranged from
54% to 80.3%. This is mostly a theoretical improvement, as the worst-rated locations would
likely be not chosen by the system integrator or workplace project architect for other rea-
sons (they are typically on the edge of the working area of the robot or close to a singular
configuration). If we instead compare the best robot location to the average f f value of all
possible locations, the improvement still ranges from 22% to 53.1%; therefore, it is clear
that some interesting reduction in the robot joints wear can be achieved by selecting the
optimal robot location instead of a “random” one.

This method can be used in practice, provided there is a dynamic model of the
selected robot available for some suitable simulation system (for example, CoppeliaSim). It
is necessary to properly define the whole simulation model of the workplace, including
any potential obstacles, otherwise, the returned optimal robot location could be invalid
due to a collision. Nonetheless, it is still important to verify that the optimal location is
feasible from the point of view of energy connections and other similar restrictions that
cannot be included in the simulation.

The dynamic model should include all properties and phenomena that noticeably
affect the torque values in joints of the robot, as the torques are one of the main inputs for
the proposed method. It is, thus, necessary to properly define and simulate also the payload
in the end-effector, including any technological forces caused by the effector during, for
example, cutting, milling, and spraying. The simulation system CoppeliaSim chosen in our
demonstration is capable of simulating all these effects.
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Experiments on a real robot UR3 verified that the simulation model in CoppeliaSim
matched the reality acceptably well. The absolute values of f f acquired by the simulation
and from the real robot differed approximately by the scale factor of 0.745 ± 0.126.

The difference between simulation and reality was caused especially by the simulation
model of the UR3 robot, which is likely not absolutely perfect as far as mass proper-
ties are concerned, and also by the dynamic simulation engine, which performed some
simplifications. More important is that, in the relative evaluation of individual robot lo-
cations, the real experiments led to very similar results as the simulation—as can be seen
in Tables 3–5. There were some distinct deviations only in one path of robot end-point
movement (trajectories D1, D2). It can be, thus, stated that, to improve the robot joints
wear, potentially expensive and time-consuming real-world experiments are not necessary;
a simulation suffices.

To demonstrate and analyze the source of the difference between the values from the
simulation and from the real robot, Figure 10 shows an example of the simulated torque
τsim

3 and velocity ωsim
3 values directly compared with the values from the real robot (τreal

3 ,
ωreal

3 ), for the third joint of the robot during the B1 trajectory. The absolute value of τreal
3 was

generally lower than the absolute value of τsim
3 , which was likely caused by inaccurate mass

parameters of the robot links in the simulation model. This is the reason why the f f values
from the real robot were mostly lower than the values from the simulation (see Table 5).
The noise in the ωsim

3 values was caused by the discrete character of the simulation.
Figure 10b shows that, for the worst robot location, the τreal

3 values differed signifi-
cantly from τsim

3 in several peaks that correspond to moments with noticeable acceleration
in the movement. This is probably caused by some simplifications in the dynamics engine
in the simulation system or by some advanced algorithms in the control system of the
real robot. Generally, in worse robot locations (with higher f f values), the robot joints
must perform movements with higher acceleration, which causes this additional source of
difference between the simulation and reality.

(a) trajectory B1, the best robot location

Figure 10. Cont.
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(b) trajectory B1, the worst robot location

Figure 10. Comparison of the real and simulated values of angular velocity ω3 and torque τ3 of the
third joint during the whole trajectory B1. (a) Robot placed in the best location. (b) Robot placed in
the worst location.

The proposed optimization process of a robotized workplace can be applied in the
design phase when it is easy to make modifications to the workplace layout. Another
option is to use the optimization for an existing workplace when other types of optimization
are not possible (the trajectory is fixed, etc.).

6. Conclusions

The goal of this paper was to present a methodology for the optimization of a robot
manipulator base position relative to the given trajectory of movement of the manipulator
end-point. The optimization algorithm was based on the principle of minimization of the
chosen fitness function, which comprises the arithmetic mean and standard deviation of
the relative wear factors of all robot joints (8). The goal was to balance and minimize the
wear of the drive chain in the robot joints, where the wear is approximated as the amount
of mechanical work done by the joint, while also taking into account the abilities of the
particular joint (the maximal permissible torque and velocity).

Future work will include verification on different types of robots and with various
payloads. To verify the real impact on the wear of robot joints and, thus, the reduction of
the robot lifetime, a long-term experiment would have to be performed simultaneously on
at least two identical robots. One robot would be placed in a location with a good (low)
f f value and the other—reference—robots would perform the same task from locations
with higher f f values. Afterward, the robots would have to be partially disassembled to
analyze and compare the mechanical degradation of the joints.

The cases when the workplace is used alternately for several different tasks and, thus,
the robot performs more than one movement trajectory could also be addressed. The
trajectories could either be combined into one for the simulation, or the method could be
applied to each trajectory separately and then the results would be combined, for example
by interpolation using weight coefficients given by the frequency of use of the trajectories.

Although this method does not require extremely precise dynamic simulation, this
aspect could also be improved by creating a more accurate dynamic model of the robot,
for example using some of the dynamic parameter identification method [32]. However,
the simulation of friction and other complex phenomena will always be simplified in
commonly available simulation systems.
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