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Abstract: The assembly job shop scheduling problem (AJSSP) widely exists in the production process
of many complex products. Robust scheduling methods aim to optimize the given criteria for
improving the robustness of the schedule by organizing the assembly processes under uncertainty.
In this work, the uncertainty of process setup time and processing time is considered, and a framework
for the robust scheduling of AJSSP using data-driven methodologies is proposed. The framework
consists of obtaining the distribution information of uncertain parameters based on historical data
and using a particle swarm optimization (PSO) algorithm to optimize the production schedule.
Firstly, the kernel density estimation method is used to estimate the probability density function of
uncertain parameters. To control the robustness of the schedule, the concept of confidence level is
introduced when determining the range of uncertain parameters. Secondly, an interval scheduling
method constructed using interval theory and a customized discrete PSO algorithm are used to
optimize the AJSSP with assembly constraints. Several computational experiments are introduced to
illustrate the proposed method, and these were proven effective in improving the performance and
robustness of the schedule.

Keywords: robust scheduling; particle swarm optimization algorithm; kernel density estimation;
interval theory

1. Introduction

Scheduling is one of the core issues in production management, which is very impor-
tant for improving the production efficiency and resource utilization of the manufacturing
system [1]. In real-world manufacturing systems, different types of uncertainties naturally
appear in the production process, causing fluctuations in the production performance [2,3].
In this context, the robustness of a schedule is of great importance in addition to the sched-
ule’s quality. With the rapid development of the industrial informatics technologies, a large
amount of historical data are now routinely captured and collected in many enterprises.
Historical data can be used to analyze the characteristics of uncertainty, and this provides a
new view for robust scheduling under uncertainty [4].

The motivation of this study is derived from scheduling problems encountered by
many assembly manufacturing enterprises [5,6], where a variety of different products are
obtained through multiple components by multistage machining and assembly processes
(shown in Figure 1). Due to the tree-like assembly relationships, higher level components
cannot be assembled until all preceding lower levels components are completed. Therefore,
compared with a single machining process, fluctuations in the processing time and setup
time of any part may cause the waiting of subsequent and parallel components, and this can
ultimately lead to the delay of the final product [7]. In order to ensure sufficient lead time
for preparing production auxiliary materials and tools, the manager should decide on the
complete schedule in advance. In most real-life manufacturing systems, managers employ
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dispatching rules and optimization methods to generate a baseline schedule, and they
then insert extra time redundancy into the schedule to ensure robustness [8,9]. However,
the assessment of uncertainty in this schedule is subjective and largely depends on the
experience of the manager [10].

Figure 1. Tree-like assembly structure of product A.

In real-life manufacturing systems, schedules are often confronted with uncertain
factors. For example, resource shortages and machine breakdowns can delay a schedule’s
completion time. In this work, we mainly consider the uncertainty of process setup time and
processing time, which are also the two most frequent and influential uncertainties in the
assembly production system. To hedge against uncertainties in the production process, tra-
ditional optimization methods, such as stochastic programming (SP), fuzzy programming
(FP), and robust optimization (RO), have proposed different mathematical expressions of
uncertainty [11–13]. The sources and types of uncertain parameters considered by these
methods are different. For example, the FP method assumes that the uncertain parameters
belong to a specific perturbation interval under different probabilities, and it establishes a
fuzzy set based on the membership function to describe the uncertain scenarios. The SP
method establishes a representative scenario tree by enumerating the possible values of
uncertain parameters. These methods usually combine a priori reasoning with assumption
on the uncertainty to motivate the construction of the optimization models. However,
in the real world, the probability distribution of uncertainty is closely related to the specific
production environment, and some complex uncertainties are even difficult to describe
explicitly. Thus, traditional optimization methods are often criticized for their inflexibility
or ineffectiveness in practical applications [14].

In addition to traditional optimization methods, many metaheuristic algorithms have
been extensively applied to shop scheduling problems under uncertainty [15]. Among them,
the particle swarm optimization algorithm is one of the most commonly used meta-
heuristic methods because of its flexibility and global optimization capabilities [16,17].
Han et al. [18] studied integrated production planning and scheduling with fuzzy startup
time and processing time. They developed a fuzzy bi-level decision-making technique
based on the PSO algorithm and a heuristic method. Jamrus et al. [19] developed a
hybrid approach integrating the particle swarm optimization algorithm with genetic opera-
tors for solving a fuzzy job shop scheduling problem with an uncertain processing time.
Panadero et al. [20] considered a permutation flow shop problem with stochastic process-
ing times. They proposed a biased-randomized heuristic algorithm and extended it to a
metaheuristic method by adding a variable neighborhood descent framework. Obviously,
in the above research, different uncertain parameters were described and modeled by fuzzy
and stochastic theories. In other studies, uncertain parameters are usually regarded as
bounded uncertainties, which can be defined as a continuous interval or a finite set of
discrete values. Feng et al. [21] studied a similar problem but proposed a min–max regret
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scheduling model with interval scenarios of processing times. They designed both exact
and heuristic algorithms to solve this problem. Wang et al. [22] considered a job-shop
scheduling problem with an uncertain processing time, described by discrete scenarios.
Lu et al. [23] addressed a single-machine scheduling problem with uncertain processing
times and sequence-dependent setup times.

All the previous studies focused on the classic flow-shop or job-shop scheduling
problems under uncertainty and did not consider the assembly process. In fact, the pro-
duction process with both machining and assembly is very commonly witnessed in real
life. Some examples include production flows of molds, ball valves, and various complex
electromechanical products [24,25]. Normally, production scheduling that considers the
assembly process is more complicated, and the schedule is more sensitive to the effects of
uncertainty. In addition, most of the previous studies define uncertainty based on prior
assumptions or artificial experience, rather than from an objective data-driven perspec-
tive. With the recently emerging industrial informatics technologies such as the Internet of
Things (IoT), sensors, and artificial intelligence, the historical data of the production process
can be continuously collected and can be a new source for scheduling optimization [26,27].
These data have motivated a shift from a priori reasoning and assumptions to a new data-
driven paradigm in dealing with uncertainties in the production process, which is also the
focus of this research.

In the actual production process, fluctuations in the setup time and processing time of
the process may cause the completion time to deviate from the expected time, and this can
ultimately lead to delays in subsequent processes. Motivated by realistic needs, this pa-
per considers two types of uncertain parameters that have an important impact on the
production scheduling of the assembly manufacturing system, namely process processing
time and setup time, and from there we aim to develop a data-driven robust scheduling
framework. Briefly, the proposed framework consists of statistical analysis and interval
scheduling methods used to describe the distribution of uncertainty parameters. On this
basis, a PSO algorithm considering assembly constraints is designed to hedge against the
risk of system performance degradation in uncertain environments.

The rest of this paper is organized as follows. In Section 2, we give the problem
description and the notations. In Section 3, considering that the prior distribution of process
setup time and processing time is unknown, we design a nonparametric estimation method
based on kernel density estimation to obtain the probability density function of these
two parameters. The proposed particle swarm optimization algorithm based on interval
scheduling is then elaborated in detail, which is followed by a series of computational
experiments and discussion. A summary covering the conclusions is presented in the
last section.

2. Problem Description

Suppose there are several types of products with tree-like assembly structures to be
produced. Each product is composed from a set of components. Those basic components
produced with only machining operations are termed parts, while those assembled from
other parts are termed subassemblies. The term job refers to a part or a subassembly. A final
product is assembled from a set of subassemblies and parts with a sequential constraint
relationship in a tree-like operation diagram. The operation tree example of a product is
shown in Figure 1. The nodes in the tree operation represent the operations, while the
edges represent the partial order relationship of the operation constraints. An assembly
operation can only start after all required parts are completed. Each individual operation
can be processed by multiple alternative machines/assembly group. For convenience,
we call the above problem an assembly job shop scheduling problem.

Other assumptions made are listed as follows:

• Each operation can be machined/assembled by at most one machine/assembly group
at a time;

• Each machine/assembly group can handle at most one operation at a time;
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• Only one alternative assignment is chosen for any operation;
• Any started operation cannot be interrupted before it is finished;
• All parts and machines are available at the beginning of the scheduling period.

In the production process, various uncertain factors need to be considered in the
scheduling problem. The robustness of a schedule means that it is insensitive to various
uncertainties, given a certain control policy. In this study, we assumed that managers adopt
the most commonly used right-shift policy [28] to hedge against the effect of uncertainty
on the baseline schedule. We used s to represent a feasible schedule that specifies the
operations assigned to each machine and the corresponding sequence. Let Cmax(s, ξ)
denote the maximum completion time of schedule s under an uncertain parameter ξεU.
We considered two uncertain parameters, namely, the uncertain processing time and the
setup time, and we assumed that their probability density functions can be obtained from
historical data. By combining these data with the a priori structural features of uncertainties,
we constructed a mathematical model for AJSSP. Some notations used for formulating the
mathematical model are listed in Table 1.

Table 1. Parameters and variables for modeling.

Parameters Variables
I Index set of the operations Cmax Maximum completion time

M Index set of the machines STi Start time of operation i, i ∈ I
Im Set of operations that are processed in machine m, m ∈ M Xij Binary decision variable, i, j ∈ I

CA Set of pairs (i, j) that the predecessor iof, i, j ∈ I
PTi Nominal processing time of operation i, i ∈ I
SUi Nominal processing time of operation i, i ∈ I
P̃Ti Uncertain processing time of operation i, i ∈ I
S̃Ui Uncertain setup time of operation i, i ∈ I
K Big value

The model is presented as follows:

minimize Cmax(s, ξ) (1)

subject to
Cmax(s, ξ) ≥ STi + S̃Ui + P̃Ti ∀i ∈ I (2)

STj − STi ≥ S̃Ui + P̃Ti ∀(i, j) ∈ CA (3)

STi − STj + KXij ≥ S̃U j + P̃T j ∀i, j ∈ Im, ∀m (4)

STj − STi + K
(
1− Xij

)
≥ S̃Ui + P̃Ti ∀i, j ∈ Im, ∀m (5)

STi ≥ 0 ∀i ∈ I (6)

Xij ∈ {0, 1} ∀i, j ∈ Im, ∀m (7)

The binary decision variable Xij is 1 if operation i is scheduled before j, and 0 other-
wise. Ci, which is the completion time of operation i, is STi + S̃Ui + P̃Ti, the right-hand
side of Equation (2). Since we are interested in minimizing the makespan, i.e., the com-
pletion time of the final operation, the objective function is max

i∈I
Ci, which is equivalent to

Equations (1) and (2). Equation (3) guarantee that each operation can only start after the re-
lated processing operations and subassembly operations are finished. Equations (4) and (5)
ensure that every single machine can only process one operation simultaneously.

Obviously, the above mathematical model is a kind of semi-infinite problem and can-
not be solved directly, since it has an infinite number of constraints due to the uncertain set
U to which ξ belongs. Once the interval times of the schedule are determined, this model
can be solved by linear programming methods, such as robust linear programming. In this
research, a novel data-driven method, which combines metaheuristic algorithm and statis-
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tical analysis technology, is used to solve the above AJSSP under uncertainty. The details of
this method are introduced in the next section.

3. Data-Driven Robust Scheduling Method

The proposed data-driven robust scheduling method includes two parts: an uncertain
parameter analysis based on kernel density estimation technology and an interval schedul-
ing optimization based on a particle swarm optimization algorithm. First, we estimate the
probability density function of uncertain parameters based on the kernel density estimation
method, and we adjust the range of the interval number through the confidence level. Sec-
ond, we design an interval scheduling method that takes the interval number of uncertain
parameters as input and optimizes the interval makespan through the PSO algorithm.

3.1. Kernel-Based Estimation of Uncertain Parameters

In the actual production process, uncertain parameters are usually regarded as
bounded uncertainties, and managers often define the bounds of uncertain parameters
based on experience. In the absence of domain-specific knowledge, the analysis of historical
data provides a practical way to characterize uncertain intervals. For example, the upper
and lower bounds of the interval can be specified as the maximum and minimum of data
samples. However, this method may be too conservative because the worst-case scenarios
at the boundary are very unlikely to occur in practice.

In this paper, we decompose the uncertain parameters S̃Ui and P̃Ti in the follow-
ing forms:

S̃Ui = SUi + ξ1,i ˆSUi (8)

S̃Ui = SUi + ξ1,i P̂Ti (9)

where SUi and PT represent the nominal value of the uncertain parameter; ˆSUi and
ˆPTi denote the magnitude of the random perturbation, which can be approximated by

the bounds of the samples; ξi is a normalized random variable, which controls the range
of uncertainties. By specifying the interval of ξi, inherent uncertain parameters can be
transformed to bounded uncertainties that are easy to model mathematically.

In recent years, some researchers have proposed to adopt statistical analysis and
machine learning methods to learn the distributional information from the data and then
establish a data-driven uncertainty set to reduce conservatism. As a well-known nonpara-
metric estimation approach, kernel density estimation (KDE) has proven to be an effective
tool for modeling probability density distribution [29]. Assume that we have the data of
uncertain parameters drawn i.i.d. according to distribution P. In this paper, we propose
to use the confidence region of the probability density function to quantify the uncertain
interval by KDE.

Given historical data of uncertain parameters, KDE learns the probability density
function of the samples according to

p(x) =
1

nh

n

∑
i=1

ϕ(
x− xi

h
) (10)

where p(x) denotes the estimated density function of uncertain parameter x; h is a positive
parameter representing the bandwidth; n is the number of samples; ϕ(·) is a kernel function,
which satisfies

ϕ(u) ≥ 0 (11)∫
ϕ(u)du = 1 (12)

In our research, the Gaussian function commonly used in engineering problems is
introduced as the kernel function, and the value of bandwidth h is determined through
pilot experiments.
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Based on the probability density functions of uncertainties, the confidence interval
of the uncertain values can be calculated through interval estimation. To reduce the
conservatism of the uncertain interval, we introduce an adjustable parameter σ to control
the number of uncertain values that lie within the uncertain interval. Taking the uncertain
parameter S̃U as an example, the corresponding σ can be described as

σi =
ˆSU1−η

i
ˆSUmax

i
(13)

where ˆSU1−η
i represents the value of ˆSUi under the confidence level 1− η, which can be

calculated by the quartile function of S̃Ui [30], and ˆSUmax
i denotes the maximum range

of uncertainty. When the confidence level 1− η equals 1, all of the sampled points are
contained in the uncertain interval and ˆSU1−η

i = ˆSUmax
i . Conversely, as the value of 1− η

falls to 0, fewer samples are considered (see Figure 2). Thus, the region of S̃Ui determined
by σi can be described as:

S̃Ui = SUi + ξ1,i ˆSUmax
i ξ1i ∈ [−σi, σi] (14)

Figure 2. Data-driven uncertain interval of uncertain parameters.

In the following optimization algorithm, the above data-driven uncertain interval is
used to assist the encoding and decoding procedure.

3.2. Data-Driven PSO Algorithm with Uncertain Parameters

Over the past two decades, a large number of metaheuristic algorithms have been
developed to solve production scheduling problems with complicated constraints. In this
paper, we address the AJSSP with uncertain parameters, where the objectives cannot be
evaluated in the form of traditional deterministic fitness functions. To solve this problem,
we propose using a data-driven interval schedule to approximate objective functions under
the effect of uncertainties. On this basis, this paper proposes a data-driven particle swarm
optimization (DPSO) algorithm framework (see Figure 3). In DPSO, we improved the
original PSO algorithm by adding the Metropolis operator and genetic operator.
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Figure 3. Diagram of the proposed DPSO algorithm framework.

3.2.1. Encoding Scheme of AJSSP

In the design of heuristic algorithms, the term chromosome represents the encoding
of a solution. A reasonable chromosome representation is the primary task for the suc-
cessful application of heuristic algorithms to solve actual production scheduling problems.
In order to make the PSO algorithm applicable to the discrete AJSSP, we propose a discrete
chromosome coding and initialization method based on the adjacency matrix to represent
sequential constraints of the product.

To make the description about the adjacency matrix easier to follow, we assume that
one product (i.e., product A) will be scheduled, and its assembly structure is shown in
Figure 1. First, we establish the corresponding adjacency matrix A =

(
aij
)

n×n of product
A to represent the sequential constraints (see Figure 4). The row and column numbers
of the matrix A represent the numbers of all parts/subassemblies to be scheduled, and
A0 is a virtual node that represents the end of assembly. In the adjacency matrix A, if the
value of element aij is not equal to 0, it means that Ai is a lower level part of Aj, i.e., Aj can
only start after all operations of Ai are completed. The value of aij represents the number
of operations of part Ai that have not yet been processed. In the initialization and repair
process of DPSO, one can continuously search and update the adjacency matrix A to avoid
generating an infeasible schedule.
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Figure 4. Adjacency matrix of product A.

A discrete chromosome representation decodes a schedule of AJSSP with a positive
integer string O, which defines the permutation of jobs, i.e., parts and subassemblies. The O-
string consists of a sequence of job numbers. The number of job i occurs ni times in the
O-string, where ni is the number of operations included in job i. Therefore, the lengths of
the O-string is equals to the sum of all operations of all jobs to be scheduled. Table 2 shows
a feasible chromosome of product A. In the decoding process, the O-string is converted to
a sequence of operations, and then each operation is assigned to the prespecified machine.

Table 2. A feasible chromosome for product A.

O-string 4 1 2 2 1 3 4 3 5
Operation O7 O1 O3 O4 O2 O5 O8 O6 O9
Machine M1 M2 M3 M2 M1 M2 M2 M1 M3

3.2.2. Decoding Scheme Based on Interval Schedule

By using the KDE-based estimation for historical data, the processing time and setup
time of each operation can be represented as interval number P̃Ti =

[
PTi, PTi

]
and

S̃Ui =
[
SUi, SUi

]
. The left and right bounds of the interval number can be calculated

by Equation (13) and adjusted by setting different confidence levels. After that, we can
construct an interval schedule based on interval theory to obtain the interval makespan.

Unlike the scheme of generating a deterministic schedule, interval theory redefines
basic operation rules of interval numbers. In this study, we focus on the addition and com-
parison rules involved in the production scheduling process. Assuming that A and B are
two interval numbers, AL/BL and AR/BR represent the left and right limits, respectively.
The addition and comparison rules of A and B are defined as follows [31]:

A + B =
[

AL + BL, AR + BR
]

(15)

P(A ≤ B) =



0 AL ≥ BR

0.5 ∗ BR−AL

AR−AL ∗ BR−AL

BR−BL BL ≤ AL ≤ BR ≤ AR

BL−AL

AR−AL + 0.5 ∗ BR−BL

AR−AL AL ≤ BL ≤ BR ≤ AR

BL−AL

AR−AL + AR−BL

AR−AL ∗ BR−AR

BR−BL + 0.5 ∗ AR−BL

AR−AL ∗ AR−BL

BR−BL AL ≤ BL ≤ AR ≤ BR

BR−AR

BR−BL + 0.5 ∗ AR−AL

BR−BL BL ≤ AL ≤ AR ≤ BR

1 AR ≤ BL

(16)

In the decoding process, Equation (15) issed to calculate the completion time of an
operation, and Equation (16) is used to compare the release time of different machines.
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Based on an O-string, a corresponding interval schedule can be obtained through the
above operation rules. By comparing the interval numbers for Ci of different operations,
the interval makespan Cmax can be finally obtained.

3.2.3. Particle Update Method

In this study, we design a discrete PSO algorithm to realize the discretization of the
position update process through operations such as insertion and exchange. In addition,
the Metropolis criterion in the simulated annealing algorithm is used to set the acceptance
probability of the location update.

To ensure the diversity of the initial population, we use a random generation method
to generate initial particles. In the PSO algorithm, the particles are updated according
to the interaction of particle velocity, the best-found location, and the global best-found
position. In each iteration step, the position and the velocity of the i-th particle are updated
in the following formulas:

Xi =

{
g(w⊗ h(Xi), pBi), i f RAND < c
g(w⊗ h(Xi), gBi), else

(17)

where pBi is the best-found location by particle i up to this step; gBi is the global best-found
position among all particles up to this step; w is the inertia weight, which is used to control
whether to execute h(·); RAND represents a random number between [0,1], and c is a
preset positive constant. The inertia weight w is expressed in the form of probability, and
w⊗ h(Xi) means that the algorithm executes h(Xi) with the probability of w. The design of
the functions h(X) and g(X, Y) refers to the commonly used genetic operations. Specifically,
the function h(X) exchanges the values of two random positions in the particle X, and the
function g(X, Y) is defined as the crossover operation in genetic algorithm.

In addition, we introduce the Metropolis criterion to set the particle update probability
in the following formulas:

4i = f
(
X′i
)
− f ( pBi) (18)

where X’
i represents the updated new position of particle i, and f (Xi) is the fitness function

value corresponding to particle i at position Xi. If 4i < 0, update the new position of
particle i to X’

i . Otherwise, update the position of i with the probability exp(−4i / f ( pBi)).
In order to ensure the feasibility of the generated solutions, DPSO uses the adjacency

matrix to identify whether the new solution is feasible after each operator is executed.
If the solution is infeasible, the algorithm re-executes the operator until a feasible solution
is obtained.

4. Experimental Study

To test the performance of the proposed data-driven robust scheduling method, a se-
ries of calculation experiments was performed on 2 AJSSP benchmarks and 8 cases originat-
ing from an aerospace structure parts workshop in Shanghai. Among them, Cases 1 and 2
were derived from two AJSSP examples used in Shi et al. [6]. We modified the above two
cases by introducing random processing time and setup time. The features of these cases
are shown in Table 3.

All the experiments were performed in Visual Studio 2017 on a personal computer
with Intel Core I7-6700 2.6 GHz CPU and 4 GB RAM.
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Table 3. Characteristics of test instances.

Instance No. of Operations No. of Machines No. of Assembly Levels

1 18 4 3
2 33 4 3
3 86 5 4
4 92 5 5
5 125 6 5
6 148 8 5
7 164 8 5
8 170 9 5
9 176 9 6

10 185 10 6

4.1. Setting Algorithm Parameters

As it is generally known, the performance of metaheuristic algorithms is greatly af-
fected by the values of the algorithm parameters. To investigate the statistically significance
of the parameter values of the algorithm, we performed an analysis of variance (ANOVA)
on the obtained experimental results. In this study, 4 key parameters were considered, and
each parameter contained 3 alternative value levels. Specifically, the population size in-
cluded 3 levels, namely 100, 150, and 200; the inertia weight w included 3 levels, namely 0.7,
0.8, and 0.9; the constant c includes three levels, namely 0.3, 0.5, and 0.7; the function g in
Equation (17) can choose three crossover operation modes, namely SPX, PMX, and OX [32].
The result of the ANOVA is shown in Table 4.

Table 4. ANOVA results for the obtained results of RPD.

Sum of Squares (SS) df Mean Square (MS) F Sig.

A. population size 0.049 2 0.025 4.235 0.019
B. inertia weight w 0.059 2 0.030 5.111 0.009

C. constant c 0.053 2 0.027 4.577 0.014
D. function g 0.041 2 0.020 3.510 0.036

In Table 4, SS means the sum of squares for the factor, which reflects the degree of
variation between sample means. The abbreviation df means the degree of freedom of
the factor. Here, df = k − 1, and k is the number of value levels of the factor. MS means
the mean square between groups for the factor, and MS = SS/df. The label “F” is the test
statistic in the ANOVA, which is equal to the ratio of the mean square between groups
and the mean square within groups. The greater the value of F, the greater the difference
between the groups, or in other words, the more significant the influence of this factor on
the results.

According to Table 4, since the p-value (sig.) is less than the significance level (0.05),
the above four parameters all have significant impact on the experimental results. Tak-
ing the relative percent difference (RPD) of the makespan as the metric, Figure 5 shows
the corresponding means plot and the least significant difference (LSD) intervals of inertia
weight w at the 95% confidence level for the RPD metric. When the inertia weight w is set
to 0.8, the value of the RPD metric is the smallest, and thus its value is set to 0.8. Similarly,
the value of population size is set to 200, while the value of constant c is set to 0.5, and the
function g is set to be the SPX mode.
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Figure 5. Means plot at the 95% confidence level LSD intervals for RPD metric.

4.2. Robustness of Interval Schedules under Different Confidence Levels

In the proposed method, the confidence level of uncertain parameters is an important
tool to control the robustness of the schedule. Based on Equation (15), different confidence
levels correspond to different bounds of intervals, which make the schedule flexible to
fluctuations of production parameters. Taking Case 1 as an example, the product structure
and the original deterministic processing time PTi are detailed in Shi et al. [6]. In this study,
the uncertain processing times P̃Ti were assumed to follow Gaussian distribution with
the mean of PTi and the standard deviation σ = 0.2 ∗ p0. Here, p0 represents the standard
processing time of the operation. We obtained the optimized solution (see Figure 6) of Case
1 in the deterministic scenario and in the uncertain scenario with a 80% confidence level.
As can be seen from Figure 6b, each operation in the interval schedule was represented by
two intervals. Taking operation 4 as an example, the lower line O4_S indicated the interval
start time of operation 4, and the upper line O4_E indicated the interval completion time,
which was obtained by adding the interval processing time to the interval start time.

Figure 6. Gantt chart of the optimal solution for Case 1. (a) Optimal solution on deterministic
scenario; (b) Optimal solution on uncertain scenario with 80% confidence level.
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Compared with the schedule for deterministic scenario, although the makespan of
interval schedule increased, it is obvious that each operation reserves appropriate time
redundancy based on its historical data, which is more suitable for the actual production
process. From another perspective, the result also proves that the uncertainty of the process-
ing time may cause the maximum 16.5% fluctuation in the makespan of Case 1, which can
provide a reference for the delivery date of the product. In addition, the proposed method
can help managers flexibly adjust the conservativeness and robustness of the schedules by
setting different confidence levels. We tested the performance of interval schedules under
different confidence levels and reported the results of Cases 1–5 in Figure 7.

Figure 7. Objective values of different confidence levels.

In Figure 7, when the confidence level was equal to 0, all parameters became deter-
ministic values, and the interval scheduling at this time was equivalent to deterministic
scheduling. With the continuous improvement of the confidence level, the interval of
uncertain parameters covers more uncertain scenarios, and the value of the objective
also increases. Taking Case 1 as an example, the objective value of confidence level 0
was 178, and the value of confidence level 1 was 211. This meant that the uncertainty of
the processing time and setup time may cause a performance deviation of 18.5% in the
makespan. In addition, for Cases 3–10, the average fluctuation of the objective value caused
by different confidence levels of the processing time and setup time is 15–20%, which is
basically consistent with the actual situation of the workshop.

4.3. Performance Comparison of Different Optimization Algorithms

To verify the performance of the proposed algorithm, the DPSO algorithm was com-
pared with two classic heuristic algorithms, namely the simulated annealing algorithm (SA)
and the genetic algorithm (GA) [7]. GA is a typical population-based heuristic algorithm,
while SA belongs to another type of heuristic algorithm based on a single individual.
We chose these two algorithms for comparison because they are the prototypes of many
evolutionary algorithms of the same type, and they have shown excellent performance
in many workshop scheduling problems. In addition, we also added the original PSO
algorithm for comparison. The GA, SA, and PSO algorithms used the same interval-based
decoding scheme as that of DPSO, and the algorithm parameters were also optimized
by the ANOVA. To make a fair comparison, all algorithms used the interval numbers
of uncertainty parameters under the 80% confidence interval as input, and the cut-off
time of the algorithms was set to 120 s. The above three algorithms were applied on each
instance with 10 independent runs. In order to comprehensively compare the stability and
superiority of different algorithms, we recorded and reported the average value (denoted
as Avg) and the best value (denoted as Best) of the makespan on each instance. In addition,
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the Avg/Best makespan of each algorithm was compared with the Avg/Best makespan
of all comparison algorithms (denoted as Avg∗/Best∗) from the relative percentage error
(RPE). The RPE can be denoted as follows:

RPE =
Best∗ − Best

Best∗
× 100% (19)

The computational results in Table 5 show that the proposed DPSO algorithm is
significantly better than the SA and GA. The pair of numbers under each case denote the
scale of the case. For example, (92 × 5) means that this case contains 92 processes that need
to be processed on 5 machines. For Cases 1 and 2, due to the small scale of these problems,
the above three algorithms can stably obtain the same optimal solution. However, as the
scale of the problem continues to increase, GA and DPSO are superior to SA in terms of
optimization capability and algorithm stability. Specifically, for Cases 3 and 5, GA and
DPSO can obtain the same optimal solution and perform better than SA on the same CPU
time. However, even for these two cases, the average values of DPSO are 3.9% and 1.3%
smaller than those of GA, which show that the stability of the proposed algorithm is better.

Table 5. Comparisons of SA-MAE and the four existing algorithms for the AJSSP on different scenarios.

Instance Algorithm Avg RPE_A (%) Best RPE_B (%)

Case 1
(18 × 4)

SA [149, 198] 0 [149, 198] 0
GA [149, 198] 0 [149, 198] 0
PSO [149, 198] 0 [149, 198] 0

DPSO [149, 198] 0 [149, 198] 0

Case 2
(33 × 4)

SA [216, 279] 0 [216, 279] 0
GA [216, 279] 0 [216, 279] 0
PSO [216, 279] 0 [216, 279] 0

DPSO [216, 279] 0 [216, 279] 0

Case 3
(86 × 5)

SA [501.5, 553.9] −4.7 [462, 515] −1.2
GA [490.3, 549.5] −3.9 [452, 509] 0
PSO [479.5, 541.2] −2.3 [452, 509] 0

DPSO [471.6, 528.8] 0 [452, 509] 0

Case 4
(92 × 5)

SA [539.4, 599.6] −5.3 [499, 563] −2.3
GA [518.7, 583.5] −2.5 [494, 555] −0.9
PSO [512.4, 573.4] −0.7 [487, 550] 0

DPSO [506.3, 569.4] 0 [487, 550] 0

Case 5
(125 × 6)

SA [795.8, 874.2] −4.0 [757, 827] −1.6
GA [775.4, 851.2] −1.3 [739, 814] 0
PSO [772.3, 847.5] −0.9 [739, 814] 0

DPSO [762.2, 840.3] 0 [739, 814] 0

Case 6
(148 × 8)

SA [721.6, 788.8] −8.3 [670, 738] −5.6
GA [692.6, 764.3] −4.9 [647, 719] −2.8
PSO [673.2, 749.4] −2.9 [641, 711] −1.7

DPSO [658.4, 728.6] 0 [627, 699] 0

Case 7
(164 × 8)

SA [833.5, 907.1] −8.5 [783, 861] −5.8
GA [807.3, 889.3] −6.4 [767, 849] −4.3
PSO [786.3, 869.8] −4.1 [745, 827] −1.6

DPSO [756.8, 835.7] 0 [734, 814] 0

Case 8
(170 × 9)

SA [891.9, 984.8] −14.1 [818, 903] −7.8
GA [820.4, 909.4] −5.3 [784, 868] −3.6
PSO [811.5, 896.2] −3.8 [773, 859] −2.5

DPSO [779.6, 863.4] 0 [752, 838] 0

Case 9
(176 × 9)

SA [871.5, 970.0] −9.3 [816, 904] −5.9
GA [814.2, 912.4] −2.8 [797, 886] −3.7
PSO [812.6, 907.6] −2.3 [788, 880] −3.1

DPSO [794.7, 887.2] 0 [763, 854] 0

Case 10
(185 × 10)

SA [1069.2, 1177.9] −11.4 [985, 1094] −6.4
GA [998.2, 1116.3] −5.9 [972, 1076] −4.7
PSO [988.5, 1091.2] −3.2 [961, 1068] −3.9

DPSO [953.7, 1057.4] 0 [924, 1028] 0

For more complex cases (Cases 6–10), compared with the SA and GA, DPSO obtains
all the optimal solutions among the three algorithms. In terms of optimization capability,
the best values of optimal solutions obtained by DPSO are 3.8% and 6.3% better than GA
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and SA, respectively. In terms of algorithm stability, the objectives of DPSO are on average
5.1% and 10.3% better than GA and SA, respectively. Considering the similar structure
of the population-based optimization algorithms, the computational results of GA and
DPSO show that the proposed encoding and initialization method based on the adjacency
matrix are effective. The discretized particle update method is also more advantageous
than conventional genetic operations.

In addition, we compared the performance of the original PSO algorithm and the
improved DPSO algorithm. For Cases 1–5, although the PSO also obtained the same
best values of optimal solutions, the algorithm is not stable enough in 10 independent
runs. For Cases 6–10, DPSO is obviously better than PSO in all respects. Specifically,
the best values and average value of optimal solutions are increased by 2.6% and 3.3%,
respectively. This result also proves the effectiveness of the proposed particle update
method. In summary, the proposed DPSO algorithm is competitive in performance and
stability, especially on larger-scale problems.

5. Conclusions

Assembly job shop is a common production organization mode in discrete manufactur-
ing, and its production scheduling is more complicated than a single processing workshop.
This paper proposes a data-driven robust scheduling method for the AJSSP with uncertain
production parameters, which can generate adjustable robust schedule. The improvements
of the proposed method consist of three points: (1) using the kernel density estimation
method to obtain the probability density function of uncertain parameters, and introducing
the confidence level to adjust the bounds of uncertain parameters; (2) establishing a decod-
ing scheme based on interval scheduling to realize the combination of interval numbers of
uncertain parameters and schedule; (3) designing a discrete PSO algorithm to deal with
the assembly constraints and optimize solutions. The experimental results show that the
proposed method can effectively improve the performance and robustness of the schedule.

The improvement of the digital level of manufacturing enterprises is the key to ap-
plying new data analysis methods to solve traditional scheduling problems. Taking into
account the complexity of the actual production environment, this study only considers
the uncertainty of the processing time and setup time in the production process. Future re-
search work can be divided into two aspects: (1) considering more types of uncertain
parameters according to the actual production environment; and (2) incorporating more
prior information and characteristics of uncertain parameters into the scheduling method
to further improve the effectiveness and robustness of the schedule.
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