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Featured Application: This study proposes a method for quantifying the effect of uncertainty
characteristics of renewable energy resources on power system flexibility, based on the ramping
capability shortage probability index. The procedure involves scenario generation and evalua-
tion of uncertainty characteristics. The proposed approach can provide system operators with
the means to evaluate uncertainty characteristics, as well as possible strategies for a more flexible
power system.

Abstract: This study investigates the effect of uncertainty characteristics of renewable energy re-
sources on the flexibility of a power system. The more renewable energy resources introduced,
the greater the imbalance between load and generation. Securing the flexibility of the system is
becoming important to manage this situation. The degree of flexibility cannot be independent of the
uncertainty of the power system. However, most existing studies on flexibility have not explicitly
considered the effects of uncertainty characteristics. Therefore, this study proposes a method to
quantitatively analyze the effect of uncertainty characteristics on power system flexibility. Here, the
uncertainties of the power system indicate the net load forecast error, which can be represented as a
probability distribution. Of the characteristics of the net load forecast error, skewness and kurtosis
were considered. The net load forecast error was modeled with a Pearson distribution, which has
been widely used to generate the probability density function with skewness and kurtosis. Scenarios
for the forecast net load, skewness, and kurtosis were generated, and their effects on flexibility
were evaluated. The simulation results for the scenarios based on a modified IEEE-RTS-96 revealed
that skewness is more effective than kurtosis. The proposed method can help system operators to
efficiently respond to changes in the uncertainty characteristics of renewable energy resources.

Keywords: flexibility; kurtosis; ramping capability shortage probability (RSP); renewable energy
resource (RER); skewness; uncertainty; Pearson distribution

1. Introduction

Since the adoption of the Paris Agreement in 2015, global CO2 emissions have risen
by approximately 4% [1]. In the future, energy transition and proactive efforts such as
revising the nationally determined contributions in each country are needed to reduce
emissions. The Korean government has been struggling with the enactment and reforma-
tion of policies and systems related to climate change and energy transition. The Energy
Transition Roadmap and the Renewable Energy 3020 Implementation Plan were estab-
lished in 2017 [2,3], and many efforts have been made since then to reduce coal power
plants and expand new and renewable energy resources. In the Ninth Basic Electric Power
Supply and Demand Plan established in 2020, the ratio of renewable energy generation to
the total electricity generation in 2040 is targeted at 26.3% (for reference, its value in 2020
was 7.5%) [4]. To enhance the realizability of this plan and revitalize the related industrial
ecosystems under these plans, the Fifth Renewable Energy Basic Plan was established
in 2020 [5].
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Along with these policy and institutional efforts, one of the essentials in introducing
massive renewable energy resources (RERs) is to enhance the flexibility of power systems,
although comprehensive strategies considering the energy sector coupled with using
technologies such as power to gas (P2G) and power to heat (P2H) equally count [6]. The
large penetration of RER into the power system is likely to increase the volatility and
uncertainty of the net load, i.e., the load minus the output of the RER [7]. A growing
amount of variable generation, such as wind and photovoltaic (PV) power plants, requires
more flexibility, where flexibility is defined as the ability of a power system to respond
to the change in net load [8]. The flexibility issue indicates a situation associated with a
lack of flexibility [9,10]. System operators have begun to confront this problem and make
various efforts to enhance adequate flexibility. It is related to not only improving the related
infrastructure and system, such as the development of market mechanisms for flexibly
supplying resources and preemptive network reinforcement, but also advancing the RER
output forecasting technique and the flexibility-considered operation [11,12].

The uncertainty of the RER may largely affect the flexibility of the power system, as it
relates to the shortage risk of flexibility. The uncertainty of the RER in the power system
indicates the forecast error of the RER output, which may cause an unserved net load.
Irrespective of how well the RER output is predicted, its forecast error is inevitable. Thus,
the system operator should consider the forecast error when determining an adequate
level of flexibility [13]. The RER forecast error has been modeled using various types of
probability distributions, such as normal [14–16], Weibull [17], Rayleigh [18], and beta [19]
distributions. In most studies on flexibility evaluation, the RER forecast error has often been
assumed to follow a normal distribution, which has a limit in reflecting the characteristics of
actual error distributions [20,21]. Skewness and kurtosis are representative characteristics
of error distribution [22]. If these characteristics are neglected in the flexibility evaluation,
the system operator may underestimate or overestimate the shortage risk of flexibility
and accordingly may not be able to respond to the net load variation. Although normal
distribution [23,24] and conditional distributions based on historical data [25] have been
used in existing research on flexibility evaluation, the effect of the characteristics of the
forecast error on flexibility is yet to be explicitly analyzed.

This study investigates the effect of changes in the uncertainty characteristics of the
RER on the flexibility of a power system. An index called the ramping capability shortage
probability (RSP) is used to assess flexibility [26]. The Pearson distribution is applied to
model a probability density function (PDF) with the characteristics of skewness and kurto-
sis. The scenarios for evaluation were generated by changing three parameters—forecast
net load (FNL), skewness, and kurtosis. An analysis procedure for the impact of the un-
certainty characteristics on flexibility is proposed. Through the simulation results for the
scenarios, a more effective parameter was confirmed.

The remainder of this paper is organized as follows: Section 2 introduces the flexibility
index RSP, which can quantify the flexibility. Section 3 explains the modeling of NLFE
using the Pearson distribution and describes the analysis procedure for the impact of NLFE
on flexibility. In Section 4, a scenario-based simulation for a modified IEEE-RTS-96 is
presented. The conclusions and future work are presented in Section 5.

2. Flexibility Index: Ramping Capability Shortage Probability

The effect of uncertainty on flexibility can be quantified using a flexibility index called
RSP. It is useful for power-system operators to manage the flexibility shortage situation.
The details of the RSP are as follows.

2.1. System Ramping Capability (SRC), Ramping Capability Requirement (RCR)

The ramping capability (RC) of a power generation unit is defined as the ability to
change in a power generation of a unit over a given period. The aggregated RC can
be thought of as the system’s ability to respond to load-generated imbalance due to
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uncertainties. Flexibility relies on the secured RC. The system RC (SRC) is the total RC in
the system and can be formulated as:

SRCt = ∑
i∈I

Ai,t−∆tOi,t−∆tmin(Pmax,i − Pi,t−∆t, rri∆t) (1)

Here, I means a set of generators. Ai,t−∆t is a random variable representing the
availability of generator i at time t−∆t. Oi,t−∆t is a variable representing whether generator
i is online at time t−∆t. min() is a function selecting a smaller value in the brackets. Pmax,i
is a maximum output of generator i. Pi,t−∆t is the output of generator i at time t−∆t. Rri is
the ramp rate of generator i. ∆t is the minimum interval between operating points. The
SRCt represents the amount of RC the system can supply during time ∆t, considering the
uncertainty. The larger the SRC, the greater the flexibility. However, the uncertainty of
the system can reduce the RC availability, which directly relates to the parameter Ai,t−∆t,
which indicates whether the unit fails from t−∆t to t. The values of Oi,t−∆t and Pi,t−∆t are
determined by the generation schedule.

The RC requirement (RCR) can be expressed as follows:

RCRt = NLFEt + FNLt −∑
i∈I

Ai,t−∆tOi,t−∆tPi,t−∆t (2)

where
NLFEt = LFEt–VGFEt (3)

FNLt = FLt–FVGt (4)

Here, NLFEt is a random variable representing net load forecast error at time t. FNLt
is a forecast net load at time t. LFEt is a random variable representing load-forecast error at
time t. VGFEt is a random variable representing variable generation forecast error at time
t. FLt is a forecasted load at time t. FVGt is the forecast variable generation at time t. The
RCRt indicates the amount of RC required to manage unexpected net load fluctuations and
unit failures from t−∆t to t. The random variables NLFEt, LFEt, and VGFEt represent the
forecast errors.

2.2. Ramping Capability Shortage Probability (RSP)

If the situation where SRCt is lower than RCRt continues, load shedding is required;
this situation is called the RC shortage. The risk of an RC shortage at time t is defined as
the RC shortage probability (RSPt) and is represented as follows:

RSPt = ∑
e∈Et

Prob(e)

[
∑

c∈Ct−∆t

Probc

[
FNLt + NLFEt > ∑

i∈I
Ai,t−∆tOi,t−∆t{Pi,t−∆t + min(Pmax,i–Pi,t−∆t, rri∆t)}

]]
(5)

Here, Et is a set of NLFEt and e is an element of Et. Prob(·) is a function calculating
probability in the brackets. Ct−∆t is a set of combinations of Ai,t−∆t when Oi,t−∆t is nonzero
for all i. c is an element of Ct−∆t. Probc[·] means a probability of c if condition [·] is
satisfied, 0 otherwise. The random variables representing the uncertainties are At−∆t and
NLFEt. Ct−∆t and Et are the set of possible cases for Ai,t–∆t and NLFEt, respectively. FNLt
determines an online set of generating units, and NLFEt is expressed as the % value of FNLt;
thus, any variation in FNLt may affect not only Ot−∆t and Pi,t−∆t but also Ai,t−∆t and NLFEt.
The RSPt is calculated in the worst-case scenario, i.e., unexpected unit failures and net-load
deviation occur just before the considered time t, and the imbalance cannot be resolved
by a post-recovery action. This consideration is useful for reducing the computational
burden of large-scale power systems. Meanwhile, the effect of complementarity between
RERs is reflected in the NLFEt. If the aggregated output of RERs changes, FNLt varies, and
VGFEt and NLFEt vary accordingly. For reference, Ct−∆t is exemplified as follows: two
generating units are online at times 1 and 2. The state of each unit at each time can be
represented as either 1 (online) or 0 (failed). All possible cases at time 1 (i.e., C1) are thus
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represented as (0,0), (0,1), (1,0), and (1,1). For reference, the probability of every element is
calculated using a Markov-chain-based generator model; for further details, please refer
to [27]. Et is exemplified as follows: FNLt at time t is 10 MW. The NLFEt is assumed to
follow the skewed distribution shown in Figure 1. Et is thus (−1 MW), (0 MW), and (1 MW)
by multiplying 10% and 10 MW, and the probability of each element is 0.25, 0.25, and
0.5, respectively.
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3. Evaluation of the Effect of Uncertainty Characteristics on Flexibility
3.1. Modeling NLFE Characteristics Using a Pearson Distribution

The output of RERs is volatile and uncertain. The forecasted output involves a forecast
error, which can be modeled as a random variable. Regardless of how well the output
is predicted, the forecast error is inevitable, and the system operator cannot avoid it.
Flexibility enhancement is thus necessary to deal with the forecast error, which indicates
the risk of the system. The system operator should determine an adequate level of flexibility,
which can be quantified using the RSP index. The forecast error of the renewable energy
resource, i.e., VGFE, is reflected within the NLFE in the RSP calculation., i.e., NLFE is set
as LFE minus VGFE. This RSP method was used to estimate the RC shortage, and the RC
requirement was associated with the NLFE.

The normal distribution has been used to model NLFE in the RSP calculation [28,29];
however, it has a limitation in representing the distribution of NLFE characteristics such as
skewness and kurtosis [30]. The Pearson distribution has been widely used to generate the
PDF with skewness and kurtosis [31]. An advantage of the Pearson distribution over other
distributions, such as the Weibull distribution, is the use of PDF moments to determine
the distribution parameters. This distribution can be modeled as a function of skewness
and kurtosis, and it allows the separate analysis of the effects of skewness and kurtosis.
Thus, the Pearson distribution is applied to the NLFE model. It refers to a family of several
probability distributions; it is made up of seven probability distributions, i.e., Type I to VII.
If the values of the first four moments are known, i.e., mean, standard deviation, skewness,
and kurtosis, the PDFs can be generated. Some of these types are listed in Table 1.
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Table 1. Main PDF types of the Pearson distribution according to the parameter γ.

PDF Type Equations with Origin at the Mean Type Decision

I φ*(z*) = y0
(
1 + z*/A1

)m1(1− z*/A2
)m2 −∞ < γ < 0

IV
φ∗(z∗) =

y0

(
1 + (z∗/a − v/r)2

)−m
e−v tan−1 (z∗/a−v/r)

0 < γ < 1

VI φ∗(z∗) = y0(1 + z∗/A1)
−q1 (1 + z∗/A2)

q2 1 < γ < ∞
Normal
Curve φ∗(z∗) = 1√

2π
e(−z∗2/2) γ = 0, Psk = 0, Pk = 0

II φ∗(z∗) = y0(1− z∗2/a2)
m

γ = 0, Psk = 0, Pk < 3
VII φ∗(z∗) = y0(1 + z∗2/a2)

−m γ = 0, Psk = 0, Pk > 3

In the last column, the parameter γ is defined as follows:

γ =
P2

sk(Pk + 3)2

4
(
2Pk − 3P2

sk − 6
)(

4Pk − 3P2
sk
) (6)

where Psk and Pk are the skewness and kurtosis of the NLFE, respectively. The PDF type is
determined according to Psk, Pk, and γ. For reference, parameters such as y0, A1, A2, m1,
m2, a, r, v, m, q1, and q2 can be calculated using the following moments: mean, standard
deviation, skewness (Ps), and kurtosis (Pk). For further details, please refer to [32]. Table 2
presents a simple example of the parameters of the Pearson distribution of NLFE, and the
corresponding results are shown in Figure 1. The skewness and kurtosis are only varied,
i.e., the mean and standard deviations are kept the same. The results for C11 to C17 and
those of C21 to C27 correspond to Figure 2a,b, respectively.

In Figure 2a, the PDF for the negative (positive) skewness is skewed to the left (right).
In Figure 2b, the larger the kurtosis, the sharper the PDF at the center; however, the differ-
ence between each PDF according to the increase in kurtosis becomes increasingly smaller.

Table 2. Numerical example of Pearson distribution of NLFE: (mean: 0, standard deviation: 1).

Case Skewness Kurtosis PDF Type

C11 0 3 0
C12 −0.3 3 1
C13 −0.5 3 1
C14 −0.7 3 1
C15 0.3 3 1
C16 0.5 3 1
C17 0.7 3 1
C21 0 4 7
C22 0 5 7
C23 0 6 7
C24 0 8 7
C25 0 10 7
C26 0 50 7
C27 0 200 7

3.2. Evaluation Procedure for the Effect of NLFE Characteristics on Flexibility

To define the effect-evaluation procedure, the following thing was first considered:
the time interval when the largest RSPt occurs was chosen because it is the riskiest time in
terms of flexibility. This assumption helps enhance analyzability while considering that
the entire time interval may be time-consuming in analyzing the result. Moreover, this
study does not focus on evaluating the flexibility related to the load-generation balance
for the whole period but rather on analyzing the effect on flexibility according to the
changes in the NLFE characteristics. If the entire period is considered, the effect of the
NLFE characteristics is weakened during the evaluation of flexibility.
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In addition to the NLFE characteristics, the FNL is included as a parameter because it
can affect the online state of generating units through the generation schedule and thus the
flexibility. The FNL also changes the extent to which the NLFE characteristics affect the
flexibility because the NLFE is expressed as the % value of the FNL. Thus, three parameters
were considered: skewness, kurtosis, and FNL. The generation schedule and RSP can be
varied using these parameters. Its influence on flexibility is the RSP result. The scenarios
for NLFE characteristics and FNL are listed in Table 3.
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Table 3. Scenarios for three parameters: FNL, skewness (Psk), kurtosis (Pk).

Scenario # FNL, MW Skewness, Dimensionless Kurtosis, Dimensionless

S1 High Particular range Fixed
S3 Fixed Particular range
S4 Medium Particular range Fixed
S6 Fixed Particular range
S7 Low Particular range Fixed
S9 Fixed Particular range

The impact of skewness and kurtosis on flexibility may vary with FNL because the
generation schedule can be changed with the FNL. Thus, the FNL is arbitrarily divided into
three classes—high, medium, and low. The basic case of the FNL was set to the medium
class. The values of skewness and kurtosis are given as a particular range; in particular, the
sign of skewness needs to be considered. Each parameter in the scenarios can be selected
based on the given system. Empirical approaches can be used to determine the class and
level of the FNL. To analyze the individual effect for every FNL, the following condition is
considered: the skewness (kurtosis) is fixed, and the kurtosis (skewness) is changed. The
influential factor can be determined through the flexibility evaluation for each scenario.
The evaluation procedure is summarized in Figure 3.
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4. Case Study
Basic Information

The main goal was to investigate the effects of the characteristics of uncertainty
on flexibility. A test system is designed by adding the wind power plants of 1250 MW
to the IEEE-RTS-96; an effective load-carrying capability of the plants is estimated at
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79.88 MW [33]. The test system is composed of 26 generating units of 3,105 MW. Figure 4
shows the FNL profile; a peak load of 2,531 MW occurs at hour 19. The hourly generation
schedule is determined using dynamic programming. All generating units are assumed
in the spinning state; this condition is required to estimate the maximum value of the
flexibility of the system. The RSPt was calculated using MATLAB programming (R2020a
version) [34]. The simulation for the test system was performed on a PC with 64 GB RAM
and a 3.49 GHz CPU. As shown in Figure 5, a seven-step approximation was applied to
calculate the probability of the NLFE distribution.
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According to the solution procedure shown in Figure 3, the following steps were
performed. Step 1: The results of the RSPt calculation are shown in Figure 6. Hours 18–19
were determined as the most critical time interval because the highest value appears at
hour 19.

Steps 2 to 4: Table 4 shows the generated NLFE scenario. The class and level of
FNL were selected such that the high class (low class) was set at 101% and 102% (99%
and 98%) of the FNL of the base case. A day-ahead NLFE distribution of the California
Independent System Operator (CAISO) in the USA is applied as the NLFE of the base
case [22]. The values of the mean, standard deviation, skewness, and kurtosis were
−0.002, 0.026, 0.715, and 4.725, respectively, and the corresponding PDFs are represented in
Figure 7. The standard deviation of the NLFE can be calculated as approximately 65.8 MW,
i.e., multiplying 2,531 MW with 0.026 because the “normalized” NLFE (of the x-axis) is
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0.026. The ranges of the skewness and kurtosis change from −0.115 to 1.515 and 0.725
to 28.725 with increments of 0.2 and 4, respectively. The PDFs for the sampled values of
skewness and kurtosis in S5 and S6 are shown in Figure 8.
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Table 4. Scenario for three parameters: FNL, skewness (Psk), kurtosis (Pk).

Scenario, S# FNL, % Skewness,
Dimensionless

Kurtosis,
Dimensionless

S1 102% −0.115 to 1.515 Fixed, i.e., 4.725
S2 102% Fixed, i.e., 0.715 0.725 to 28.725
S3 101% −0.115 to 1.515 Fixed, i.e., 4.725
S4 101% Fixed, i.e., 0.715 0.725 to 28.725
S5 100% −0.115 to 1.515 Fixed, i.e., 4.725
S6 100% Fixed, i.e., 0.715 0.725 to 28.725
S7 99% −0.115 to 1.515 Fixed, i.e., 4.725
S8 99% Fixed, i.e., 0.715 0.725 to 28.725
S9 98% −0.115 to 1.515 Fixed, i.e., 4.725

S10 98% Fixed, i.e., 0.715 0.725 to 28.725
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Step 5: The hourly generation schedules for every scenario, i.e., S1 to S10, are de-
termined based on the given FNL. Flexibility evaluation was later performed for every
scenario. Figures 9 and 10 show the RSPt results according to the changes in skewness and
kurtosis over a certain range, respectively. In both Figures, RSPt decreases (increases) ac-
cording to the decrease (increase) in the FNL. This is because the available reserve capacity
of the generating unit varies with the FNL.

In each Figure, a sudden change in RSPt occurs, i.e., the points of change lie between S5
and S7, and S6 and S8 in Figures 9 and 10, respectively. Sensitivity analysis was performed
for both skewness- and kurtosis-varying scenarios; the points of change were 99.7% of the
FNL of the base case in both scenarios. If the RSPt is evaluated for a wider range of FNL
than that of the FNL of the scenario, more points of change may appear. The changes in
the FNL can cause a sudden change in the RSPt because the committed set and operating
conditions of the generating units change before and after the point of change. When
there is no abrupt change in the RSPt, the changes in skewness and kurtosis were more
influential than the FNL. It can be simply confirmed by comparing S7 and S9 that the RSPt
in both scenarios increases with skewness; however, there is little difference between RSPt
in these scenarios as the skewness changes.
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The ratio of the skewness increment, i.e., 0.2 (the kurtosis increment, i.e., 4), to the
skewness (kurtosis) of the base case is approximately 28% (85%). The ratio for skewness is
smaller than that for kurtosis; however, the effect of skewness is greater than that of kurtosis.
It can be compared with the relative RSPt ratio, defined as the RSPt divided by the ratio
calculated above. The largest relative RSPt for the skewness-varying (kurtosis-varying)
scenario is 4.19% (1.41%); for reference, the largest changes in RSPt in the skewness-varying
and kurtosis-varying scenarios are between 4.725 and 8.725 and 1.315 and 1.515 in S5
and S6, respectively. The average value of the relative RSPt for the skewness-varying
(kurtosis-varying) scenarios for the entire interval was 1.72% (0.41%). In the kurtosis-
varying scenarios, the RSPt in S2, S4, S6, S8, and S10 decreases with an increase in kurtosis.
In the skewness-varying scenarios, the RSPt in S7 and S9 increases with an increase in
skewness, whereas those in S1, S3, and S5 decrease. If the PDF is skewed to the left (i.e.,
the increase in skewness), it indicates that the load unexpectedly decreases. The RSP
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index captures the risk associated with increasing loads only; thus, decreasing loads can be
considered better cases in terms of risk, and therefore, the RSPt (i.e., risk) decreases. This is
because the probability of small normalized NLFEs is also reduced. This is confirmed by
the graphs in Figure 8a.

5. Conclusions

This study investigated the impact of skewness and kurtosis of the NLFE on flexibility.
The contribution is to propose a method for the effective analysis of NLFE characteristics
on flexibility. The effect on flexibility was captured using a flexibility index called RSP. The
skewness and kurtosis of the NLFE were represented with a Pearson distribution. A case
study for a modified IEEE-RTS-96 was conducted for the scenarios of FNL, skewness, and
kurtosis. The simulation results also indicated that an abrupt change in the RSP can occur
with the increase in the FNL. It was also observed that skewness with fixed kurtosis was
more effective than kurtosis with fixed skewness. The proposed method is expected to help
system operators to cope with changes in uncertainty characteristics. In future work, the
application of this method to a real power system will be interesting.
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