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Abstract: We report a direct tunable diode laser absorption spectroscopy (dTDLAS) instrument
developed for NO2 concentration measurements without chemical pre-conversion, operated as an
Optical Gas Standard (OGS). An OGS is a dTDLAS instrument that can deliver gas species amount
fractions (concentrations), without any previous or routine calibration, which are directly traceable
to the international system of units (SI). Here, we report NO2 amount fraction quantification in the
range of 100–1000 µmol/mol to demonstrate the current capability of the instrument as an OGS for
car exhaust gas application. Nitrogen dioxide amount fraction results delivered by the instrument
are in good agreement with certified values of reference gas mixtures, validating the capability of
the dTDLAS-OGS for calibration-free NO2 measurements. As opposed to the standard reference
method (SRM) based on chemiluminescence detection (CLD) where NO2 is indirectly measured after
conversion to NO, titration with O3 and the detection of the resulting fluorescence, a dTDLAS-OGS
instrument has the benefit of directly measuring NO2 without distorting or delaying conversion
processes. Therefore, it complements the SRM and can perform fast and traceable measurements,
and side-by-side calibrations of other NO2 gas analyzers operating in the field. The relative standard
uncertainty of the NO2 results reported in this paper is 5.1% (k = 1, which is dominated (98%) by the
NO2 line strength), the repeatability of the results at 982.6 µmol/mol is 0.1%, the response time of the
instrument is 0.5 s, and the detection limit is 825 nmol/mol at a time resolution of 86 s.

Keywords: gas analysis; laser absorption spectroscopy; dTDLAS; nitrogen dioxide (NO2); metrology

1. Introduction

Nitrogen dioxide (NO2) is a prominent air pollutant emitted from combustion pro-
cesses, burning fuel, cars or power plants. Exposure to elevated levels of NO2 in the
atmosphere causes serious respiratory diseases [1]. Accurate and reliable measurement
methods for amount fraction (concentration) levels below 1 ppm are needed for atmo-
spheric NO2 air quality control [2] and to monitor NO2 emitted directly from the exhausts
of cars (1–2500 µmol/mol, note: µmol/mol is often called ppm) as required for the type
approval emission limits quality control test (i.e., the EURO 5/6 emission standard states
the range of NO2 emission levels, which need to be measured during type approval, to be
in the 1–30 µmol/mol for cars with a functional exhaust catalyst, and 30–1000 µmol/mol
for cars with a malfunctioning exhaust catalyst). The standard reference method (SRM)
for measuring NO2 is based on chemiluminescence detection (CLD), as documented in
the European standard EN 14211:2012 [3], where NO2 is only measured indirectly (i.e.,
NO2 in a sample is calculated from the difference of NOx and NO after the conversion
(catalytic or photolytic) of NO2 to NO. The NO then reacts with the ozone (O3) to produce
electronically excited NO*2 which decays to NO2 and emits light (luminescence) that is
detected by, e.g., a photomultiplier tube. The NOx concentration is determined using the
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measured signals, and the NO2 concentration by subtracting NO (detected in an indepen-
dent parallel channel) from NOx [4,5]). This indirect measurement of NO2 can lead to an
overestimation of NO2, as other NOy gas species (HNO3, HNO2, N2O5) in the sample can
also be converted into NO as well. It is worth noting that NO2 is the only air pollutant
where the SRM is based on an indirect measurement. Due to the fact that NO2 is only
indirectly measured, very reactive and that there is a lack of accurate static calibration
reference materials CRM (gases), e.g., for car exhaust gas applications, in the 1–2500 ppm
range with ≤1% uncertainties, there is the need to implement new accurate and reliable
measurement methods (reference methods for ambient air and other applications) for direct
NO2 measurements [2] and alternative calibration approaches (e.g., an instrument standard
OGS) to complement CRMs [6].

Laser spectroscopic techniques provide an option to develop opportunities for accu-
rate and reliable measurement methods for direct NO2 measurements [2]. Laser absorption
spectroscopy has been demonstrated for direct measurements of the concentration of a
variety of molecules in different applications such as atmospheric monitoring, combus-
tion diagnostics and breath analysis [7–21], and therefore can serve as a good candidate
to develop a reference method for direct NO2 measurements. There have been several
studies to perform direct NO2 measurements and also addressing the shortcomings in the
SRM-based measurements [2,22–26]. For atmospheric NO2 measurements, spectroscopic
techniques such as tunable diode laser absorption spectroscopy (TDLAS), quantum cascade
laser absorption spectroscopy (QCLAS), cavity ringdown spectroscopy (CRDS), photoa-
coustic spectroscopy (PAS) and cavity attenuated phase shift spectroscopy (CAPS) have
been reported with sub ppb detection limits [22,24,27–29]. Differential optical absorption
spectroscopy (DOAS), TDLAS, PAS and CRDS have been successfully demonstrated for
the detection of NO2 emitted from automobile and aircraft engines, with detection limits in
ppm down to the ppb range [23,30–33]. To date, for these spectroscopic NO2 measurements,
information on the metrological traceability and uncertainty assessment following, e.g.,
the guide to the expression of uncertainty in measurement (GUM) [34] is rarely reported.
Metrological traceability of results (i.e., traceability of the results to the SI) and uncertainty
assessments according to the GUM [34] of the NO2 results derived using spectroscopic
measurement methods are critical for quality control measurements [2] and type approval
purposes [35].

Direct tunable diode laser absorption spectroscopy (dTDLAS) combined with the
TILSAM (traceable infrared laser-spectrometric amount fraction measurement) method [36],
has been demonstrated in a variety of applications addressing metrology data quality (SI-
traceability and GUM compliant uncertainty assessments). dTDLAS is a variant of TDLAS
that combines TDLAS with a special data evaluation procedure to derive concentration
results that are directly traceable to the SI [7,37]. As reported on our previous work, a
dTDLAS instrument is referred to as an optical gas standard (OGS) [7–10,37]. An OGS is
similar to the ozone standard reference photometer (SRP) [38]. Employing dTDLAS, fast
measurement frequencies (from sub-Hz to Hz) and response times (e.g., milliseconds to
seconds) required in field measurements can be reached [39–42]. Focusing here on a new
development for direct NO2 (reactive gas) measurements in car exhaust gases, our previous
works in [7–10,37] focused on dTDLAS instrument developments for the measurement of
H2O, CO and CO2 and H2O as well as reaching fast measurement frequencies [39–42].

In this paper, we report the details of a new dTDLAS spectrometer [43] specifically
designed and developed for accurate direct NO2 measurements. The focus of this work
was to report the development stages of the NO2 dTDLAS instrument towards an OGS
(an instrument standard for direct NO2 measurements), the testing and validation steps
performed, the potentials and the current limitations of the instrument. The capabilities
for direct NO2 measurements (looking at all measured quantities desired for the results)
are demonstrated via NO2 concentration measurements. A comparison of calibration-free
dTDLAS NO2 concentration results (range: 100–1000 µmol/mol, within the car exhaust
NO2 concentration range) versus certified reference gas mixtures is done as a validation
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step. We further show that the instrument is capable of direct NO2 measurements in car
exhaust gas matrix. In order to compete with, and compliment CRMs and supplement the
SRM for NO2 measurements, with other gas matrices such as the car exhaust gas matrix in
focus, the traceability of the spectroscopic results to the SI is addressed and an uncertainty
assessment following GUM principles is made for the NO2 results.

2. Experimental

Figure 1 depicts a schematic of the dTDLAS spectrometer for direct NO2 measure-
ments [43]. The instrument employs an interband cascade DFB laser (Nanoplus) emitting
at 3.4 µm, a 77 cm silconert© coated stainless-steel single pass gas cell and a photovoltaic
mid-infrared detector (Vigo system, detector diameter: 1 mm2). The sampling lines as
well as the gas cell are coated to minimize the potential adsorption effects of NO2 in the
gas sample. For spectroscopic measurements, NO2 gas samples flow (typical flow rate:
1.5 L/min) through the gas cell controlled by a mass flow controller (MFC, Bronkhorst)
at the gas input and a valve at the output (connected to a pump) of the sampling lines
as shown in Figure 1. The laser wavelength is swept at a frequency of 139.8 Hz (similar
to [7–10], and the collimated laser light is passed through the gas cell on to the detector. The
signal from the detector, pre-amplified with a transimpedance amplifier (Femto DLPCA
200), is acquired using a data acquisition card (DAC, 18 bits, 625 KS/s NI PCI-6289) and is
subsequently saved on a personal computer (PC) with a state-of-the-art operating system.
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Figure 1. Schematic of the dTDLAS instrument for direct NO2 measurements (Det: detector).

Figure 2a depicts typical signals (with NO2 absorption lines visible around 2919.6 cm−1)
measured at 0.2 Hz (the measurement frequency for single scan measurements is 18 Hz, i.e.,
~0.056 s time resolution which is longer than the acquisition time of approximately 0.00352 s
(2200 points on the up ramp at 625KS/s) due to the extra time needed to save the data using
our acquisition software and corresponds to a time resolution of about ~5.6 s, i.e., ~0.2 Hz
measurement frequency for 100 averaged single scans) for a gas mixture with an NO2
amount fraction of 979 µmol/mol in the air. It could be noted here that the measurement
frequency is different from the laser modulation frequency of 139 Hz. The absorbance
data (Figure 2b derived using the data in Figure 2a, 100 averaged scans, 739 points in
the fit window) are fitted by a set of 8 Voigt profiles [44] in order to derive the line areas
(areas underneath the absorption lines), i.e., together with the NO2 line at 2919.59 cm−1, 7
other neighboring NO2 lines (see right y axis and the lines in red: line strength [45] plot in
Figure 2b) are fitted in the spectral window selected for data analysis. The fitting was
performed with the line positions, the line areas and the Lorentzian line widths kept free.
The Doppler line widths were calculated at the measured gas temperature.
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Figure 2. (a) Typical waves at 108 hPa signals measured using the spectrometer in Figure 1; (b) absorbance data derived
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The bottom panel of Figure 2b shows the residuals from the multiline Voigt fit with
1σtotal = 2.7 × 10−4. Using the 1σtotal value and the peak absorbance value of 0.092, a signal-
to-noise ratio of 341 was calculated for the data in Figure 2b. Due to the signal-to-noise
ratio (SNR) around and below 100 and the complex multi-line structure of the NO2 line
used, higher order line shape profiles like Galatry or Hartmann–Tran profiles [46–48] were
not found to be suitable and advised to fit the data in this work. Using the line area of
the NO2 line at 2919.59 cm−1, derived for the data in Figure 2b, the NO2 amount fraction
(concentration) xNO2 can be derived using Equation (1) (which is derived from the Beer
lambert law) [7]:

xNO2 =
kB · T

ST · L · ptotal

∫ ∞

−∞
A(ν̃)dν̃ =

kB · T
ST · L · ptotal

· Aline (1)

where the quantity kB is the Boltzmann constant, ST is the line strength of the probed
molecular transition at gas temperature T, L is the optical path length of the light beam
transmitted through the absorbing medium, ptotal the total gas pressure, A(ν̃) the spectral
absorbance and Aline the line area. The amount fraction (concentration) results xNO2 is
directly traceable to the SI if all the quantities in the right-hand side of Eqn. 1 are traceable
to the SI as well [7–9,37]. To this end, xNO2 results are derived without the calibration of the
instruments with a reference gas mixture. As introduced, an instrument that can deliver
amount fraction results that are directly traceable to the SI shall be referred to as an optical
gas standard (OGS).

From the data in Figure 2b, a line area value of 0.0010999414 cm−1 is derived for the
NO2 line 2919.59 cm−1, and a dTDLAS amount fraction value of (982.0 ± 49.1) µmol/mol
calculated according to Eqn. 1 is combined with the TILSAM method [36]. This measured
NO2 amount fraction is in good agreement with the certified value of (979 ± 20) µmol/mol
reported for the probed gas mixture, demonstrating the capability of the instrument for an
absolute (“calibration-free”) direct NO2 amount fraction measurements.

Table 1 holds an uncertainty budget for dTDLAS NO2 results. As shown in Table 1,
the combined uncertainty of the NO2 results is 5.1% (k = 1). The quantity k is a cov-
erage factor [34]. The uncertainty of the amount fraction results of 5.1% is dominated
by the uncertainty of the measured line area (1%) and the literature line strength value
(5% [45]) as indicated by the higher index values (% individual contribution) in Table 1. The
uncertainties of the other significant input quantities (ptotal, T, kB, L) are all less than 0.2%.
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Table 1. Uncertainty budget of the NO2 amount fraction results.

Parameter Value Relative Standard
Uncertainty (k = 1)/%

Index (% Individual
Contribution)

Pressure 108.5 hPa 0.20 0.10

Temperature 294.3 K 0.10 ≤0.05

Path length 77.4 cm 0.13 ≤0.05

Line strength
(HITRAN value [40])

5.425·10−21

cm/molecule
5.00 96.00

Line area 0.0010999414 cm−1 1.00 3.80

NO2 concentration
(xNO2 ) result 982 µmol/mol 5.10 (combined

uncertainty)

In order to determine the repeatability of the measurements delivered by the instru-
ment, Figure 3a shows repeated measurements of NO2 amount fractions performed with
the 979 µmol/mol NO2 in synthetic air gas mixture. The mean value of the results in
Figure 3a is 982.6 µmol/mol, the reproducibility (1σ, standard deviation) is 8.7 µmol/mol
(0.9%) and the repeatability (standard deviation of the mean) is 0.5 µmol/mol (0. 1%).
The excellent repeatability of 0.1% demonstrates the capability of a dTDLAS instrument
for NO2 OGS applications. The inset in Figure 3a shows a histogram of the measure-
ments, depicting a normal distribution of the results with a full width at half maximum
(FWHM) of 9.2 µmol/mol (corresponding to an SNR of 107 for the amount fraction results
at 979 µmol/mol). Figure 3b depicts a plot of the Allan deviation [49] of the NO2 amount
fraction results (here, the measurements are done at 2 Hz, i.e., at 0.5 s with 10 averaged
scans) as a function of time. From the Allan plot in Figure 3b, an optimal precision of
825 nmol/mol (detection limit) is evaluated (conservatively, as there is no minimum visible)
for the instrument at a time resolution of 86 s.
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Repeated measurements were performed at different amount fraction levels (switch-
ing from about 100 to 1000 µmol/mol as shown on Figure 4a) to study the behavior,
response and linearity of the instrument. The gas mixture used for the measurements at
the lowest amount fraction level of 100 µmol/mol was a primary gas mixture (SI traceable,
prepared using gravimetry by a national metrology institute). At 300 µmol/mol we used a
commercial gas mixture (secondary: SI-traceable, with a Deutscher Kalibrierdienst-DKD
certificate [50]) and that at 1000 µmol/mol was a commercial gas mixture from the same
manufacturer (internally assigned, with no SI-traceability information provided). The
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standard uncertainty reported for the NO2 amount fractions in these gas mixtures are all
1% (k = 1), corresponding to expanded uncertainties of 2% (k = 2).
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Figure 4. (a) Plot of the NO2 OGS amount fraction results at different levels as a function of time (at ∆t = 86 s, 1σ for 108.4,
305.0 and 983.5 are 6.2, 9.9 and 9.6, respectively); (b) dTDLAS NO2 amount fraction xNO2 results as a function-certified
values of gas mixtures.

As presented, the sampling lines and the gas cell were all coated by Silconert, resulting
in a fast response time of 0.5 s for the NO2 measurements in Figure 4a. It could be noted
here that this response time of 0.5 s does not also include the cylinder switching time
and the time of manually opening valves to introduce the NO2 gas sample into the gas
cell. The repeatability (calculated as the standard deviation of the mean) at the lowest
NO2 results at the 100 µmol/mol level is 0.5 µmol/mol (0.5% relative). At the respective
amount fraction levels, 1σ (standard deviation) values were evaluated, demonstrating
the short-term reproducibility (<10 µmol/mol at 1σ) for the NO2 OGS results. Using the
respective 1σ values, an SNR from 18 at 100 µmol/mol to 106 at 1000 µmol/mol levels, at a
time resolution of 86 s, were evaluated for the measurements in Figure 4a.

Figure 4b shows a plot of the NO2 amount fraction results as a function of the certified
values reported for the probed gas mixtures. A generalized linear regression (GLR) was
applied to the data in Figure 4b, resulting in a slope of 0.984 ± 0.095 (k = 2) and an intercept
value of (10.25 ± 16.10) µmol/mol, respectively. The slope value of 0.984 shows the
good accuracy of the dTDLAS instrument, while the small deviation from the linear fit
shows good linearity. The intercept value is consistent with zero, indicating an offset free
measurement. The relative residuals from the linear model in the bottom panel of Figure 4b
are all within the 1% range and thus well within the expanded uncertainty of the dTDLAS
results of 5.1%, k = 1), which shows good agreement (compare well; validation step) with
the certified values associated with the gas mixtures.

3. Discussion

The NO2 OGS spectrometer was tested in the concentration range from 100 to 1000
µmol/mol and was found to be in good agreement with the certified values of the reference
gases, demonstrating the calibration-free OGS capability of the instrument. The detection
limits of the dTDLAS instrument are 0.825 µmol/mol (at ∆t = 86 s) and the relative
uncertainty of the results delivered by the instrument is 5.1%, k = 1. This relative standard
uncertainty was derived following GUM [34] principles. These results indicate that the
instrument has the potential to measure NO2 (that can be in the 1 to 1000 µmol/mol:
detection limit of 0.825 µmol/mol) emitted from the exhaust of cars as further supported
by the simulation (HITRAN [45] line data used) in Figure 5 where the interference (due to
absorption by other exhaust gas molecules) on NO2 absorption is insignificant (absorbance
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in the order of 10−5 for H2O, NO2, CO2, and CO: L = 77.4 cm, p = 100 hPa, T = 296 K).
As presented, the relative repeatabilities of the NO2 results at 1000 µmol/mol and lowest
amount fraction of 100 µmol/mol are 0.1% and 0.5%, respectively. Table 2 holds a summary
of the capabilities of the NO2 OGS instrument presented in this work.
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Table 2. Summary of NO2 OGS instrument capabilities.

Quantity Value

Current concentration range (NO2) 100–1000 µmol/mol

Optimal precision 0.825 µmol/mol at
∆t = 86 s

GUM compliant total relative uncertainty 5.1% (k = 1)

Relative repeatability at 1000 µmol/mol and at
100 µmol levels 0.1% and 0.5%

Time resolution
(max = single scan to 10 scan average) 0.06 * sec to 0.5 s

* >acquisition time of 3.5 ms as extra time is needed to save the data.

The relative uncertainties of the NO2 results of 5.1% (k = 1) are dominated (96% of the
total uncertainty) by the uncertainty of the line strength value. Therefore, to further reduce
the uncertainty of the results, future work will be focused on reducing the uncertainty
of the line strength value. Since the dTDLAS results are in good agreement with the
certified values (see Figure 4b), it can be concluded that the line strength used for the
analysis is validated. The line strength value is taken from the HITRAN database [45].
This first validation of the line strength value was further assessed in a separate analysis
to determine the line strength value from the data measured with the 300 µmol/mol
gas mixture, resulting in a line strength value of (5.444 ± 0.076)·10−21 cm/molecule,
k = 1, at 294.4 K for the NO2 line 2919.59 cm−1. It could be noted here that the accuracy
of the measured line strength would be dependent on the accuracy of the certified gas
mixture used. This line strength value (5.444 ± 0.076)·10−21 cm/molecule is in agreement
with HITRAN’s [45] value of (5.425 ± 0.271)·10−21 cm/molecule, k = 1, at 296 K, further
validating the HITRAN value [45]. In order to test the effect of a new line strength value
with a reduced uncertainty, we used the line strength value 5.444·10−21 cm/molecule
and the standard uncertainty (0.076·10−21 cm/molecule: 1.4% relative) to evaluate the
uncertainty of the NO2 results (similar to Table 1), yielding relative uncertainty of 1.7%
(k = 1). The uncertainty of the dTDLAS results currently stands at 5.1%, and a 1.7% relative
uncertainty for the NO2 amount fraction results will fulfill the requirements of portable
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emission measurement systems (PEMS) of less than 2% for NO2. Regarding the line
strength, we estimate that we can achieve an uncertainty better than 1.7% or 0.2% in future
line strength measurements, similarly to in our previous works [51,52], which would lead
to a corresponding improvement in the NO2 amount fraction uncertainty. One of the
critical points in achieving an OGS is ensuring direct traceability to the SI. The traceability
of the NO2 amount fraction results in this work was addressed via the traceability of the
input quantities on the right-hand side of Eqn.1, such as quantities ptotal, T, L (SI-traceable
to respective PTB standards). As presented, the validated line strength ST value was taken
from the HITRAN database [45] and SI-traceability was not reported. Therefore, in addition
to a reduced uncertainty in the line strength value, new SI-traceable NO2 line strength
measurements are planned in separate experiments similar to [51,52].

This work shows that an OGS for NO2 amount fraction measurements is feasible.
An OGS (providing direct NO2 amount fraction results traceable to the SI) for NO2 can
complement the current standard reference method (based on CLD), where NO2 is “only”
indirectly measured (note: the concept of indirect measurement is not the issue here, but
rather the conversion efficiency of NO2 to NO and maintaining a minimum residence
time). By providing amount fraction results that are directly traceable to the SI, an OGS
can also complement (use in the place of) calibrate reference gases both in the laboratory
and in the field. An OGS will add the advantage of simultaneous in situ measurement and
side-by-side field NO2 calibrations of other analyzers.

4. Conclusions

We presented a new dTDLAS NO2 instruments are designed to be operated as an
optical gas standard (OGS) and can thus perform absolute (“calibration free”) NO2 amount
fraction measurements directly, i.e., without any chemical conversion which is needed in
the current standard reference method CLD. Nitrogen dioxide amount fractions in the
range of 100–1000 µmol/mol were delivered by the instrument and are in good agree-
ment with certified reference values attributed to the reference gas mixtures. The relative
uncertainty of the results is currently at 5.1% (k = 1) and is almost completely (96%)
dominated by the inaccurate molecular reference data. The relative repeatability of the
results at 982.6 µmol/mol is 0.1% and the instrument response time ranges from 0.5 s
with a 10-scan average to 0.06 s in the single scan mode. Future work will focus on
measuring a new SI-traceable NO2 line strength value to further reduce the line strength
uncertainty influence and thus the instrument accuracy. The instruments’ detection limit of
0.825 µmol/mol makes it well suited for direct measurements of the NO2 concentration in
car exhaust gases. Therefore, further plans are to extend the capability of the instrument
for simultaneous measurements of NO2 and NO concentrations (in both atmospheric, i.e.,
less than 1 µmol/mol level, and car exhaust gas species).
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