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Abstract: Finding an optimal/quasi-optimal path for Unmanned Aerial Vehicles (UAVs) utilizing
full map information yields time performance degradation in large and complex three-dimensional
(3D) urban environments populated by various obstacles. A major portion of the computing time is
usually wasted on modeling and exploration of spaces that have a very low possibility of providing
optimal/sub-optimal paths. However, computing time can be significantly reduced by searching
for paths solely in the spaces that have the highest priority of providing an optimal/sub-optimal
path. Many Path Planning (PP) techniques have been proposed, but a majority of the existing
techniques equally evaluate many spaces of the maps, including unlikely ones, thereby creating time
performance issues. Ignoring high-probability spaces and instead exploring too many spaces on maps
while searching for a path yields extensive computing-time overhead. This paper presents a new PP
method that finds optimal/quasi-optimal and safe (e.g., collision-free) working paths for UAVs in a
3D urban environment encompassing substantial obstacles. By using Constrained Polygonal Space
(CPS) and an Extremely Sparse Waypoint Graph (ESWG) while searching for a path, the proposed PP
method significantly lowers pathfinding time complexity without degrading the length of the path
by much. We suggest an intelligent method exploiting obstacle geometry information to constrain
the search space in a 3D polygon form from which a quasi-optimal flyable path can be found quickly.
Furthermore, we perform task modeling with an ESWG using as few nodes and edges from the
CPS as possible, and we find an abstract path that is subsequently improved. The results achieved
from extensive experiments, and comparison with prior methods certify the efficacy of the proposed
method and verify the above assertions.

Keywords: constrained polygonal space; path length; path planning; obstacles; maps; unmanned
aerial vehicles; urban environments; time complexity; extremely sparse waypoint graph

1. Introduction

Unmanned aerial vehicles (UAVs) are highly useful for executing diverse missions
not only in urban environments but also in hazardous areas that are not easily reachable,
such as forests, deserts, and hilly areas. UAVs (being lightweight, low-cost, and with
the abilities to fly at lower altitudes) are now extensively used for a wide range of both
military and civilian tasks. Owing to military and civilian investments in UAV technology,
this field continuously advances with the passage of time. Based on a forecast by the
Teal Group, the market for UAVs is constantly growing globally, and yearly spending on
this technology is expected to be higher than US $12 billion by 2024 [1]. Advancements
in the technology, such as improved computation capacity, low-cost sensors, artificial
intelligence-based algorithms, and fuzzy logic–based decision-making abilities, enable
UAVs to easily perform many practical applications in complex environments that oth-
erwise would take a long time and require significantly high costs. The economic and
potential applications of UAVs in the real world are most lucrative, including distribution
of vaccines [2], tourism security and safety [3], vegetable inspection [4], document delivery
for libraries [5], industrial applications [6], forest and urban firefighting [7], sensing of large
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areas [8], forestry applications [9], aerial forest fire detection [10], estimating forest struc-
ture [11], traffic monitoring [12], retrieving tree volumes in forests [13], scientific research
data collection [14], optical remote sensing [15], disaster assessment and management [16],
mountain anti-terrorism combat [17], crust detection on steel bridges [18], vehicle detection
in real-time, tracking and speed estimation [19], and ocean exploration assignments [20],
among others. Moreover, the UAVs’ next generation will offer more unique advancements
that may increase their use in military applications around the globe [21,22].

In the majority of civilian or military applications, a UAV usually needs the ability
to search for the target location in a short time while avoiding collisions with obstacles it
may face during the mission. However, without human onboard control, UAV use brings
many challenges that need robust solutions, and, among those challenges, one is searching
for an optimal/quasi-optimal, safe, and time-efficient path between two locations in a 3D
map. Due to the large-scale utilization of UAVs in countless sectors, the Path Planning (PP)
problem has become a very vibrant research topic. PP is a method of finding a workable
path between two locations while safely bypassing obstacles present in the underlying 3D
environment map, simultaneously satisfying one or more optimization objectives, such
as distance, time, and consumption of energy [23]. PP is regarded as a Non-deterministic
Polynomial-time (NP)-hard optimization problem in the robotics field. Generally, there
are two types of PP problems: global PP and local PP. In global PP, finding a path that is
performed in an environment that is known. However, local PP is relatively complicated
because the UAV operating environment can be partially or fully unknown. Taking into
account the mission scenarios of UAVs, pathfinding problems can be divided into two
categories: single-agent and multi-agent. In the latter scenario, the number of deployed
UAVs is more than one, unlike the former in which only one UAV is deployed. The process
for finding a path generally begins with searching a waypoint/visibility graph from one
location and progressing until the target is found. The quality of a PP method usually
relies on choosing low-cost path waypoints from a given graph that contributes to an
optimal/quasi-optimal path with the fewest computations. This study focuses on a single-
UAV PP problem, and our aim is to lower the time complexity without degrading the
path quality.

Many global PP solutions have been designed for augmenting a UAV’s autonomy
in various practical missions in the airspace [24–28]. The pathfinding procedure mainly
encompasses three key steps: (i) modeling the operating environment (e.g., the environ-
ment’s representation with a graph), (ii) employing a search algorithm on the graph to
determine a path, and (iii) applying a heuristic function (e.g., smoothness, energy, distance,
or turns) that accompanies the path search. UAV operating-environment depiction with
precise geometry is imperative in order to determine a low-cost path. Roadmap [29], cell
decomposition [30], and potential field [31] are renowned environment representation
approaches for the configuration space. The search algorithm analyzes the graph for
low-cost pathfinding. Many algorithms for PP on graphs have been developed since 1959
such as Dijkstra’s algorithm [32] and best first search-based greedy algorithm [33]. Both
of these algorithms are regarded as pioneer pathfinding algorithms based on a graph
search. However, the A* algorithm [34] is known as the benchmark and is extensively
used for a low-cost path search. It is more robust than Dijkstra’s algorithm and its variants.
Aside from these famous algorithms, many improved versions of the A* algorithm such as
IDA* [35], Theta* [36], Lazy-theta* [37], LPA* [38], and D*-Lite [39] also have the ability to
find a working path.

Most of the prior PP methods for UAVs do not present deep insights into space
reduction with a good-quality path guarantee, specifically regarding the effective resolution
of the speed-versus-optimality trade-off in complex 3D urban environments. The prior PP
solutions mainly focus on constructing better heuristic functions, and, thereby, memory
overhead can occur. Most algorithms sacrifice either optimality or speed while finding
paths. Meanwhile, in many practical applications for a UAV, the trade-off on any of
the given metrics (e.g., speed or optimality) is not tolerable. Hence, it is mandatory to
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reduce exploration and modeling of low-probability spaces to overcome these computing
issues. Various space modification methods have been designed to increase the pathfinding
speed, such as abstractions in a hierarchical form [40], symmetry breaking [41], sub-
goal graphs [42], jump-point searches [43], accurate heuristics [44], compressed path
databases [45], pruning dominant states [46], swamp hierarchies [47], influence-aware
pathfinding [48], and constraint-aware methods for navigation [49]. Besides the validity
of these latest developments, in most cases, either many low-priority locations of a map
are searched uselessly or path quality significantly degrades. Recently, a number of
studies considered reducing computation times by dealing with pertinent obstacles that
are only crossed along a straight axis in the pathfinding process [50,51]. However, these
mechanisms have higher computational complexity and yield non-taut paths if obstacle
density is high. Hence, these methods are vulnerable to either returning longer paths or
demanding more computing power in determining a path. To address the above limitations,
this study presents a new PP method that significantly lowers pathfinding computing time
without impacting path lengths by leveraging a Constrained Polygonal Space (CPS) and
an Extremely Sparse Waypoint Graph (ESWG) while finding a working path from a 3D
urban environment.

The rest of this paper is structured as follows: Section 2 presents the background and
related work on renowned PP algorithms. Section 3 illustrates the proposed PP method
and describes its main steps. Section 4 explains the results obtained from the simulations.
Finally, the conclusions and future avenues for research are discussed in Section 5.

2. Background and Related Work

In this section, we briefly discuss the UAV operating environment’s modeling tech-
niques, the pathfinding algorithms, and geometric- and sampling-based PP methods.
The initial step of the global PP is to model the real environment with correct geometric
shapes. It is closely linked to the choice of search algorithm because most search algo-
rithms yield good performance when they are collectively employed with a particular
environment’s illustration. A comprehensive discussion about the performance impacts of
distinct environment modeling techniques collectively tested with their respective search
methods was given by Sariff et al. [52]. Many UAV operating environment methods have
been discussed in the published studies. These modeling methods are categorized as
RoadMap (RM), Cell Decomposition (CD), and Potential Fields (PF). Hyungil et al. [53]
presented a comprehensive survey on environment modeling techniques used in PP. Each
modeling method differs in terms of the scale of space/time complexity, the modeling
method’s accuracy, and the path quality. For example, when the cell sizes are relatively
small, CD-based methods yield poor path quality. In contrast, if the cells are too wide,
they are vulnerable to very high time and space complexity. The PF-based methods are
prone to getting trapped in local minima, and, thereby, solution quality can be degraded.
After modeling the environment with a visibility/waypoint graph, a search algorithm is
utilized for the graph’s exploration in order to find a path.

Most of the existing search algorithms explore and model whole maps during the
PP that can lead to various overheads, such as resource-hogging, needless exploration
of many parts of a map, and latency issues during pathfinding. Generally, they do not
take advantage of the available useful knowledge related to obstacles’ geometries from
underlying environments in order to lower the complications in path computing. While
finding a path from a provided graph, they mostly hold all edges that are visible in the
memory, thereby memory requirements of these algorithms are high. Current bio-inspired
search algorithms are vulnerable to pre-mature convergence by relying solely on the
specified parameters that can lead to poor path quality. In addition, they were mostly
tested in semi-urban environments, and their completeness property may yield infeasible
results in realistic-urban environments. To address these technical problems, we proposed
a new PP method for computing low-cost paths in order to facilitate UAV’s aerial missions
in urban environments.
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2.1. Geometric Path Planning Methods

A geometric PP method that assists in determining a good-quality path in a 3D envi-
ronment of relatively higher complexity was given in [54]. The environment is represented
by using a height reduction strategy to solve the trade-off between path-finding efficiency
and accuracy in environment modeling. Unfortunately, it does not reduce the searches in
the left-over parts of the area, and, thereby, computing time can be higher in most cases.
An incremental PP algorithm considering both local and global constraints for good quality
pathfinding was designed by Hu et al. [55]. It is fast, and it reduces the set of good-quality
path candidates to only four, with minimal computing time. However, the study ignores
space reduction to efficiently find a candidate solution. A geometric PP method consid-
ering the minimum turn radius of a UAV for optimal paths in a 3D space was designed
by Sikha et al. [56]. The suggested concept is reliable and assists in determining a path
with the least complexity. An enhanced heuristic-based PP method to find a good-quality
path efficiently by considering UAV flight limits was designed by Kun et al. [57]. A new
over-segmentation-based method to determine the free-space overlay of a connected region
set was suggested by Plaku et al. [58]. This method quickly finds a safe and good-quality
path. However, the approach does not take into account information about sharp turns,
narrow passages, and other environmental constraints, which may degrade the suggested
method’s utility. Furthermore, to augment both efficiency and accuracy, it is extremely
important to find irrelevant areas that can be discarded if they cannot help to find an
optimal/quasi-optimal path in an environment [59]. Several studies have designed closely
related PP methods with undoubtedly reduced time cost, such as the Approximation with
Visibility Line (ApVL) method [60]. The ApVL PP method [60] is an improvement of the
Base Line-Oriented Visibility Line (BLOVL) algorithm [50], and it is regarded as a highly
suitable algorithm for finding an approximate shortest path in 3D urban environments. It
reduces the obstacle count significantly (e.g., it processes obstacles that are on a straight
line only), and constructs visibility graphs from the chosen obstacles’ corners only to
incrementally find a low-cost path. Meanwhile, it has relatively higher time complexity.
In addition, it either yields longer paths or requires more processing to find a working path.
In some scenarios, it is even unable to find a flyable path owing to connected obstacles
with straight-line obstacles.

2.2. Sampling-Based Path Planning Methods

Sampling-based methods include the Probabilistic Road Map (PRM) [61], Rapidly
Exploring Random Trees (RRTs) [62], and their refined versions. These methods have
demonstrated effectiveness at quickly generating near-optimal/optimal global solutions.
Their algorithmic simplicity makes sampling-based methods applicable to solving both
real-time and single-query PP problems. The RRT PP method and its subsequent versions
such as informed RRT* [63], Transition-aware RRT (T-RRT) [64], RRT-connect [65], and
AnyTime-RRT (AT-RRT) [66] are all complete probabilistically. Most RRT-based methods
yield slow convergence rates in complex environments, and they mostly fail to resolve the
trade-off between length and time while finding reasonable-quality paths. Sertac et al. [67]
designed a better version of the original RRT, named RRT*. This method has a fast rate of
convergence compared to RRT, and it has an ability to find a quasi-optimal path with minor
post-processing. However, computing issues such as pre-mature convergence, high space
complexity, path searching from a whole map, and discarding beneficial samples while
converging into a solution pre-maturely make it unreliable for solving practical missions.
Jauwairia et al. [68] designed a new variant of RRT* named RRT*-Smart. It has a faster
convergence rate, compared to the traditional RRT* algorithm, by using smart-sampling
and optimization techniques. However, the main limitations of RRT*-Smart are higher
sensitivity to the operating environment, too many iterations, and extensive memory
consumption. Yanjie et al. [69] suggested a sampling-based PP method with improved
convergence rate. Iram et al. [70] presented a concept relatively closer to our PP method,
called RRT*-AB (Adjustable Bounds), to determine low-cost paths. It shows better results
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than the traditional RRT* method. However, it yields time performance issues due to the
near-neighbor search and extensive rewiring operations while optimizing the path lengths.
Hence, the shortest paths determined by the existing methods have higher time complexity.
Accordingly, a constrained space complexity analysis with in-depth complexity parameters
and an obstacle’s geometry information has not been simultaneously explored to find a
good-quality path with the least time cost.

3. The Proposed Method

A constrained polygonal space and an extremely sparse waypoint graph–based PP
method are imperative for addressing the time complexity issues that emerge due to unnec-
essary path exploration of low-probability spaces on an obstacles-rich map. The proposed
PP method limits path exploration to only the constrained spaces that have a higher proba-
bility of containing optimal/quasi-optimal paths, and it safely removes the unlikely spaces
in order to hasten the pathfinding computations. It removes the only spaces from a map
that likely cannot assist in finding a low-cost solution with high probability. It effectively
resolves the two competing goals of efficiency and path length while finding paths for
UAVs in urban environments. This section provides a brief overview of our proposed PP
method and outlines its workings. In Figure 1, we demonstrate the proposed PP method’s
conceptual overview.

Figure 1. The proposed PP method’s conceptual overview.

To find a path, P, between source s and target location t for a UAV, while safely by-
passing obstacles in UAV flying environment W, the following six key conceptualizations
are introduced: (i) operating-environment modeling by using data from a real environment
map; (ii) generation of a constrained polygonal space by exploiting obstacle geometry
information; (iii) determining and analyzing the complexity of the constrained polygonal
space using a multiple criteria-based method leveraging six different complexity parame-
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ters; (iv) providing need-based extension of the constrained polygonal space to the next
level; (v) task-modeling with an extremely sparse waypoint graph that has as few nodes
and edges as possible by utilizing the concepts of far distance reachability and direction
guidance; and (vi) abstract pathfinding with the A* algorithm from the CPS using an ESWG,
and enhancing the abstract path quality by generating additional nodes and edges in the
vicinity of abstract path nodes. Concise descriptions of each main component, with relevant
equations/procedures, are summarized below.

3.1. Representation of the Environment Where the UAV Operates

The initial step in the PP process is to represent the UAV’s moving/flying environment
from a real environment map with the help of relevant geometrical shapes. Generally,
it is a process of dividing W into obstacle-free regions (ξ f ree) and the obstacle regions
(ξobstacles). An example of ξ f ree and ξobstacles is presented in Figure 2, in which black and
yellow regions represent the ξ f ree and the ξobstacles regions, respectively. The obstacles
in W can be modeled with sufficient accuracy by leveraging geometric shapes, such as
cubes, rectangles, cylinders, circles, polygons, prisms, etc. In our work, obstacle modeling
from a raw environment map is carried out with the help of 3D convex polyhedrons
having six faces each. The minimum height (e.g., zmin) of each obstacle is 0, and the three
other dimensions are random. To generate a convex-obstacles set, we extract the digital
map’s elevation readings in accordance with digital environment elevation data standards,
and we find a convex-hull to accomplish the obstacle modeling task. After the real map’s
processing, we create a map with fixed convex-polyhedron 3D obstacles. The beginning
location of the mission is denoted with s (i.e., a 3D point), where s = (xs, ys, zs). The target
location is denoted with t (also a 3D point), where t = (xt, yt, zt). Taking into account W’s
representations, the UAV profile information, and path searching from a 3D environment,
the objective of the proposed PP method is to find good-quality paths with the least
computing complexity. The proposed PP method fulfills the stated assertions by finding
a path from high-probability regions of the map, and the UAV is considered a single 3D
point, just like s or t.

Figure 2. Example of obstacle-free (ξ f ree) and obstacles (ξobstacles) regions in environment map W.

3.2. Generation of the First Constrained Polygonal Space

Searching for a path by leveraging full map information can be very time consuming,
and it may result in serious computing overhead in complex and large urban environments.
To address these issues, we convert the full 3D map into a CPS that guarantees P from s to
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t, and at the same time makes pathfinding computations faster. The space can be reduced
using five main steps: (i) stipulating both s and t for a mission, (ii) sketching a straight-
line lo between s and t, (iii) extracting pertinent obstacles (i.e., only those obstacles where
edges/vertices cross with the lo), (iv) analyzing the geometry of the extracted obstacles, and
(v) drawing a minimum-span ζmin polygonal space S3

1 from the base vertices of pertinent
obstacles in such a way that a cross section of the reduced space (e.g., S3

1) is not completely
blocked by all of the pertinent obstacles’ cross sections. More specifically, the ζ is selected
in such a way that the path can be found in each scenario from the constrained space.
Obstacles that are on the lo between s and t are called pertinent obstacles. After receiving
the s and t locations for the flight, we sketch a lo from s to t. After sketching the lo, four
outputs can be derived, which are: (I) neither penetration nor collision, (II) not penetration,
but the possibility of a collision exists, (III) penetration, but all obstacles have a lower
height, and the UAV can go over them safely, and (IV) both penetration and collision. All
four results are demonstrated in Figure 3.

Figure 3. Results of sketching a straight line (lo) between s and t locations.

If the lo does not collide with any obstacle, and the collision possibility is zero, then
path P = lo, which is an optimal path (e.g., a straight line) as given in Figure 3a. Moreover,
if the lo does not penetrate any obstacles, but there remain some obstacles in close proximity
to the lo with which the UAV could collide with a higher probability, then we deal with
these obstacles to generate a safe P, as demonstrated in Figure 3b. In the third case, as given
in Figure 3c, few obstacles are penetrated by the lo, all obstacles have a lower height, and the
UAV can go over them safely. In the fourth case, as given in Figure 3d, some obstacles are
penetrated by the lo, and we need to bypass them at a lower cost to find a P between s
and t while fulfilling the stated objectives. Such obstacles are extracted from the map and
utilized for pathfinding from the CPS. The complete pseudo-code utilized for extracting
pertinent obstacles is illustrated in Algorithm 1. In Algorithm 1, map W encompassing N
distinct obstacles, s, and t, are given as input. The set E, where (E ⊆ N) of the pertinent
obstacles is retrieved as output. Line 2 can do lo sketching between s and t. Lines 3–7 can
do obstacles’ extraction that are crossed by the lo. At the end, set E of pertinent-obstacles is
collected. Moreover, if no intersection occurs between the obstacles and the lo, and, then,
E = ∅ will be the output.

After getting set E of pertinent obstacles, we enlarge the obstacles by a safe distance
(dsa f e), and apply the flying minimum and maximum limits, denoted as hmin and hmax,
respectively. Subsequently, we analyze the pertinent obstacle cross sections that are on the
lo between s and t. Then, we draw a bottom boundary, Ωb, around the bottom vertices of the
pertinent obstacles, and a top boundary, Ωt, from minimal height h with path guarantees
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keeping s and t as two endpoints. This forms a 3D constrained space where the shape can
resemble a 3D polygon, and we call this constrained region the CPS, represented with S3

1.
This CPS converts the more difficult problem of UAV pathfinding into the relatively easier
problem of pathfinding for a 3D point. A visual overview of S3

1 is demonstrated in Figure 4.
The S3

1 can be simply defined as full map W partitioned into a small space/region where
the outline is the same as a 3D polygon, with s and t as two endpoints. It is obtained by
drawing a boundary around the outermost vertices of the pertinent obstacles in such a way
that a path can be found from it regardless of its quality. The process of transforming a full
map into S3

1 is given in Figure 4a–c. In Figure 4a, environment map W is shown, which
will be converted into S3

1. Figure 4b shows the lo drawing, and identifies the corresponding
pertinent obstacles (e.g., yellow obstacles) that were crossed by it; these obstacles will be
used to subsequently generate S3

1. Figure 4c shows the outline of S3
1 in 2D form that is

obtained by drawing a boundary around obstacles identified in Figure 4b as a consequence
of lo penetration.

Figure 4. Overview of transforming a full 3D map W into a constrained polygonal space (S3
1)..

Algorithm 1: Extracting pertinent obstacles from a 3D obstacle map.
Input : (i) Environment map W with N distinct obstacles

(ii) Starting location (s)
(iii) Ending location (t)

Output : Pertinent obstacles’ set E
Procedure :

1 Initialize, E = ∅
2 Sketch straight line lo between (s) and (t) // Assuming case IV given in Figure 3
3 for every obstacle Oj, beginning from Oj = O1 to the On ∈ N do
4 if CROSSES (lo, Oj) then
5 E = E ∪ {Oj}
6 End if
7 End for
8 return E

The CPS can enclose the pertinent obstacles—just part of them or as a whole. In some
cases, due to complex 3D environments, S3

1 can enclose obstacles that do not belong to set
E but that are part of S3

1, either partially or completely, and we include such obstacles in
E and utilize them in pathfinding. The essence of S3

1 is that it guarantees a flyable path
between s and t. However, S3

1 may or may not be an ideal choice for a good-quality path
(e.g., optimal or quasi-optimal) due to several complexity parameters (as illustrated in
Figure 1) about obstacles. By considering such potential complexity parameters and a
probabilistic analysis of optimal paths, we conducted a CPS complexity analysis leveraging
six complexity parameters (also known as complexity constraints), prevailing in S3

1 that
relate to the obstacles’ geometries, and a low-cost path tends to lie outside S3

1, in most cases,
with a significantly higher probability.
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3.3. Determining and Analyzing the Constrained Polygonal Space Complexity Using a
Multicriteria-Based Method

In order to check whether S3
1 is good enough for optimal/quasi-optimal pathfinding

or not, we performed a multi-criteria–based complexity analysis of S3
1 using multiple com-

plexity parameters before task modeling and pathfinding. We computed the complexity,
χ, of S3

1 by leveraging detailed information regarding the obstacles’ geometries. We em-
ployed six complexity parameters: the proportion of free spaces, the obstacle occupancy in
distinct regions of the CPS, the complexity of obstacle–avoidance options, the proportion of
connected obstacles, the length deviations from the optimal path, and obstacles’ tendency
in the CPS that hinders the solution quality. Through extensive simulations and analysis, it
is found that there exists a very firm relationship between the complexity parameters of
the CPS and path quality. The total χ is the weighted sum of six parameters cited above.
Brief overviews of those six complexity parameters, with their procedures and equations,
are described below.

3.3.1. Free Spaces’ Ratio

To compute a feasible, safe, and smooth P, it is highly enticing that the amount of
free spaces must be high in the CPS. To measure the obstacle-free spaces in the CPS, we
first determine the size (ξ) of the S3

1, blocked-spaces (ξobstacles), and free-spaces (ξ f ree).
The overall size (ξ) of the CPS that is in the form of a polygon can be obtained by the Gauss
determinant using Equation (1):

ξ =
1
2

|g|

∑
i=1

(xiyi+1 − xi+1yi)× h (1)

where x, y are the coordinate values of the CPS boundary, |g| denotes total vertices of the
CPS boundary, and h is the height of the CPS. Out of the ξ-sized CPS, we find the amount
occupied by the obstacles (ξobstacles) using Equation (2):

ξobstacles =
n

∑
i=1

ωOi (2)

where n denotes total obstacles’ count present in a S3
1 and ωOi denotes the obstacles’

occupancy. The occupancy of an Oi obstacles can be determined using Equation (3):

ωOi = OH ×OL ×OW (3)

where OW , OH , OL denote the width, height, and length of an obstacle, respectively. The free
space (X f ree) amount, where UAV can fly safely, can be determined using Equation (4):

ξ f ree = ξ − ξobstacles (4)

The ratio (r f ) of the free spaces can be calculated using Equation (5):

r f =
ξ f ree

ξ
(5)

The value of r f ranges between 1 and 0. We represent this ratio as (1− r f ) to compute
the occupied spaces value in overall CPS S3

1 complexity computation.

3.3.2. Deviation in Length from an Optimal Path

The proposed method is a global PP approach, and all information about the obstacles
geometries is known in advance. By utilizing the obstacles geometry information, we can
estimate the path length without calculating the actual path. We estimate length of an
optimal path Lo, where Lo = lo as an optimal path and estimate the deviation in it that can
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occur due to obstacles that are on lo. We call it deviation D
′

from the optimal path and
formalization used to estimate is explained below.

• Computing the optimal path Lo that is a straight line between s and t using Equation (6).

Lo =
√
(xt − xs)2 + (yt − ys)2 + (zt − zs)2 (6)

• Calculating the deviation D
′

in optimal path Lo due to the presence of obstacles on
the lo between s and t locations. The D in the paths length due to an obstacle (e.g., Oi)
is calculated using Equation (7).

Di = min(
OW

2
, OH) (7)

• Estimating the total deviation D
′

that can likely occur due to the presence of the
obstacles between s and t in the CPS using Equation (8).

D
′
=

n

∑
i=1

Di (8)

• Calculating the length of the estimated paths (L1) avoiding all obstacles that are on
the l0 using Equation (9).

L1 = Lo +
n

∑
i=1

Di (9)

where L1 denotes the lengths of the paths avoiding obstacles in the selected space,
L0 denotes the Euclidean distance between s and t locations, n represents obstacles’
strength in the selected space, and Di denotes the degradation in path length due
to obstacles.

• Computing the complexity Cp of the estimated path that can assist in analyzing the S3
1

complexity using Equation (10):

Cp =
Lo

L1
(10)

The value of the Cp ranges between 1 and 0. We use this value to represent the
estimated path complexity in terms of length in overall CPS S3

1 complexity evaluation in
Equation (20).

3.3.3. Complexity of the Obstacles’ Avoidance Options

There are usually four options in total to bypass any obstacle present in a W such as
right, left, up, and down (in the case of hanged obstacles or flying obstacles). Meanwhile,
after the space reduction, the number of options to avoid obstacle will likely be reduced,
and there can be an increase in the complexity of remaining options. Because of this,
a path may be taut and path length can be prolonged. Hence, while determining the CPS
complexity, we take into account the complexity of options needed to bypass obstacles.
To calculate the complexity (CAO) of each option, the entropy concept is employed. Entropy
is acknowledged as the most effective and accurate measurement for similar tasks in
numerous fields. In this work, we consider the urban environment; therefore, the P cannot
go beneath the obstacles since bottom height of each obstacle is zero, and, hence, there
are only three options in total to avoid any obstacle. The strategy below is employed to
calculate the CAO.

1. Find the proportion (pi) value of every avoidance option (i.e., AOl , AOr, AOt) category
using Equation (11).

pi =
AOi

b
(11)

where b denotes the total AO, and its value can be determined using Equation (12).
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b =
3

∑
i=1

AOj (12)

2. The complexity CAO of avoidance options can be calculated using Equation (13):

CAO = −
b

∑
i=1

pilog2 pi (13)

The normalized value of the CAO lies between 0 and 1, denoted as CAO ∈ [0, 1].
The CAO with 0 value means that avoidance complexity is low (e.g., all obstacles can be
avoided from the same side). In contrast, the CAO value 1 means that enough variations
exist in options to avoid all obstacles, and the path can contain many turns. In the CPS
analysis, we take into account the CAO values.

3.3.4. Occupancy of Obstacles at Distinct Regions of the CPS

Besides the other complexity parameters described earlier, another important param-
eter that can lead to genuine performance concerns while pathfinding is the obstacles’
occupancy at distinct regions of the CPS. If obstacles in large numbers are clustered at one
location (e.g., obstacles’ placement in the CPS is uneven), then the path quality likely de-
grades. The obstacle occupancy at one place introduces cycles/sharp-turns in a P because
the P revolves around boundaries of many obstacles before approaching t. To calculate
occupancy Πo of obstacles, we partition S3

1 into n sub-spaces {s1, s2, s3, . . . , sn} and find
the obstacles occupancy in each subspace si. The obstacles’ occupancy in a si subspace can
be determined by taking the ratio of the obstacles’ occupancy ξobstacles in the si divided by
overall obstacles’ occupancy in the CPS. To calculate occupancy, the S3

1 is partitioned in
five equal-size sub-spaces. The occupancy Πoi of the si can be mathematically expressed as

Πoi =
si

obstacles
ξobstacles

(14)

where ξobstacles denotes occupancy of all obstacles in total from the CPS as given in Equa-
tion (2) and si

obstacles represent the ith subspace’s obstacles occupancy, and its value can be
computed using Equation (15):

si
obstacles =

O
′

∑
i=1

ωO
′
i (15)

where ωO
′
i represents an obstacle’s volume, and O

′
denotes all obstacles count in the CPS.

After computing the occupancy of five sub-spaces, we determine the overall occupancy Πo
of the S3

1 using the following equation:

Πo = max{Πo1 , Πo2 , Πo3 , . . . , Πon} (16)

where Πo is the obstacles’ occupancy in the S3
1. The rationale to choose maximum values is

to effectively deal with the worst cases. The occupancy analysis assists with finding the
smooth paths by giving considerable attention to the regions of high occupancy.

3.3.5. Ratio of Obstacles’ Tendency in the CPS

In some scenarios, the CPS can enclose more obstacles compared to the W (e.g.,
the tendency of obstacles on lo is high compared to the whole W). Hence, it is viable
to assess the impact of obstacles’ tendency to yield a good quality path. To analyze the
obstacles’ tendency To, we find the number of obstacles in a CPS, and take a ratio with the
obstacles’ count present in a W. We denote the number of obstacles present in the CPS with
n and number of obstacles present in a full map with N, respectively. We determine the
value of To using Equation (17):
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To =
n
N

(17)

The value of To can lie between 0 and 1, To ∈ [0, 1]. The higher value of To means that
more obstacles are present in the CPS. In our work, we take into account the To value while
determining and analyzing the complexity of the S3

1.

3.3.6. Ratio of the Connected Obstacles

In some cases, some obstacles exist that are not directly penetrated with l0, but they
have connections with the pertinent obstacles (e.g., obstacles directly crossed with l0).
These obstacles can escalate the time of path computation and yield unnecessary turns in
the path. Hence, while analyzing the CPS complexity, it is paramount to take into account
the connected obstacles’ effect along with other five complexity parameters. The ratio of the
connected obstacles can be found by counting the connected obstacles in the CPS divided
by the obstacles’ count in the S3

1. The count of connected obstacles can be determined using
Equation (18):

n
′
=

n

∑
j=1

(Oj ∪OCON) (18)

where Oj is the pertinent obstacle, and OCON denotes the connected obstacle with Oj (e.g.,
pertinent obstacles). The overall ratio of the connected obstacles (rco) can be computed
using Equation (19):

rco =
n
′

n
(19)

where n
′

represents connected obstacles’ strength, and n shows the number of obstacles
in E.

When all six complexity parameters’ values have been calculated, the total complexity
χ of the S3

1 can be quantified using Equation (20):

χ(S3
1) = w1 × (1− r f ) + w2 × Cp + w3 × CAO + w4 ×Πo + w5 × To + w6 × rco (20)

In Equation (20), 1− r f denotes the ratio of spaces occupied by obstacles, Cp denotes
the deviation in path length from an optimal path, CAO means the complexity of options
while avoiding obstacles, Πo is the occupancy of the obstacles at the distinct region of
the CPS, To denotes the tendency of obstacles in the CPS in relation to a full map, and rco
denotes the ratio of connected obstacles. The drawing of all six complexity parameters
described in prior subsections (e.g., Sections 3.3.1–3.3.6) is given in Figure 5.

For calculation simplicity, we used complexity parameters values in normalized
form; therefore, the χ(S3

1) ranges between 0 and 1. In Equation (20), wi, where i =
1, 2, 3, 4, 5, 6 represents each complexity parameter’s weight, and they fulfill two conditions,
(i) w1 + w2 + w3 + w4 + w5 + w6 = 1, and (ii) wi > 0. We adjust each parameter weight by
taking into account the significance and influence of every parameter in the CPS complexity
analysis. The probability σ of a path P to be found from the S3

1 with good quality is given
as follows:

σ(P) =

{
1, if 0 < χ(S3

1) < T.
0, otherwise.

(21)

where χ(S3
1) represents the complexity of the S3

1, and T denotes a threshold. If σ(P) = 1,
no extension of space is required because S3

1 is appropriate for low-cost pathfinding.
Meanwhile, if σ(P) = 0, then an additional space will be needed to find good quality paths.
The threshold T value relies on numerous global factors of the W, and local constraints (e.g.,
related to the UAV). In simulations, we set the threshold value to 0.7 to make a decision
about the space expansion. We did substantial experiments to validate the T value using
P’s length as a main criteria. However, T’s value can be tuned flexibly based on the UAV’s
workspace and resources.
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Figure 5. Drawing of the complexity parameters employed to analyze the complexity of the S3
1.

3.4. Expansion of the First Constrained Polygonal Space

Although S3
1 always finds path P, it does not guarantee the quality of P in each

scenario due to higher complexity in the obstacles. To circumvent this issue and ensure
consistent quality for P in each scenario, the scenarios that require a bigger space are
identified carefully through the CPS complexity analysis utilizing the six different param-
eters. With the assistance of the complexity analysis of S3

1, for a good-quality P, we can
accurately identify the cases that require relatively more space than already in S3

1. Having
sufficient information about the obstacles connected with the boundary of S3

1 enables us
to flexibly expand the space to the next level. We adopted this method to expand the
space, since it yields less computing overhead and significantly enhances path quality.
Hence, by processing obstacles that are penetrated by the boundary of S3

1, and by marking
a polygonal boundary in an analogous way, the first CPS formation emanates into a second
CPS of a relatively bigger size, compared to the S3

1 as visually depicted in Figure 6b.
We denote this expanded space with S3

2, and it encompasses S3
1 fully. The S3

2 includes
pertinent obstacles fully, and it provides greater opportunities for P to be determined from
S3

2 solely. The utility of the S3
2 is that it is highly desirable space for producing P of shortest

lengths. The space can be extended to nested levels in identical manner. Meanwhile, we
expand the spaces only up to 2-levels because an optimal/quasi-optimal P tends to lie in
S3

1 and S3
2 with acceptable probability. After the selection of appropriate highest priority

space, an ESWG is constructed for pathfinding.
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Figure 6. Overview of constrained polygonal space (S3
1) and its expansion to the next level (S3

2).

3.5. Extremely Sparse Waypoint Graph Generation from the Selected CPS

Waypoint graph (WG) is one of the approaches for task modeling and pathfinding,
respectively. The WG constructs an indirect and compact graph connecting s with t
by catching the connectivity of the ξ f ree to form a multiple paths’ network. However,
generating a WG is very expensive in terms of computation. The overall time complexity
of generating a WG with n nodes is O(n3). Many studies that have focused on lowering
the complexity of the WG generation have been reported by joining adjacent obstacles,
altering obstacles’ shape, and ignoring small obstacles. More recent research [60] highlights
that WG’s time complexity in the 3D environments can be decreased to the O(n2) by only
considering the obstacles crossed by the lo. To expedite the time complexity reduction
of the WG, this paper suggests a new concept of an ESVG construction method which
does not compose a dense WG. This method forms an ESVG from the CPS like a roadmap
with connectivity between s and t through intermediate nodes. An ESVG is a double-edge
type graph G of reachable and mutually-visible locations, mathematically expressed as:
G = {X, Y}.

To construct a G from the 3D CPS, two steps are generally applied: making a nodes’ set
X and generating an edge set Y. The initial step is about creating nodes set X. We utilized
three vertices of obstacles, bottom, top, and mid to make an ESWG for the first time.
Both bottom and top vertices’ geometry values are known, and mid vertices can be found
leveraging the midpoint formula on top and bottom axis values. Every obstacle has total
eight vertices (e.g., four bottom and four top). An ith obstacle’s vertices and their respective
values can be expressed mathematically in a matrix as demonstrated in Equation (22).
The height of bottom four vertices of each obstacles are transformed to the hmin and top
vertices of the obstacles have the same height as of the CPS height (e.g., h). In below metrics,
the value of zmin is zero but after adjustment becomes hmin = zmin:

Oi =


xmin ymin zmax; xmin ymin zmin
xmin ymax zmax; xmin ymax zmin
xmax ymin zmax; xmax ymin zmin
xmax ymax zmax; xmax ymax zmin

 =


1131 1632 241; 1131 1632 23
1131 1703 241; 1131 1703 23
1209 1632 241; 1209 1632 23
1209 1703 241; 1209 1703 23

 (22)

For example, an O whose original zmax is greater than the CPS height, and the bottom
and top vertices are fully known, the pair of mid-points’ two side faces denoted with f1
and f2 can be determined using Equations (23) and (24), respectively:

f1 = { xmax + xmin
2

, ymin, zmin}, {
xmax + xmin

2
, ymax, zmin} (23)

f2 = { xmax + xmin
2

, ymin, zmax}, {
xmax + xmin

2
, ymax, zmax} (24)

A similar procedure can be utilized to find the pair of vertices around all obstacles.
After computing set X from the pertinent obstacles, we add both s and t in a set X and
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generate set Y of edges through two novel strategies and visibility-checks. Any two nodes
u and v in X are inter-visible if a uv segment of line connecting them is collision free.
A function named-line-of-sight (LOS) determines the visible segments among pairs of
nodes through visibility analysis. The time complexity of this mechanism heavily relies
on the function of LOS checking, and number of nodes. Meanwhile, in our work, we
incorporate two additional strategies of far-reachability (FR) and direction-guidance (DG),
thereby time complexity is significantly reduced. In addition, it only adds the edge between
a vertices’ pair that are as far as possible from each other and that guide to the t’s direction.
We set the visibility to off/false using coordinate values for those pairs of vertices that
are on the same obstacle but do not favor the direction of the t. Hence, the visibility
checking function has less time complexity in making a G. The time complexity of an
ESWG formation is the O((n f l)2) time, where l denotes the number of levels, n denotes
obstacles’ count, and f represents the counts of obstacles’ facets. However, the upper-
bound of the l is constant (e.g., l = 3 ); therefore, ESWG’s time complexity is O(( f n)2).
With the help of X and Y, a G is obtained that has reliable connectivity between s and t,
and it encompasses all characteristic of a roadmap.

3.6. Path Finding from an ESWG and Enhancing Obtained Path Quality

Once an ESWG is modeled, a path searching algorithm is employed to search a P from
it. In this paper, we used A∗ algorithm for computing a P between s and t from an ESWG.
The A* is reliable algorithms for extracting a P of low-cost. The evaluation function utilized
by this algorithm is expressed in Equation (25):

f (n) = g(n) + h(n) (25)

In Equation (25), the f (n) denotes the estimated path cost in total between s and t via
a node n, the g(n) denotes the actual distance to reach node n, and the h(n) is a heuristic
function that computes the distance from node n to t. This algorithm was selected to make
P’s computing process fast. By exploring an ESWG using this algorithm, an abstract P
is found. We consider both length and time of the obtained P for evaluating its quality.
Meanwhile, in some cases, the P cannot be of minimal length, which needs post-processing
to shorten it. We present the working of the A∗ algorithm while finding a path between s
and t in Figure 7.

In many UAV practical applications, the length of the P is paramount, and to preserve
UAV resources, it should be minimum. To address this issue, we shorten P’s length by
including more nodes in close proximity of it, and refine the sharp turns. The path quality
improvements is mainly carried out by determining the adjacent P’s neighbor nodes,
find the proximity between the adjacent neighbor nodes and P nodes, and in the close
proximity of the P, we introduce new nodes with relatively denser resolution and add
smooth edges. The reason to add more nodes closely is to retain visibility to improve P
quality. After injecting additional nodes, a P of good quality is obtained by jointly using
the newly added and the P nodes. This path-refining method has the potential to improve
path quality significantly with reduced computing cost.
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Figure 7. Example about the working of an A* algorithm for low-cost pathfinding.

4. Results and Discussion

This section explains the simulation experiments and corresponding results. The per-
formance of the proposed PP method was analyzed using two criteria: time complexity
and path length compared to prior studies. To make the proposed PP method a bench-
mark, we compared the simulation results with randomized motion planning and visibility
graph–based algorithms. The simulation tests were performed and compared using Matlab
v. 9.8.0.1451342 (R2020a) on a computer running Windows 10 with 8 GB of RAM and a
2.6 GHz CPU. In the tests, we assumed a 25 kg fixed-wing UAV similar to ones used in
existing studies. We took into account both global and local constraints in the simulations.
The parameters of the local constraints (i.e., on the UAV) were a 1 m wingspan and a
maximum turning angle at a radius of π/6 . The minimum and maximum flying altitudes
were hmin = 23 m, hmax = 155 m. The global constraints belonged to the geometry of
obstacles in W. We consider six complexity parameters that can significantly hinder the
quality of a P and the UAV’s safety while selecting a space size. We assumed that the UAV
had enough battery power to complete the task in one flight. The safe distance to avoid
collisions with obstacles was 10m (dsa f e = 10 m). We assumed that wind was negligible
during the flight. The proposed method finds P using an ESWG that respects both global
and local constraints. The weights of space complexity parameters were w1 = 0.2, w2 = 0.1,
w3 = 0.2, w4 = 0.2, w5 = 0.1, and w6 = 0.2. We assigned values to these weights by consid-
ering the significance and influence of each parameter on the accurate space selection for an
optimal/quasi-optimal pathfinding. We tested our method with diverse combinations of
the weight values, and analyzed the accuracy of space selection for optimal/quasi-optimal
paths. Subsequently, we determined the best combination of these weight indexes’ values
that make accurate space selection consistently. Furthermore, these weight values were
validated via numerical analysis by computing optimal paths from numerous maps using
whole W, and analyzing the number of times optimal paths tend to lie in the selected space.
The locations for s and t were chosen randomly during experiments. We compared our
PP method’s performance with two existing algorithms: the ApVL algorithm proposed
by Guillermo et al. [60] and the RRT*-AB algorithm proposed by Noreen et al. [70]. Both
comparison algorithms are state-of-the-art for PP. We tested them on our maps to compare
the performance of our method with them. We show a sketch of the 3D maps employed in
the experiments and three exemplary paths from each method in Figure 8.
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(a) Overview of the 3D map (b) ApVL algorithm’s path

(c) RRT*-AB algorithm’s path (d) Proposed method’s path

Figure 8. Example of the paths produced by the proposed method, ApVL, and RRT*-AB algorithms.

The path produced by the proposed PP method was more smooth and shorter than
the paths from the other methods. To analyze and compare the proposed PP method’s
results, we designed three distinct scenarios with sufficient obstacles in the 3D environment
maps. Each scenario was tested with all three methods, and the results were analyzed.
All obstacles had a random width, depth, and height with a rectangular-shaped base.
Comprehensive details on maps counts, map sizes, s and t locations, numbers of obstacles
and their geometric information, etc. are given in each scenario description below.

4.1. Comparison with the Existing Approaches by Varying Map Sizes and Obstacle Counts

This scenario is defined with W at sizes ranging between 100 m × 100 m × 300 m–
1000 m × 1000 m × 400 m. It encompassed 50 maps with distinct obstacle counts (e.g.,
5–50). For the sake of simplicity and rational comparisons, we categorized all maps into
10 distinct groups considering both map size and obstacle strengths, as given in Table 1.
The locations for s and t were marked in alternate places for every test/map. Furthermore,
the obstacle density in W varied on each map. The ApVL algorithm [60] processed only
obstacles that were on the lo and generated a dense graph to find P. However, the ApVL
algorithm has higher complexity, and it produced a non-taut P in most scenarios due to the
connected obstacles in urban environments, as shown in Figure 8b. The RRT*-AB algorithm
restricts the space, but it explores many locations while finding P. The P generated by this
algorithm had a longer length, and computing time was immense. In contrast, the proposed



Appl. Sci. 2021, 11, 5340 18 of 26

PP method processed fewer obstacles and employed an ESWG to find a P with good quality.
The complete information about maps utilized in this particular scenario and the mean
computing time for task modeling by our PP method and its comparisons with the two
previous algorithms are given in Table 1.

The computing time for modeling the UAV environment shown in Table 1 is the total
time needed to constrain the space, an ESWG construction, and an ESWG’s expansion for
path-quality improvements. From Table 1, we can see that time surged with an increase
in the map size and obstacle counts. Through extensive comparisons with prior PP al-
gorithms, our method lowered computing time for task modeling by 15.05% on average.
The pathfinding results (i.e., time needed and path length) and their comparisons with the
two existing algorithms are depicted in Figure 9.

Figure 9. (Left) computing time: proposed method versus existing algorithms; (Right) path lengths: proposed method
versus existing algorithms.

Both computing time and path length are the mean of five maps in each map’s group
(given in Table 1) with arbitrary obstacles’ placement. The simulation results emphasize
that, for each method, there is a surge in the computation time with the increase in W’s
complexity. Moreover, the proposed PP method shows 15.4% and 33.6% curtailment in
mean computing time compared to the ApVL algorithm and the RRT*-AB algorithm,
respectively. In path lengths, the proposed method shows 5.34% improvements compared
to the ApVL algorithm. Moreover, average improvements in the path lengths compared to
the RRT*-AB algorithm are 6.34%. These results highlight that the proposed PP method is
superior in terms of both computing time and path length over prior algorithms.
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Table 1. Details of the 3D maps used in simulations and comparisons of task modeling results.

Maps Group No.
3D Maps’ Sizes (in m) Obstacles Strength Proposed PP Method ApVL Algorithm [60] RRT*-AB Algorithm [70]

(x × y × z) (upto 50) Avg. Computing Time (in s) Avg. Computing Time (in s) Avg. Computing Time (in s)

1. 100 × 100 × 300 5 0.98 1.46 2.97
2. 200 × 200 × 300 10 5.61 8.31 16.81
3. 300 × 300 × 300 15 17.01 23.54 34.20
4. 400 × 400 × 300 20 39.28 49.52 65.21
5. 500 × 500 × 300 25 76.26 98.81 115.04
6. 600 × 600 × 400 30 100.65 111.19 141.81
7. 700 × 700 × 400 35 134.03 137.599 185.93
8. 800 × 800 × 400 40 155.01 186.29 211.11
9. 900 × 900 × 400 45 180.21 201.56 225.13
10. 1000 × 1000 × 400 50 191.25 209.25 249.55
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4.2. Comparison with the Existing Approaches by Varying the Number of Obstacles

This scenario is comprised of 10 maps with varying numbers of obstacles in a W of
1 km2 to analyze the impact on our PP method’s performance from increasing the number
of obstacles. The obstacles were clustered between s and t in such a way that all methods
would avoid them during pathfinding. Figure 10 presents the results of our proposed PP
method and a comparison with the other algorithms from varying the number of obstacles.
When W enclosed more obstacles, the suggested method could quickly determine a good-
quality and safe P from W. It was better than the ApVL and RRT*-AB algorithms, based
on the metrics, even when varying the number of obstacles in the CPS. The P determined
by the proposed method was the shortest and smoother than the other two algorithms.
Through simulation results and their comparison with previous methods on 10 obstacles’
counts-based maps, the proposed method decreased the computing time for pathfinding by
27.06%, on average. For path lengths, the paths generated by our PP method, on average,
were 4.6% shorter (i.e., produced at a lower cost) than the previous methods.

Figure 10. (Left) computing time: proposed method versus existing algorithms; (Right) path lengths: proposed method
versus existing algorithms.

4.3. Comparison with the Existing Approaches by Varying Source and Target Locations

This scenario was tested using a W at 150 m× 150 m× 400–1000 m× 1000 m× 400 m.
It encompassed five maps with obstacle counts of up to 25. We analyzed our method’s
performance through seven runs on every map with different coordinates for s and t in
each run. By varying the positions of s and t, the number of obstacles to be modeled in each
run/test can be distinct, and, accordingly, comparison metrics can vary with W complexity.
The proposed method’s averages, obtained from the seven runs on each map, are given in
Table 2. The results indicate that the proposed method yielded comparable performance in
all tests.

The proposed method yielded an average computing time of 0.71 s, compared to the
ApVL and RRT*-AB algorithms, which had mean computing times of 1.01 s and 1.37 s,
respectively. In addition, the proposed method lowered the path length, compared to both
prior algorithms, by 5.05%. Although the proposed method gave better results, a relatively
higher number of initial P nodes can degrade its performance in complex environments.
The worst-case complexity with our method was O(n3). However, the test results revealed
that time complexity did not accelerate like O(n3) in all test scenarios for finding good
quality paths. The results obtained from all these scenarios showed that our method
performed consistently better than the ApVL and the RRT*-AB algorithms. Aside from the
path lengths and computing times, we analyzed and compared its performance against
prior algorithms with respect to graph/tree nodes and path node counts. In Figure 11,
the results of the proposed method in terms of average path nodes and graph/tree nodes
for the above experiments are presented. As shown in Figure 11, both the graph nodes and
path points of our ESWG method were lessened, compared to the prior methods.



Appl. Sci. 2021, 11, 5340 21 of 26

Table 2. Proposed method pathfinding results’ comparison with the ApVL and the RRT*-AB algorithms.

Maps Sizes (m)/Obstacles’ Count
ApVL Algorithm [60] RRT*-AB Algorithm [70] Proposed PP Method

Avg. Time (s) Avg. Path Length (m) Avg. Time (s) Avg. Path Length (m) Avg. Time (s) Avg. Path Length (m)

150 × 150 × 400/5 0.35 305.4 0.61 295.91 0.26 300.14
400 × 400 × 400/10 0.55 620.12 0.75 650.75 0.47 599.27
600 × 600 × 400/15 0.74 860.51 0.96 900.90 0.59 800.05
800 × 800 × 400/20 0.98 1020.01 1.81 1050.05 0.75 990.5

1000 × 1000 × 400/25 2.45 1100.05 2.75 1120.75 1.52 1070.21
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Figure 11. (Left) Graph/tree nodes: proposed method versus the ApVL algorithm and the RRT*-AB algorithm; (Right)
path nodes: proposed method versus the ApVL algorithm and the RRT*-AB algorithm.

Analysis of the memory requirements: As shown in Figure 11a, the proposed PP method
generates a WG with fewer vertices. In addition, it does not register visibility of the
edges that contribute minimally in an optimal/quasi-optimal path due to less coverage
in terms of distance or they are not in the same direction as the target location while
generating an ESWG. Therefore, the memory requirements of proposed method are not
high compared to the existing methods and a complete graph. However, most global
PP methods keep all visible edges in the memory that significantly increase the memory
requirements. Furthermore, the visibility check function is called a substantial number of
times in visibility graph-based PP methods, thereby space complexity drastically increases.
The proposed method resolves these space complexity related issues through reduction
in search space, modeling tasks with an ESWG, producing far lower but relevant edges
and vertices, and reducing the visibility checks between vertices by incorporating far-
reachability and direction-guidance concepts while making an ESWG.

The proposed PP method is complete, and it can be used for many UAV practical
applications in urban environments. The proposed method gives good performance due to
two main concepts: (i) a new space reduction concept is proposed, which not only assists
in lowering the time complexity by restricting the path exploration in the space of highest
priority, but also assists in finding low-cost paths in most cases; and (ii) an ESWG, which
models the tasks with far lower edges and vertices that curtails the computing time of
path searching significantly by making a direction-guided search of the target location. It
effectively resolves the trade-off between optimality and efficiency in pathfinding from an
urban environment populated by various obstacles.

5. Conclusions and Future Directions

This article proposed a new PP method based on CPS and an ESWG to enable a UAV’s
safe navigation in 3D urban environments. The main objectives of the proposed PP method
are to lower the time complexity in both task modeling and pathfinding without degrading
the path quality for UAVs operating at lower elevations in urban environments with fixed,
convex obstacles. The main contributions of this article are listed as follows:
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• We propose a new PP method based on CPS and an ESWG that has the potential to
find an optimal/quasi-optimal path with considerably reduced time complexity.

• We propose a new space reduction method that abstracts the full map into a 3D
constrained polygonal space that guarantees a path for the UAV’s mission.

• We analyze the effectiveness of CPS for low-cost paths considering six complexity
parameters, including the ratio of free space, obstacle density in distinct regions of the
CPS, the complexity in the options for avoiding obstacles, deviation in the length from
the optimal path, the ratio of connected obstacles to pertinent obstacles, and obstacle
tendencies in the CPS.

• The proposed method enlarges the CPS to the next level/space by including obstacles
that are in close proximity to the first CPS if the first CPS fails to provide an opportunity
for low-cost solutions owing to a higher complexity from obstacles in it.

• The proposed method generates an ESWG from the CPS, leveraging the principles of
maximum distance reachability, having only a few nodes and edges, and direction
guidance, and it computes an abstract path that is further improved with the assistance
of more nodes and edges around it.

• This initial work makes use of obstacle information from an underlying environment
in order to lower the computing overhead for pathfinding without compromising
path quality in 3D urban environments.

The proposed method performance is substantiated through extensive tests, and, in
most cases, it performs consistently better than prior PP methods. It lowers pathfinding
time complexity considerably by restricting path exploration solely in the highest prior-
ity CPS that has the greatest chance of providing an optimal/sub-optimal path. While
conducting the tests, we considered numerous parameters related to the underlying op-
erating environment’s complexity and UAV’s safety. Meanwhile, during the PP at lower
elevations in urban environments, we may need to consider hanged/thin obstacles (e.g.,
electrical wires and poles in the streets). Another group of evaluation parameters can be
the wind/gust and wind/crosswind (e.g., wind’s direction and speed), especially when
passing through buildings. Hence, further testing with these parameters is yet to be in-
vestigated in future work. Finally, we intend to analyze the fidelity of our proposed PP
method with other task modeling methods (e.g., Voronoi diagrams, grids, and navigation
meshes, etc.).
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