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Abstract: This paper proposes a reliability-based design optimization (RBDO) approach that adopts
the second-order reliability method (SORM) and complex-step (CS) derivative approximation. The
failure probabilities are estimated using the SORM, with Breitung’s formula and the technique
established by Hohenbichler and Rackwitz, and their sensitivities are analytically derived. The CS
derivative approximation is used to perform the sensitivity analysis based on derivations. Given
that an imaginary number is used as a step size to compute the first derivative in the CS derivative
method, the calculation stability and accuracy are enhanced with elimination of the subtractive
cancellation error, which is commonly encountered when using the traditional finite difference
method. The proposed approach unifies the CS approximation and SORM to enhance the estimation
of the probability and its sensitivity. The sensitivity analysis facilitates the use of gradient-based
optimization algorithms in the RBDO framework. The proposed RBDO/CS–SORM method is tested
on structural optimization problems with a range of statistical variations. The results demonstrate
that the performance can be enhanced while satisfying precisely probabilistic constraints, thereby
increasing the efficiency and efficacy of the optimal design identification. The numerical optimization
results obtained using different optimization approaches are compared to validate this enhancement.

Keywords: reliability-based design optimization; sensitivity analysis; second-order reliability method;
complex-step derivative approximation

1. Introduction

Structural design is primarily aimed at maximizing the strength, serviceability, and
safety of a structure considering the load effects. The dimensions, compositions, and
orientations of the structural members are carefully determined to ensure a sufficient safety
margin between the structural demand and its capacity. However, uncertainties inevitably
arise in the planning and execution of processes in structural analyses, modeling, design
parameters, and strength evaluations. In particular, the environmental conditions, geomet-
ric characteristics, and nature of material compositions, along with discrepancies between
the predicted and actual loads, responses, and strength, add many layers of complexity
and uncertainty. Consequently, in structural design and optimization, the uncertainties in
predicting the load effects and structural modeling must be considered to ensure a sufficient
level of structural reliability. Nevertheless, this consideration is challenging because in
addition to the increasing number of natural and artificial uncertainties, the nature of their
interaction also becomes unpredictable and is difficult to anticipate. To address the ongoing
challenges associated with increasing uncertainties, theoretical and numerical probabilistic
analysis and design methods are being developed in academia and industry.

The reliability-based design optimization (RBDO) strategy incorporates the reliability
analysis to account for uncertainties in structural design optimization. The RBDO frame-
work includes the evaluation of the probabilistic constraints, implemented through the
reliability analysis during optimization. The reliability analysis is aimed at determining the
probability that a component or a system will fail in operation, considering the impacts of
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random inputs. However, the estimation of the failure probability of a structure is generally
not straightforward and is therefore computationally expensive. Many algorithms and
methods have been proposed to address these challenges and increase the efficacy of the re-
liability analysis, including simulation-based [1,2], surrogate model [3,4], matrix-based [5],
first-order linearization [6,7], and quadratic approximation approaches [8–10]. Among
these techniques, the first-order reliability method (FORM) linearizes the limit-state equa-
tions to approximate the probability, whereas the second-order reliability method (SORM)
uses a quadratic approximation to perform the reliability analysis [11,12]. The estimation
accuracy depends on the characteristics of the limit-state function. When the limit-state
function has a high nonlinearity, the SORM achieves more accurate evaluations compared
to the FORM that may not identify accurate failure points or encounter a convergence
issue while searching for them. Various factors, such as the nonlinear relationship between
random variables and the transformation of random variables from the original space to
standard normal space, may cause the nonlinearity of the limit-state function. In contrast,
when the limit-state function is linear (or close to linear) in the standard normal space, the
FORM and SORM may generate equivalent calculation results for the probability.

The FORM and SORM are being increasingly used owing to their high computational
efficiency, accuracy, and wide applicability. Shin and Lee [13] proposed an RBDO technique
to minimize the radius of roadway horizontal curves by performing the first-order reliabil-
ity analysis. Analytical models integrated with the vehicle behaviors and characteristics
were used to establish the probabilistic constraints, and novel recommendations of the min-
imum radii were provided to satisfy the target reliability levels. Meng et al. [14] proposed
an RBDO technique using the SORM with an improved stability transformation approach
to increase the accuracy and efficiency of the reliability analysis. The stability transforma-
tion approach calculated the chaos control factor during the optimization process, thereby
enhancing the efficiency of the most probable point search. Tu et al. [15] developed a perfor-
mance measure approach (PMA) employing the FORM to perform the reliability analysis.
In the PMA, the probabilistic constraint was expressed in terms of a performance function, a
quantile of the limit-state function. Enevoldsen and Sørensen [16] developed the reliability
index approach (RIA), in which the reliability index of the probabilistic constraint was ob-
tained by the FORM. The optimization was performed by updating the design variables to
ensure that the obtained reliability index was greater than a predetermined reliability index.
Youn et al. [17] proposed an enhanced PMA approach with a hybrid analysis method that
adaptively selected the numerical algorithms, average mean value, and conjugate mean
value to efficiently obtain the design point that is the most likely failure point. Eldred and
Bichon [18] explored the second-order RIA and PMA formulations with various reliability
analysis methods, including the FORM, SORM, mean-value first-order second-moment
method, and advanced mean value method. Furthermore, Haldar and Mahadevan [19]
provided a detailed review of the RIA, Lee et al. [20] conducted a comparative study on the
RIA and PMA, and Lopez and Beck [21] provided a comprehensive review of the RBDO
using the FORM.

The sensitivity analysis is an integral part of structural design optimization because
the information of the sensitivity analysis indicates the effects of the changes in the design
or modeling parameters on the structure. The key variables can be identified through the
sensitivity analysis to enable the effective design of different types of structures. Further-
more, the sensitivity information can be used in gradient-based optimization algorithms
to search for directions to update the design variables at each iteration. In the context of
the RBDO, diverse methods of sensitivity analysis have been developed. Chun et al. [22]
proposed a method to compute the sensitivity of the parallel, series, and general system
using the sequential compounding method [23], where component events coupled by a
union or intersection operation were sequentially compounded. The sensitivity analysis
was performed with a single compound representing the system failure to improve the com-
putational efficiency. Au [24] proposed a simulation approach to perform reliability-based
design sensitivity analysis. Specifically, an augmented reliability problem was formulated
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using design variables that were artificially considered as uncertain with a specified proba-
bility density function. The reliability sensitivity was obtained by performing the failure
analysis of the augmented problem. Karamchandani and Cornell [25] utilized a finite
difference method for sensitivity estimation within the FORM and SORM. Frangopol [26]
proposed a feasible direction concept to obtain the sensitivity. By changing a selected
parameter while keeping other variables fixed, the rate of change in the optimum design
was measured. The variation in the optimum solutions was quantified in the sensitivity
analysis. Generally, finite difference approaches or simulation-based methods such as
Monte Carlo simulations (MCS) may cause the instability of the numerical implementation
and require high computational power, and these aspects hinder the application of these
techniques. Moreover, the difficulty of sensitivity analysis may increase when the under-
lying functions and the governing equations of the system are complex, or the analytical
derivation of gradients is not feasible. Therefore, to identify the optimal structure that
satisfies a certain level of reliability, it is crucial to perform the sensitivity analysis of the
failure probability estimated using the SORM, which is generally more accurate than that
obtained using the FORM.

To overcome the abovementioned challenges, this paper proposes an RBDO technique
that incorporates the complex-step (CS) derivative approximation into the SORM for the
sensitivity analysis. An overview of the structural reliability, FORM/SORM, and RBDO is
presented, followed by an explanation of the proposed RBDO/CS procedure. The perfor-
mance and applicability of the proposed method are demonstrated by numerical examples.

2. Structural Reliability

The theory of structural reliability pertains to the estimation of the failure probability
of structural design-related limit-state functions by considering the uncertainties in both
the load effects and strength.

2.1. Mathematical Basis

Evaluating the structural reliability involves determining the likelihood that a given
structure will perform as designed, including the calculation of the failure probabilities
that correspond to the limit-state functions associated with structural design. Consider a
time-invariant reliability problem characterized by a vector X of n basic random variables,
X = (X1,X2,X3, . . . ,Xn)T Assuming that the random variables have the joint probability
density function, k(x), the probability failure, Pf, of the limit-state function, g(x), can be
defined by an n-fold integral:

Pf = P(x ∈ ΩF) =
∫

ΩF

k(x)dx (1)

where x is the realization of the random vector X, and ΩF is the failure domain described
in terms of the continuous and differentiable limit-state function, g(x), that indicates a
violation of a design constraint. g(x) divides the n-dimensional probability space into the
safe domain ΩS = {x : g(x) > 0} and failure domain ΩF = {x : g(x) ≤ 0}. In general, it is
challenging to calculate the n-fold integral in Equation (1) when the number of random
variables, n, is greater than 3 or 4 because no closed-form solution is available. Many
methods have been developed to compute the probability integral [27], among which, the
FORM and SORM [6,12] are widely utilized to efficiently evaluate the probability integral
defined in Equation (1).

2.2. First-Order Reliability Method

The FORM is an analytical approximation of the probability integral, obtained by
linearizing a limit-state function transformed into the standard normal space at an optimal
point. In the theory of structural reliability, the optimal point, also known as the design
point or most probable point, is computed via mathematical programming. By transforming
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the random variables from the original space into the standard normal space (u = T(x)),
the failure probability integral can be written as:

Pf =
∫

G(u)≤0
ϕn(u)du (2)

where G(u) is the limit-state function transformed into the standard normal space, and
ϕn(·) is the n-variate standard normal density function for the random vector. The FORM
linearizes the limit-state function G(u) at a point u* that is obtained by solving a constraint
optimization problem, defined as:

arg min
u∗

{‖u‖ |G(u) = 0} (3)

The design point, u*, indicates a location on the linearized limit-state function that is
at the least distance from the origin in the standard normal space. The linearized limit-state
function at u* can be expressed as:

G(u) = ∇G(u∗)(u− u∗) = ‖∇G(u∗)‖(β−αu) (4)

where ∇G(u∗) = ∇u∗G(u∗) = (∂G/∂u∗1 , ∂G/∂u∗2 , . . . , ∂G/∂u∗n) denotes the gradient row
vector. The linearization represents the failure domain G(u) ≤ 0, which is the half-space
defined by β − αu ≤ 0. The reliability index β = αu∗ is interpreted as the minimum
distance from the origin to the limit-state surface in the standard normal space, and
α = −∇G(u∗)/‖∇G(u∗)‖ denotes the normalized negative vector at the design point
(see Figure 1).
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Figure 1. Illustration of the first-order reliability method (FORM) and second-order reliability method
(SORM) for a reliability problem.

Considering the half-space defined by the reliability index, an approximate value for
the failure probability can be defined as:

Pf FORM ≈ Φ(−β) (5)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.
Since the limit-state function is approximated by a linearized function in the standard
normal space at the design point, accuracy problems arise when the limit-state function is
strongly nonlinear. The SORM that includes a curvature correction has been developed to
enhance the accuracy of the FORM.
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2.3. Second-Order Reliability Method

The SORM [6] transforms a reliability problem into the independent standard normal
random variable space as the FORM, approximates a limit-state function through a second-
order surface, and computes the probability of failure using the approximate surface.
Consider a Taylor series expansion of the limit-state function in the standard normal space
at u*:

G(u) = ∇G(u∗)(u− u∗) + 1
2 (u− u∗)TH(u− u∗) + O

∼= ‖∇G(u∗)‖
[
(β−αu) + 1

2‖∇G(u∗)‖ (u− u∗)TH(u− u∗)
] (6)

where H is the second-derivative matrix of G(u) at u*, known as the Hessian matrix
having elements Hij = ∂2G(u∗)/(∂ui∂uj), i, j = 1, . . . , n, and O is the higher-order error
term. Consider an orthonormal matrix P with α that leads to a rotation of axes u

′
= Pu

and positions the design point on the u′n axis (≡ u
′∗). The limit-state function can be

expressed as:

G′(u
′
) = β− u′n +

1
2
(u
′ − u

′∗)
T

D(u
′ − u

′∗) (7)

where u′n = αPTu
′
and D = PHPT/‖∇G(u∗)‖. Expanding the matrix product in Equation (7)

and considering the tangent plane at the design point while neglecting the smaller order
terms [6] yield:

G′(u
′
) = β− u′n +

1
2

u
′
1

TD11u
′
1 (8)

where D11 is the (n− 1)× (n− 1) matrix formed by the first (n− 1) rows and columns of D.
After a set of linear transformations [6,10,28], such as rotation of the axes with u′′1 = Qu′1 (Q
is an (n − 1) × (n − 1) orthonormal matrix) and orthogonal diagonalization, the limit-state
function in Equation (8) can be simplified as follows:

G′(u
′
) = β− u′n +

1
2

n−1

∑
i=1

κiu
′′
i

2 (9)

where κi represents the eigenvalues of D11 that define the principal curvatures of the
limit-state function. Based on the asymptotic approximations derived by Breitung [8], the
failure probability can be computed as:

Pf SORM ≈ Φ(−β)·
n−1

∏
i=1

1√
1 + βκi

(10)

Note that the term 1/
√

1 + βκi acts as a correction for the FORM approximation.
Hohenbichler and Rackwitz [9] proposed an alternate correction to improve the calculation
results, as:

Pf SORM − i
∼= Φ(−β)·

n−1

∏
i=1

1√
1 + (ϕ(β)/Φ(−β))κi

(11)

The approximation of the limit-state function in the SORM is better than that of the
FORM and results in a more accurate assessment of the failure probability. However, the
SORM requires additional effort in terms of the function evaluation and construction of the
Hessian matrix.

3. Reliability-Based Design Optimization

RBDO methods are used to perform design optimization while accounting for un-
certainties in the design matrix through simulations and probability analyses. The RBDO
for structures incorporates structural reliability analysis in the structural optimization
process to achieve the optimal design under the given probabilistic constraints pertaining
to the uncertainties in structural integrity-related parameters, such as the material property,
magnitude and direction of forces, and modeling. The RBDO formulated such that the
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optimal structure satisfies each failure mode with predetermined probabilities is referred
to as component-RBDO (CRBDO). A CRBDO problem can be defined as:

min
d,µx

fobj(d,µx)

s.t. Pf i = P[gi(d, x) ≤ 0] ≤ Pt
f i, i = 1, . . . , nc

dl ≤ d ≤ du

(12)

where fobj is the objective function, d is a vector of deterministic design variables, µx is
the vector of the means of random variable x,P[gi(d, x) ≤ 0] is the failure probability of
the i-th limit-state function gi(·), Pfi

t represents the target failure probability, nc is the
number of probabilistic constraints, and dl and du are the lower and upper bounds of the
design variables, respectively. Gradient-based optimization algorithms such as sequential
linear programming, sequential quadratic programming [29], convex linearization [30],
optimality criteria [31], and method of moving asymptotes (MMA) [32] are often used to
solve Equation (12). Many strategies are available to implement the reliability analysis in
the RBDO. For instance, in the double-loop approach [15,33], each step of the iterations for
the design optimization involves another subloop of iterations for the reliability analysis.
Single-loop (SL) approaches [34–36] approximate the equivalent deterministic constraint
by using the Karush–Kuhn–Tucker (KKT) optimality condition to convert the double-loop
problem into a single-loop problem. Decoupling approaches [37,38] decouple the outer-
loop optimization from the reliability analysis by constructing an equivalent deterministic
optimization problem. A comprehensive review of the structural reliability analysis and
RBDO has been presented by Song et al. [27].

4. Proposed Method for Sensitivity Analysis of SORM-Based Estimates
4.1. SORM-Based Determination of the Sensitivity of the Failure Probability

Sensitivity analysis has been a key domain in engineering practice and research, par-
ticularly in the design optimization area. The dependence of the reliability on the design
parameters or random variables can be evaluated by performing a sensitivity analysis.
Furthermore, the sensitivity analysis is integral to utilize an efficient gradient-based opti-
mization algorithm in the RBDO. The sensitivity analysis in the RBDO framework using
the SORM is the focus of this study. The sensitivity of Breitung’s failure probability with
respect to a design parameter d can be derived by applying a chain rule to Equation (10):

∇dPf SORM = ∇d

(
Φ(−β)

n−1
∏
i=1

1√
1+βκi

)
= −ϕ(β)·∇dβ(d, x∗)·

(
n−1
∏
i=1

1√
1+βκi

)

+Φ(−β)·


n−1
∑

j=1

− 1
2

(
1

3
√

1+βκj

)
κj· ∏

m ∈ {1, · · · , n− 1}
\{j}

1√
1+βκm


·∇dβ(d, x∗)

(13)

where the gradient of reliability index is:

∇dβ(d, x∗) = ∇dg(d, x∗)
‖∇G(d, x∗)‖ (14)

Similarly, the sensitivity of the failure probability based on Hohenbichler and Rack-
witz’s formula, as defined in Equation (11), can be derived as:
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∇dPf SORM − i = ∇d

(
Φ(−β)

n−1
∏
i=1

1√
1+ψ(β)κi

)
= −ϕ(β)·∇dβ(d, x∗)·

(
n−1
∏
i=1

1√
1+ψ(β)κi

)

+Φ(−β)·


n−1
∑

j=1

− 1
2

(
1

3
√

1+ψ(β)κj

)
(−β + ψ(β))·ψ(β)κj· ∏

m ∈ {1, · · · , n− 1}
\{j}

1√
1+ψ(β)κm


·∇dβ(d, x∗)

(15)

where ψ(β) = ϕ(β)/Φ(−β). Note that Equations (14) and (15) are derived assuming that
curvatures κi are nearly independent of the design variable. To realize the sensitivity
analysis, the gradients of the reliability index at x* need to be computed. The CS derivative
approximation is applied to compute the gradients.

4.2. Complex-Step Derivative Approximation

The proposed method adopts the CS method [39] to perform the sensitivity analysis of
SORM-based estimates associated with probabilistic constraints in the RBDO. Squire and
Trapp [40] proposed a method to compute the first derivative of a function by using the CS
derivative approximation and demonstrated its higher efficiency and accuracy compared
to those of the traditional finite difference methods [41]. Commonly, the first derivative in
the finite difference method is estimated using a forward difference formula:

f ′(a) ≈ f (a + h)− f (a)
h

+ O(h) (16)

where h is the step size, and O(h) is the truncation error. A small step size, h, is commonly
selected to minimize the truncation error. However, an extremely small step size may
cause a significant error due to dominant subtractive cancellation. The level of accuracy
in the first derivative using the conventional finite difference method may vary with
changes in the step size. The appropriate step size is generally unknown before actual
calculations. Although higher-order finite difference methods can be adopted to minimize
truncation errors, subtractive cancellation errors remain and may become significant in
the calculations.

In the CS derivative approximation, an imaginary number is used to develop an
estimate of derivatives. Consider a differentiable function f (z) = u + iv of the complex
variable z = a + ib (a, b ∈ R, i2 = −1). Assume u and v are the real and imaginary parts
f (z) respectively. Based on the Cauchy–Riemann equations that indicate the relationship
between u and v,

∂u
∂a = ∂v

∂b
∂u
∂b = − ∂v

∂a
(17)

The first Cauchy–Riemann equation yields:

∂u
∂a

= lim
h→0

v(a + i(b + h))− v(a + ib)
h

, (h ∈ R) (18)

By setting b = 0, z becomes a real number, such that f (a) = u(a) and v(a) = 0; then,
the first-derivative expression in Equation (18) can be written as:

∂ f (a)
∂a

= lim
h→0

=[ f (a + ih)]
h

, (h ∈ R) (19)

For a small step size, h, Equation (19) can be approximated as:

∂ f (a)
∂a

≈ =[ f (a + ih)]
h

(20)
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where =[·] denotes the imaginary part of the function f. Evaluating f at the imaginary
argument a + ih and dividing it by h yields an approximation to the first derivative. Note
that a truncation error, O(h2), that can be confirmed by the use of a Taylor series expansion
at a + ih, exists in Equation (20). However, the CS derivative approximation does not
include a subtraction operation, and thus, the calculation results are not affected by the
subtractive cancellation and its associated round-off errors. Multiplying the real part of
Equation (20) with h yields a value of function f (a). In other words, the first derivative
and function value can be computed simultaneously during the implementation. It should
be noted that sensitivity analysis using the CS derivative approximation simply requires
the evaluation of the function with a complex variable, without analytical derivations of
gradients. Therefore, the CS derivative approximation allows for sensitive analysis, even
when the analytic derivation of gradients cannot be explicitly expressed, or each analysis
becomes computationally expensive.

4.3. Sensitivity Analysis of the Failure Probability Obtained Using the SORM via the CS
Derivative Approximation

Consider a vector of realization of n random variables x = (x1,x2,x3, . . . ,xn)T and a
vector of z design variables d = (d1,d2,d3, . . . ,dz)T. Incorporating the CS approximation
approach in the sensitivity analysis yields the gradients of the reliability index, such that:

∇dβ(d, x∗) = ∇dg(d,x∗)
‖∇G(d,x∗)‖ =

1
‖∇G(d,x∗)‖

[
∂g(d,x∗)

∂d1
, . . . , ∂g(d,x∗)

∂dl
, . . . , ∂g(d,x∗)

∂dz

]T

= =[g(d+ihe1,x∗),...,g(d+ihel ,x∗),...,g(d+ihez ,x∗)]T
h·‖∇G(d,x∗)‖

(21)

where el denotes the l-th column of an identity matrix (Iz) of size z. Considering the
transformation of the random variables from the original space into the standard normal
space (u = T(x)) in the SORM, the gradient vector ∇G(d, u∗) in Equation (21) can be
rewritten as:

∇G(d, u∗) = ∇g(d, x∗)J−1
u,x(x∗) ≡

(
∇u∗G(d, u∗) = ∇x∗g(d, x∗)J−1

u,x(x∗)
)

(22)

where J−1
u,x is the inverse of the Jacobian of the x to u transformation. Note that the Jacobian

is dependent on the distribution types of the random variables [6]. Applying the CS
derivative approximation to Equation (22) yields:

∇g(d, u∗) = =[g(d, x ∗+ihe1), . . . , g(d, x ∗+ihek), . . . , g(d, x ∗+ihen)]
T

h
(23)

where ek denotes the k-th column of an identity matrix (In) of size n. Substituting
Equations (21) and (23) into Equations (13) and (15) provides the sensitivity of the second-
order probability approximation with respect to a vector of d as:

∇dPf SORM = A(β, κi) + B(β, κi)·
=[g(d + ihe1, x∗), . . . , g(d + ihez, x∗)]T

h·‖∇g(d, x∗)J−1
u,x(x∗)‖

(24)

∇dPf SORM − i = C(β, κi) + D(β, κi)·
=[g(d + ihe1, x∗), . . . , g(d + ihez, x∗)]T

h·‖∇g(d, x∗)J−1
u,x(x∗)‖

(25)

where,
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A(β, κi) = −ϕ(β)·=[g(d+ihe1,x∗),...,g(d+ihez ,x∗)]T

h·‖∇g(d,x∗)J−1
u,x(x∗)‖

·
(

n−1
∏
i=1

1√
1+βκi

)

B(β, κi) = Φ(−β)·


n−1
∑

j=1

− 1
2

(
1

3
√

1+βκj

)
κj· ∏

m ∈ {1, · · · , n− 1}
\{j}

1√
1+βκm




C(β, κi) = −ϕ(β)·=[g(d+ihe1,x∗),...,g(d+ihez ,x∗)]T

h·‖∇g(d,x∗)J−1
u,x(x∗)‖

·
(

n−1
∏
i=1

1√
1+ψ(β)κi

)

D(β, κi) = Φ(−β)·


n−1
∑

j=1

− 1
2

(
1

3
√

1+ψ(β)κj

)
(−β + ψ(β))·ψ(β)κj· ∏

m ∈ {1, · · · , n− 1}
\{j}

1√
1+ψ(β)κm




(26)

The proposed method integrates the RBDO with the CS derivative approximation
(RBDO/CS) to perform the sensitivity analysis of the failure probabilities estimated us-
ing Breitung’s asymptotic approximation (SORM), and Hohenbichler and Rackwitz’s im-
proved correction approach (SORM-i). Figure 2 illustrates the process flow of the proposed
RBDO/CS−SORM/SORM-i algorithms.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 23 
 

 + + +  
 =

T

1
( , * i ), , ( , * i ), , ( , * i )

( , *)
k n

g h g h g h
g

h

d x e d x e d x e
d u  (23) 

where ek denotes the k-th column of an identity matrix (In) of size n. Substituting Equations 

(21) and (23) into Equations (13) and (15) provides the sensitivity of the second-order prob-

ability approximation with respect to a vector of 𝐝 as: 

T

1

SORM 1

,

( i , *), , ( i , *)
A( , ) B( , )

( , *) ( *)

z

f i i

g h g h
P

h g
   

−

 + +  
 = + 

 
d

u x

d e x d e x

d x J x
 (24) 

T

1

SORM - i 1

,

( i , *), , ( i , *)
C( , ) D( , )

( , *) ( *)

z

f i i

g h g h
P

h g
   

−

 + +  
 = + 

 
d

u x

d e x d e x

d x J x
 (25) 

where, 

T
1

1

1
1,

1

31 {1, , 1}
     \{ }

( i , *), , ( i , *) 1
A( , ) φ( )

( , *) ( *) 1

1 1 1
B( , ) ( )

2 1 1

( i
C( , ) φ( )

n
z

i
i

i

n

i j
j m n

j mj

i

g h g h

h g

g h

  


   
 

  

−

−
=

−

=  −

  + +    = −  
   + 

   
   =  −  −    + +     

 +
= − 



 

u x

d e x d e x

d x J x

d e

( )

T
1

1

1
1,

1

31 {1, , 1}
     \{ }

, *), , ( i , *) 1

( , *) ( *) 1 ( )

1 1 1
D( , ) ( ) ( ) ( )

2 1 ( ) 1 ( )

n
z

i
i

n

i j
j m n

j mj

g h

h g   

        
     

−

−
=

−

=  −

  +    
   + 

   
   =  −  − − +     + +     



 

u x

x d e x

d x J x

 (26) 

The proposed method integrates the RBDO with the CS derivative approximation 

(RBDO/CS) to perform the sensitivity analysis of the failure probabilities estimated using 

Breitung’s asymptotic approximation (SORM), and Hohenbichler and Rackwitz’s im-

proved correction approach (SORM-i). Figure 2 illustrates the process flow of the pro-

posed RBDO/CS−SORM/SORM-i algorithms. 

 

Initial design

z  design variables

n  random variables

n
c
 probabilistic constratins

Evaluate the objective function

and probabilistic constraints

Optimal design

Second-order

reliability method

Update design variables by

gradient-based optimization

algorithms

Converged?
No

Yes

Perform sensitivity analysis

of the objective function and

probabilistic constraints

using the CS approximation

Find u* (MPP) and reliablity index

Construct orthonormal Matrix P

and Hessian Matrix H

Compute curvatures

Estimate the failure probability

Figure 2. Process flow of the reliability-based design optimization (RBDO) using the complex-step
(CS) derivative approximation with SORM/SORM-i algorithms.

5. Numerical Applications

The proposed RBDO/CS−SORM/SORM-i approaches are tested on structural op-
timization problems considering the uncertainty and the statistical correlation between
random variables. A gradient-based optimization algorithm, specifically, the MMA [32], is
employed to solve all the considered RBDO problems.
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5.1. Comparative Study on the Accuracy in the Reliability Assessment and Sensitivity Analysis

The accuracy in the assessment of the failure probability and sensitivity analysis by
the FORM/SORM is studied and compared to that pertaining to the results obtained using
the finite difference method and MCS. Consider a nonlinear function of random variables
x = (x1, x2, x3)

T and deterministic variables d = (d1, d2)
T:

f (d, x) = 7− x1x2x3

(
d1

2d2
2

)
(27)

Assume that the random variables follow the normal distribution with the means
and standard deviations listed in Table 1. The correlation coefficients are assumed to be
uniform, ρxixj = 0.3 (i, j = 1, 2, 3, i 6= j). The failure probability of the nonlinear function
Pf = P[ f (d = (0.7, 0.8), x) ≤ 0] is computed using the FORM, SORM, and SORM-i. The
sensitivity analysis of the function at d = (0.7,0.8) is performed using the proposed method
with the SORM and SORM-i techniques, as described in Equations (24) and (25), and the
FDM with a step size of h = 10−5. The results are verified through the MCS involving
107 samples (coefficient of variance, c.o.v = 0.001). The results of the failure probability
and sensitivity calculations are summarized in Table 2. The SORM estimate of the failure
probability according to Breitung’s formula is Pf = 0.1332, whereas the result based on
Hohenbichler and Rackwitz’s formula is Pf = 0.1291. These values closely match the “exact”
result obtained through the MCS. However, the failure probability obtained using the
FORM exhibits significant (more than 10%) differences. Since the failure surface has a
high nonlinearity, the failure probability estimated using the FORM is less accurate than
the quadratic approximation obtained through the SORM. The results of the sensitivity
analysis implemented using the proposed method exhibit a satisfactory agreement with
the results of the FDM, as validated through the MCS.

Table 1. Description of the random variables for the comparative study.

Random
Variables

Marginal
Distribution

Mean c.o.v
Correlation Coefficient

x1 x2 x3

x1 Normal 2 0.25 1 0.3 0.3

x2 Normal 2.5 0.25 0.3 1 0.3

x3 Normal 1.5 0.25 0.3 0.3 1

Table 2. Results of the assessment of the failure probability and sensitivity analysis by the FORM,
CS–SORM, CS–SORM-i, and MCS at a point d = (0.7,0.8).

Failure Probability FORM SORM SORM-i MCS

Pf 0.1427 0.1332 0.1291 0.1287

Sensitivity CS–SORM FDM–SORM CS–SORM-i FDM–SORM-i MCS
∂Pf /∂d1 0.6818 0.6775 0.6553 0.6493 0.6511
∂Pf /∂d2 −1.1932 −1.1859 −1.1468 −1.1366 −1.1362

Furthermore, the impact of the step size on the sensitivity of the second-order failure
probability is investigated by varying h from 10−14 to 10−1. The sensitivity analysis is
performed using the proposed method integrated with Breitung’s approximation and
Hohenbichler and Rackwitz’s approach, FDM, and MCS, with 107 samples. The numerical
results, presented in Figure 3, show that the sensitivities obtained using the proposed
methods are consistent for different step sizes. This finding indicates that a section of the
step size does not affect the calculation accuracy. In contrast, the FDM breaks down as the
step size becomes smaller than 10−6 or larger than 10−3. Therefore, the proposed method
using the CS derivative approximation is more stable and accurate for small step sizes at
which the finite difference approach cannot ensure reasonable accuracy.



Appl. Sci. 2021, 11, 5312 11 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 23 
 

Furthermore, the impact of the step size on the sensitivity of the second-order failure 

probability is investigated by varying h from 10−14 to 10−1. The sensitivity analysis is per-

formed using the proposed method integrated with Breitung’s approximation and Ho-

henbichler and Rackwitz’s approach, FDM, and MCS, with 107 samples. The numerical 

results, presented in Figure 3, show that the sensitivities obtained using the proposed 

methods are consistent for different step sizes. This finding indicates that a section of the 

step size does not affect the calculation accuracy. In contrast, the FDM breaks down as the 

step size becomes smaller than 10−6 or larger than 10−3. Therefore, the proposed method 

using the CS derivative approximation is more stable and accurate for small step sizes at 

which the finite difference approach cannot ensure reasonable accuracy. 

 

Figure 3. Effect of the step size on the accuracy of the sensitivity analysis performed using the finite difference method (FDM), 

monte carlo simulation (MCS), and (a) CS–SORM and (b) CS–SORM-i. 

5.2. RBDO of the Three-Bar Truss under the Displacement Constraints 

The proposed RBDO/CS approach is applied to identify the optimal member sizes of 

a three-bar truss subjected to two forces, 𝐹𝑋 and 𝐹𝑌, as illustrated in Figure 4a. All the truss 

bars have a modulus of elasticity, E. Assume that the forces and modulus of elasticity are 

random variables, T( , , ) ,
X Y

F F E=x following the lognormal distribution. The mean values 

and coefficients of variance of the random variables are summarized in Table 3. The de-

sign variables are the cross-sectional areas of the bars T

1 2 3
( , , ) .A A A=d  The objective is 

to minimize the volume of the truss. The limit-state functions are defined in terms of the 

displacements at nodes 2 and 3, specifically, 
T

2 2 3
( , , )

x y y
u u u=u  (see Figure 4b), which 

should not exceed the values of 
T

2 2 3
( , , )

x y y
u u u=u , as follows: 

1 2 2

2 2 2

3 3 3

( , ) ( , )

( , ) ( , )

( , ) ( , )

x x

y y

y y

g u u

g u u

g u u

= −

= −

= −

d x d x

d x d x

d x d x

 (28) 

where the nodal displacements, 𝐮, are obtained by solving the global equilibrium equa-
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Figure 3. Effect of the step size on the accuracy of the sensitivity analysis performed using the finite difference method
(FDM), monte carlo simulation (MCS), and (a) CS–SORM and (b) CS–SORM-i.

5.2. RBDO of the Three-Bar Truss under the Displacement Constraints

The proposed RBDO/CS approach is applied to identify the optimal member sizes
of a three-bar truss subjected to two forces, FX and FY, as illustrated in Figure 4a. All the
truss bars have a modulus of elasticity, E. Assume that the forces and modulus of elasticity
are random variables, x = (FX , FY, E)T, following the lognormal distribution. The mean
values and coefficients of variance of the random variables are summarized in Table 3. The
design variables are the cross-sectional areas of the bars d = (A1, A2, A3)

T. The objective
is to minimize the volume of the truss. The limit-state functions are defined in terms of
the displacements at nodes 2 and 3, specifically, u = (u2x, u2y, u3y)

T (see Figure 4b), which

should not exceed the values of
¯
u = (u2x, u2y, u3y)

T, as follows:

g1(d, x) = u2x − u2x(d, x)
g2(d, x) = u2y − u2y(d, x)
g3(d, x) = u3y − u3y(d, x)

(28)

where the nodal displacements, u, are obtained by solving the global equilibrium equations
for the truss as:

u2x(d, x) = L
E

(
FX
A2

+ FY
A2

)
u2y(d, x) = L

E

(
FX
A2

+
(

1
A1

+ 1
A2

+ 2
√

2
A3

)
FY

)
u3y(d, x) = L

E ·
FY
A1

(29)

Table 3. Description of the random variables for the truss problem.

Random Variables Marginal Distribution Mean c.o.v Correlation

FX, kips lognormal 100 0.2 ρFx Fy = 0.3
FY, kips lognormal 150 0.2

E, ksi lognormal 29,000 0.2 Independent
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Figure 4. Three-bar truss: (a) Coordinate system and loading and boundary conditions, and (b) dis-
placements at nodes 2 and 3.

The constraints are assigned on the probability that the design violates the limit-state
function. The target failure probability and initial design variable, d0, are set as 0.005 for
all three constraints, and 5 in2 for all members, respectively. This RBDO problem can be
formulated as:

min
d

f (d) = (A1 + A2 +
√

2A3)L

s.t. P[gi(d, x) ≤ 0] ≤ 0.005, i = 1, 2, 3

dl ≤ d ≤ du

(30)

The proposed RBDO/CS using SORM-i and deterministic design optimization (DDO)
based on the mean values of the forces and modulus of elasticity with deterministic
constraints are applied to this problem. The parameters used for the structural analyses
and optimization process are listed in Table 4. The results of the two approaches and
verification by the MCS (107 samples; c.o.v = 0.005) are presented in Table 5. The optimal
volume f * of the DDO is lower than that obtained using the RBDO/CS–SORM-i because
the risk of high displacements caused by the forces and modulus of elasticity is ignored.
The higher volume obtained using the RBDO/CS highlights the importance of considering
the uncertainties in the forces and modulus of elasticity for structures. Figure 5 shows the
convergence history obtained using the DDO and RBDO/CS with SORM-i. The proposed
method can find a converged solution that satisfies the probabilistic constraints.

Table 4. Parameters for the objective and constraint functions as well as the RBDO.

¯
u, in L, in d0, in2 dl, in2 du, in2 Convergence Criterion

u2x = 0.15
100 (5, 5, 5) (1, 1, 1) (50, 50, 50) 10−5u2y = 0.60

u3y = 0.15

Table 5. Results of the RBDO/CS–SORM-i framework and DDO for the three-bar truss.

RBDO/CS–SORM-i DDO MCS

Optimal f *, in3 3229.9 1609.2 –

Optimal d*
A1, in2 7.094 3.448 –
A2, in2 11.183 5.747 –
A3, in2 9.916 4.877 –

Failure probability of the optimal design
Pf1 0.005 – 0.00501
Pf2 0.005 – 0.00502
Pf3 0.005 – 0.00499



Appl. Sci. 2021, 11, 5312 13 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 23 
 

Table 4. Parameters for the objective and constraint functions as well as the RBDO. 

�̅�, in L, in d0, in2 dl, in2 du, in2 
Convergence 

Criterion 

2
0.15

x
u =  

100 (5, 5, 5) (1, 1, 1) (50, 50, 50) 10−5 2
0.60

y
u =  

3
0.15

y
u =  

Table 5. Results of the RBDO/CS–SORM-i framework and DDO for the three-bar truss. 

 RBDO/CS–SORM-i DDO MCS 

Optimal f*, in3 3229.9 1609.2 – 

Optimal d*    

A1, in2 7.094 3.448 – 

A2, in2 11.183 5.747 – 

A3, in2 9.916 4.877 – 

Failure probability of 

the optimal design 
   

Pf1 0.005 – 0.00501 

Pf2 0.005 – 0.00502 

Pf3 0.005 – 0.00499 

 

Figure 5. Convergence history of the objective function and design variables pertaining to the deterministic design optimization 

(DDO) and RBDO/CS–SORM-i, and failure probabilities obtained using the RBDO/CS–SORM-i framework. 

DDO

RBDO/CS - SORM-i

DDO A
1

DDO A
2

DDO A
3

RBDO/CS - SORM-i A
1

RBDO/CS - SORM-i A
2

RBDO/CS - SORM-i A
3

O
b
je

c
ti
v
e
 f
c
n
, 
in

3
1000

2000

3000

4000

D
e
s
ig

n
 v

a
ri
a
b
le

s
, 
in

2

2

4

6

8

10

12

14

P
f1

P
f2

P
f3

P
f

t

105 15 20 25 30 35 40

105 15 20 25 30 35 40

105 15 20 25 30 35 40

Iteration

0

0.2

0.4

0.6

0.8

P
f

Figure 5. Convergence history of the objective function and design variables pertaining to the
deterministic design optimization (DDO) and RBDO/CS–SORM-i, and failure probabilities obtained
using the RBDO/CS–SORM-i framework.

To investigate the effect of the types of probabilistic distributions on the optimal design
and to demonstrate the general applicability of the proposed method, all the random
variables in the same problem are assumed to follow the normal and gamma distributions
in two cases. All the other parameters such as the mean values and standard deviations of
the random variables remain the same. The RBDO results shown in Figure 6 indicate that
the minimum and maximum values of the objective function value are obtained when the
lognormal and normal distributions are adopted, respectively. This finding highlights the
importance of selecting suitable types of random variables to enable the structure design
under uncertainties.
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Figure 6. Results of the RBDO/CS–SORM-i framework for normal, lognormal, and gamma distribution cases. (a) Optimal
volume, and (b) optimal areas.
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5.3. RBDO of the Cantilever Beam under the Displacement Constraint

The beam consists of three segments, each of length L. The cross-section of each
segment has a hollow square form, as shown in Figure 7. The thickness of the section
is t for all segments, and the length of the side of the square is di for segment i = 1,2,3.
The objective of this RBDO problem is to minimize the volume of the beam under the
constraint that the displacement, ∆tip, at the tip is less than a prescribed value ∆0. The
design variables are the cross-sectional sizes, d = (d1,d2, d3)T, and the random variables
are the modulus of elasticity, magnitude of force, and thickness of the cross-section, as
x = (E,F,t)T. The assumed distributions and second moments of the random variables
are presented in Table 6. Based on the beam theory, the vertical displacement and its
corresponding limit-state function are defined as:

g(d, x) = ∆0 − ∆tip(d, x) = ∆0 −
3FL
2Et
·

3

∑
i=1

(
i2 − i +

1
3

)
1
d3

i
(31)
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Figure 7. (a) Cantilever beam consisting of three segments, (b) hollow square cross-section, (c) defor-
mation under a vertical force.

Table 6. Description of the random variables for the cantilever beam problem.

Random Variables Marginal Distribution Mean c.o.v Correlation

E, ksi Weibull 29,000 0.2 Independent
F, kips Gamma 2000 0.2 Independent

t, in Normal 0.5 0.2 Independent

The RBDO problem of the cantilever beam can be formulated as:

min
d,µx

f (d,µx) = 4L·
3
∑

i=1
(dit− t2)

s.t. P[g(d, x) ≤ 0] ≤ Pt
f

dl ≤ d ≤ du

(32)

The target failure probability and parameters used in structural analysis and optimiza-
tion are summarized in Table 7. Figure 8 shows the convergence history of the objective
function, design variables, and failure probability obtained using the proposed RBDO/CS
with the SORM-i approach. The proposed approach can promptly identify a feasible solu-
tion, satisfying the probabilistic constraint within eight iterations, and can continuously
find the optimal design by minimizing the objective function until the convergence criteria
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are met. The results of the RBDO/CS using the SORM and SORM-i summarized in Table 8
demonstrate that the two approaches achieve similar results for the cantilever beam prob-
lem. Moreover, the optimization result indicates that strengthening the segment close to
the fixed support is the most efficient approach to reduce the tip deflection.

Table 7. Target failure probability and parameters for the reliability analysis and optimization.

Pt
f L, in ∆0, in d0, in dl, in du, in Convergence Criterion

0.005 50 3 (50, 50, 50) (1, 1, 1) (100, 100, 100) 10−3
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Table 8. Results obtained using the RBDO/CS–SORM/SORM-i for the cantilever beam.

RBDO Method Optimal d*, in f (d*, µx), in3 Pf

RBDO/CS−SORM (34.5, 56.2, 72.1) 16,128 0.005
RBDO/CS−SORM-i (34.6, 56.4, 72.3) 16,185 0.005

5.4. RBDO of the Ductile Frame Structure under the Moment Strength Constraints

The frame structure subjected to external forces is illustrated in Figure 9a. Assume that
the frame structure is constructed using ductile members having plastic moment capacities
mi i = 1, . . . ,5, at the joints. The three failure mechanisms under the externally applied
forces, h and v, are illustrated in Figure 9b. Assume that the external forces and moment
capacities are random variables, and the height and width of the structure are the design
variables. The limit-state functions related to these failure mechanisms can be defined
using the principle of virtual work [6], as:

g1(d, x) = m1 + m2 + m4 + m5 − hd1
g2(d, x) = m2 + 2m3 + m4 − vd2
g3(d, x) = m1 + 2m3 + 2m4 + m5 − hd1 − vd2

(33)

where x = (m1, m2, . . . , m5, h, v)T and d = (d1, d2)
T represent the vectors of random vari-

ables and design variables (d1: height, d2: width), respectively. The considered distributions
and second moments of the random variables are presented in Table 9. The objective is
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to determine the height and width of the structure that can maximize the span and space
surrounded by the ductile frame. The constraints are assigned on the probability that the
design leads to failure through the considered mechanisms. The RBDO problem of the
ductile structure can be formulated as follows:

max
d

f (d) = d1 + 2d2

s.t. P[gi(d, x) ≤ 0] ≤ Pt
f i, i = 1, 2, 3

dl ≤ d ≤ du

(34)
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Table 9. Description of the random variables for the ductile frame optimization problem.

Random Variables Marginal Distribution Mean c.o.v Correlation

m1, kNm

Joint lognormal 150 0.2
ρmimj = 0.3

i 6= j

m2, kNm
m3, kNm
m4, kNm
m5, kNm

h, kN Gumbel 50 0.4 Independent
v, kN Gamma 60 0.2 Independent

The initial design and parameters for the RBDO and structural analysis are summa-
rized in Table 10. The failure probabilities of the three limit-state functions with the initial
design variables, d0, are estimated using the FORM, SORM, and SORM-i. The results of
the reliability analysis presented in Table 11 indicate that the limit-state function related to
the combined failure mechanism has the highest failure probability compared to that of
the beam and sway mechanisms. The first-order approximation of the failure probability
obtained using the FORM is close to the second-order approximation provided by the
SORM and SORM-i because the failure surface is linear or close to linear in the space of the
random variables.
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Table 10. Target failure probability and parameters for the reliability analysis and optimization.

Pt
fi

,i=1,2,3 d0, m dl, m du, m Convergence Criterion

0.003 (7.0, 7.0) (1.0, 1.0) (10.0, 10.0) 10−4

Table 11. Failure probabilities and reliability indices of initial limit-state functions estimated using
the FORM, SORM, and SORM-i.

Limit-State Function
FORM SORM SORM-i

β Pf β Pf β Pf

g1(d
0, x) 1.452 0.0732 1.468 0.0711 1.472 0.0705

g2(d0, x) 1.435 0.0757 1.468 0.0710 1.479 0.0696
g3(d0, x) 0.701 0.2415 0.688 0.2457 0.674 0.2503

Figure 10 shows the convergence histories obtained using the proposed method
RBDO/CS–SORM/SORM-i and the FORM-based RBDO approach. The three methods can
promptly identify the feasible solutions satisfying the probabilistic constraints. Table 12
compares the results obtained using the proposed approaches and the RBDO using the
FORM. The RBDO/CS–SORM/SORM-i approaches result in a less conservative design in
terms of the width but more conservative designs in terms of the height compared to results
pertaining to the FORM-based RBDO, while satisfying the same requirements pertaining
to the component level reliability.
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Table 12. Results of the RBDO/CS–SORM/SORM-i and RBDO–FORM for the ductile frame structure.

i Pfi βi Optimal d*, m Optimal f*, m

RBDO–FORM
1 0.0005 3.310

(3.362, 5.148) 13.6582 0.0030 2.748
3 0.0030 2.748

RBDO/CS–SORM
1 0.0003 3.417

(3.277, 5.196) 13.6692 0.0030 2.748
3 0.0030 2.748

RBDO/CS–SORM-i
1 0.0004 3.349

(3.264, 5.201) 13.6662 0.0030 2.748
3 0.0030 2.748

The effects of the coefficient of variations of mi i = 1, . . . , 5 and the correlations between
the random variables v and h on the optimal result are investigated. The RBDO problem
is solved again considering the same target system probability of 0.003, while varying
the coefficient of variations and correlation coefficients. For simplicity, the same types of
distributions and mean values, coefficient of variations, and correlation coefficients listed
in Table 9 are used, except for the varying parameters of interest. Figure 11a shows the
influence of the increase in the correlation coefficients (from 0.1 to 0.5) on the optimal
f. The influence of the changes in the coefficient of variations of the moment capacity
random variables is illustrated in Figure 11b. A positive correlation among the random
forces results in a larger height and width of the structures. When the coefficient of
variance of the moment capacities increases, the optimal objective function decreases
(more conservative design). This phenomenon occurs because a higher dispersion of the
probability distribution of the moment capacity increases the failure probabilities of the
limit-state functions.
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5.5. RBDO of the Truss Cantilever Structure under the Displacement Constraints

Consider a truss cantilever structure consisting of 56 bar members and 21 nodes (see
Figure 12c,d). The truss cantilever structure subjected to two external forces at nodes 5 and
21 contains three-roller supports, as illustrated in Figure 12a. All of the truss members have
the same modulus of elasticity, E. The objective of RBDO is to minimize the weight of the
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truss cantilever structure under the constraints on horizontal and vertical displacements
(u5x, u21y) at nodes 5 and 21. Limit-state functions are defined as follows:

g1(d, x) = u5x − u5x(d, x)
g2(d, x) = u21y − u21y(d, x)

(35)

where u5x, u21y are the maximum allowable displacements in the horizontal and vertical
direction at nodes 5 and 21 respectively, and x = (F5x,F21y,E)T and d = (A1,A2, . . . ,A56)T

represent the vectors of random variables and design variables. Table 13 provides marginal
distributions, mean values, and second moments of the random variables. Parameters
for reliability analysis and optimization are listed in Table 14. The RBDO problem can be
written in a nested formulation as follows:

min
d

f (d) =
56
∑

i=1
AiLi

s.t. P[gi(d, x) ≤ 0] ≤ Pt
f i, i = 1, 2

with K(d, x)u(d, x) = f(d, x)
dl ≤ d ≤ du

(36)

where K is the global stiffness matrix of the truss cantilever structure, u is the global
displacement vector, and f is the global external force vector. Note that u is an implicit
function defined through the equilibrium equations K(d, x)u(d, x) = f(d, x). The deriva-
tive of the displacement vector with respect to a parameter and sensitivity analysis us-
ing the CS approach is discussed in [42]. The initial displacements at nodes 5 and 21,
u5x(d0,µx), u21y(d0,µx), with mean values of random variables as well as the uniform
cross-sectional areas of 5 in2 for all members, are 0.306 in and 0.726 in, and their corre-
sponding failure probabilities assessed using the SORM-i are 0.525 and 0.773, respectively.
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Figure 12. Truss cantilever structure: (a) dimension, loading, and boundary conditions, (b) deformed shape and displace-
ments of interest, (c) truss member numbers, and (d) node numbers.
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Table 13. Description of the random variables for the cantilever truss optimization problem.

Random Variables Marginal Distribution Mean c.o.v Correlation

F5x, kips Joint lognormal 300 0.2 ρF5x F21y = 0.3
F21y, kips Joint lognormal 100 0.2

E, ksi Normal 29,000 0.2 Independent

Table 14. Target failure probability and parameters for the reliability analysis and optimization.

Pt
fi

¯
u5x, in

¯
u21y, in d0, in2 dl, in2 du, in2 Convergence Criterion

0.005 0.3 0.6 5.0 0.5 50.0 10−3

Figure 13 illustrates the convergence histories of objective and probabilistic constraint
functions, optimized member sizes using RBDO/CS–SORM-i, and optimized cantilever
structure. The proposed method can promptly identify the solutions satisfying probabilistic
constraints and then minimizes the volume. Furthermore, the single-loop approach using
the Karush–Kuhn–Tucker conditions (SL–KKT) [36] with the same design and optimization
parameters is utilized to compare results obtained using the proposed method. Table 15
provides the optimization results and failure probabilities of limit-state functions of the
optimized design using the FORM, SORM, SORM-i, as well as MCS with 107 samples
(c.o.v = 0.03). Note that the SL–KKT approach solves the system equation of KKT condi-
tions to approximate the performance measure function [15]. Therefore, the SL–KKT and
FORM-based RBDO approaches result in the optimal solution, satisfying a similar level of
reliability. This study confirms that the proposed method using the SORM and SORM-i
enables the efficient identification of optimal solutions, whereas the FORM-based RBDO
and SL–KKT may result in the less conservative design. It is primarily due to the high
nonlinearity of the limit-state functions in Equation (35).
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Figure 13. Results of the proposed RBDO/CS–SORM-i: (a) Convergence histories of volume and
failure probability, (b) cross-sectional areas (elements having the minimum area of 0.5 in2 are in grey),
and (c) illustration of normalized cross-sectional areas of elements (elements in blue are in tension
and those in red are in compression).



Appl. Sci. 2021, 11, 5312 21 of 22

Table 15. Results of the RBDO/CS–SORM and SORM-i, RBDO–FORM, and SL–KKT for the truss cantilever structure.

RBDO Method Optimal f *, ft3
Pfi × 10−3 of the Optimized Design

i FORM SORM SORM-i MCS

SL–KKT 4.806
1 5.00 5.57 5.67 5.67
2 5.00 5.59 5.67 5.72

RBDO–FORM 4.885
1 5.00 5.58 5.66 5.61
2 5.00 5.60 5.68 5.70

RBDO/CS–SORM 4.963
1 4.47 5.00 5.07 4.98
2 4.46 5.00 5.07 5.04

RBDO/CS–SORM-i 4.974
1 4.41 4.94 5.00 4.99
2 4.40 4.94 5.00 5.01

6. Concluding Remarks

An efficient and accurate reliability-based design optimization approach was devel-
oped by integrating the second-order reliability method and CS derivative approximation.
Sensitivity approaches for the failure probability computed using Breitung’s formula and
Hohenbichler and Rackwitz’s formula were proposed using the CS derivative scheme. The
use of the CS derivative approximation enhanced the efficiency, stability, and accuracy in
computing the sensitivities of the failure probability in the RBDO approach. Additionally,
the SORM enhanced the estimation of the failure probabilities. The accurate estimation
of the probability and sensitivity facilitated the optimization process to more effectively
identify feasible solutions by using gradient-based optimization algorithms. The first
numerical example demonstrated the stability and accuracy of the proposed methods
in implementing the sensitivity analysis, and the findings were validated through MCS.
The rest of the numerical examples demonstrated the feasibility and efficacy of the ap-
plications of the proposed RBDO/CS–SORM/SORM-i frameworks. Future work can be
aimed at realizing system reliability design optimization using the SORM, considering the
statistical dependence among the component failure events, system reliability estimations,
and sensitivity analysis of the probabilistic constraints at the system level against various
parameters. Furthermore, the RBDO/CS–SORM/SORM-i frameworks can be applied to
RBDO of structures under dynamic loads.

Funding: This research was funded by the Collaboration for Unprecedented Success and Excellence
(CUSE) grant program of Syracuse University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Ambartzumian, R.; Der Kiureghian, A.; Ohaniana, V.; Sukiasiana, H. Multinormal probability by sequential conditioned

importance sampling: Theory and application. Probabilistic Eng. Mech. 1998, 13, 299–308. [CrossRef]
2. Genz, A. Numerical Computation of Multivariate Normal Probabilities. J. Comput. Graph. Stat. 1992, 1, 141. [CrossRef]
3. Hu, Z.; Nannapaneni, S.; Mahadevan, S. Efficient Kriging surrogate modeling approach for system reliability analysis. Artif. Intell.

Eng. Des. Anal. Manuf. 2017, 31, 143–160. [CrossRef]
4. Bichon, B.J.; McFarland, J.M.; Mahadevan, S. Efficient surrogate models for reliability analysis of systems with multiple failure

modes. Reliab. Eng. Syst. Saf. 2011, 96, 1386–1395. [CrossRef]
5. Kang, W.-H.; Song, J.; Gardoni, P. Matrix-based system reliability method and applications to bridge networks. Reliab. Eng. Syst.

Saf. 2008, 93, 1584–1593. [CrossRef]
6. Der Kiureghian, A. First- and Second-Order Reliability Methods. In Engineering Design Reliability Handbook; CRC Press: Boca

Raton, FL, USA, 2005.
7. Hohenbichler, M.; Rackwitz, R. First-order concepts in system reliability. Struct. Saf. 1982, 1, 177–188. [CrossRef]
8. Breitung, K. Asymptotic Approximations for Multinormal Integrals. J. Eng. Mech. 1984, 110, 357–366. [CrossRef]
9. Hohenbichler, M.; Rackwitz, R. Improvement Of Second Order Reliability Estimates by Importance Sampling. J. Eng. Mech. 1988,

114, 2195–2199. [CrossRef]

http://doi.org/10.1016/S0266-8920(98)00003-4
http://doi.org/10.2307/1390838
http://doi.org/10.1017/S089006041700004X
http://doi.org/10.1016/j.ress.2011.05.008
http://doi.org/10.1016/j.ress.2008.02.011
http://doi.org/10.1016/0167-4730(82)90024-8
http://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
http://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2195)


Appl. Sci. 2021, 11, 5312 22 of 22

10. Der Kiureghian, A.; De Stefano, M. Efficient Algorithm for Second-Order Reliability Analysis. J. Eng. Mech. 1991, 117, 2904–2923.
[CrossRef]

11. Hasofer, A.M.; Lind, N.C. Exact and Invariant Second-Moment Code Format. J. Eng. Mech. Div. 1974, 100, 111–121. [CrossRef]
12. Zhao, Y.G.; Ono, T. A general procedure for first/second-order reliability method (FORM/SORM). Struct. Saf. 1999, 21, 95–112.

[CrossRef]
13. Shin, J.; Lee, I. Reliability analysis and reliability-based design optimization of roadway horizontal curves using a first-order

reliability method. Eng. Optim. 2014, 47, 622–641. [CrossRef]
14. Meng, Z.; Yang, D.; Zhou, H.; Yu, B. An accurate and efficient reliability-based design optimization using the second order

reliability method and improved stability transformation method. Eng. Optim. 2017, 50, 749–765. [CrossRef]
15. Tu, J.; Choi, K.; Park, Y.H. A New Study on Reliability-Based Design Optimization. J. Mech. Des. 1999, 121, 557–564. [CrossRef]
16. Enevoldsen, I.; Sørensen, J. Reliability-based optimization in structural engineering. Struct. Saf. 1994, 15, 169–196. [CrossRef]
17. Youn, B.D.; Choi, K.K.; Park, Y.H. Hybrid analysis method for reliability-based design optimization. J. Mech. Des. Trans. ASME

2003, 125, 221–232. [CrossRef]
18. Eldred, M.; Bichon, B. Second-Order Reliability Formulations in DAKOTA/UQ. In Proceedings of the Collection of Technical

Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Newport, RI, USA, 1–4
May 2006; Volume 4, pp. 2897–2919.

19. Haldar, A.; Mahadevan, S. Probability, Reliability, and Statistical Methods in Engineering Design; John Wiley & Sons, Ltd.: New York,
NY, USA, 2000.

20. Lee, J.-O.; Yang, Y.-S.; Ruy, W.-S. A comparative study on reliability-index and target-performance-based probabilistic structural
design optimization. Comput. Struct. 2002, 80, 257–269. [CrossRef]

21. Lopez, R.H.; Beck, A.T. Reliability-based design optimization strategies based on form: A review. J. Braz. Soc. Mech. Sci. 2012, 34,
506–514. [CrossRef]

22. Chun, J.; Song, J.; Paulino, G.H. Parameter sensitivity of system reliability using sequential compounding method. Struct. Saf.
2015, 55, 26–36. [CrossRef]

23. Kang, W.-H.; Song, J. Evaluation of multivariate normal integrals for general systems by sequential compounding. Struct. Saf.
2010, 32, 35–41. [CrossRef]

24. Au, S. Reliability-based design sensitivity by efficient simulation. Comput. Struct. 2005, 83, 1048–1061. [CrossRef]
25. Karamchandani, A.; Cornell, C. Sensitivity estimation within first and second order reliability methods. Struct. Saf. 1992, 11,

95–107. [CrossRef]
26. Frangopol, D.M. Sensitivity of Reliability-Based Optimum Design. J. Struct. Eng. 1985, 111, 1703–1721. [CrossRef]
27. Song, J.; Kang, W.-H.; Lee, Y.-J.; Chun, J. Structural System Reliability: Overview of Theories and Applications to Optimization.

ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2021, 7, 03121001. [CrossRef]
28. Tvedt, L. Distribution of Quadratic Forms in Normal Space—Application to Structural Reliability. J. Eng. Mech. 1990, 116,

1183–1197. [CrossRef]
29. Boggs, P.T.; Tolle, J.W. Sequential Quadratic Programming. Acta Numer. 1995, 4, 1–51. [CrossRef]
30. Fleury, C.; Braibant, V. Structural optimization: A new dual method using mixed variables. Int. J. Numer. Methods Eng. 1986, 23,

409–428. [CrossRef]
31. Fleury, C. Structural weight optimization by dual methods of convex programming. Int. J. Numer. Methods Eng. 1979, 14,

1761–1783. [CrossRef]
32. Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24,

359–373. [CrossRef]
33. Shan, S.; Wang, G.G. Reliable design space and complete single-loop reliability-based design optimization. Reliab. Eng. Syst. Saf.

2008, 93, 1218–1230. [CrossRef]
34. Nguyen, T.H.; Song, J.; Paulino, G.H. Single-loop system reliability-based design optimization using matrix-based system

reliability method: Theory and applications. J. Mech. Des. 2010, 132, 011005. [CrossRef]
35. Chun, J.; Paulino, G.H.; Song, J. Reliability-based topology optimization by ground structure method employing a discrete

filtering technique. Struct. Multidiscip. Optim. 2019, 60, 1035–1058. [CrossRef]
36. Liang, J.; Mourelatos, Z.P.; Tu, J. A single-loop method for reliability-based design optimisation. Int. J. Prod. Dev. 2008, 5, 76.

[CrossRef]
37. Royset, J.; Der Kiureghian, A.; Polak, E. Reliability-based optimal structural design by the decoupling approach. Reliab. Eng. Syst.

Saf. 2001, 73, 213–221. [CrossRef]
38. Du, X.; Guo, J.; Beeram, H. Sequential optimization and reliability assessment for multidisciplinary systems design. Struct.

Multidiscip. Optim. 2008, 35, 117–130. [CrossRef]
39. Lyness, J.N.; Moler, C.B. Numerical Differentiation of Analytic Functions. SIAM J. Numer. Anal. 1967, 4, 202–210. [CrossRef]
40. Squire, W.; Trapp, G. Using Complex Variables to Estimate Derivatives of Real Functions. SIAM Rev. 1998, 40, 110–112. [CrossRef]
41. Martins, J.R.R.A.; Sturdza, P.; Alonso, J.J. The complex-step derivative approximation. ACM Trans. Math. Softw. 2003, 29, 245–262.

[CrossRef]
42. Chun, J. Reliability-Based Design Optimization of Structures Using Complex-Step Approximation with Sensitivity Analysis. Appl.

Sci. 2021, 11, 4708. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)
http://doi.org/10.1061/JMCEA3.0001848
http://doi.org/10.1016/S0167-4730(99)00008-9
http://doi.org/10.1080/0305215X.2014.908871
http://doi.org/10.1080/0305215X.2017.1351962
http://doi.org/10.1115/1.2829499
http://doi.org/10.1016/0167-4730(94)90039-6
http://doi.org/10.1115/1.1561042
http://doi.org/10.1016/S0045-7949(02)00006-8
http://doi.org/10.1590/S1678-58782012000400012
http://doi.org/10.1016/j.strusafe.2015.02.001
http://doi.org/10.1016/j.strusafe.2009.06.001
http://doi.org/10.1016/j.compstruc.2004.11.015
http://doi.org/10.1016/0167-4730(92)90002-5
http://doi.org/10.1061/(ASCE)0733-9445(1985)111:8(1703)
http://doi.org/10.1061/AJRUA6.0001122
http://doi.org/10.1061/(ASCE)0733-9399(1990)116:6(1183)
http://doi.org/10.1017/S0962492900002518
http://doi.org/10.1002/nme.1620230307
http://doi.org/10.1002/nme.1620141203
http://doi.org/10.1002/nme.1620240207
http://doi.org/10.1016/j.ress.2007.07.006
http://doi.org/10.1115/1.4000483
http://doi.org/10.1007/s00158-019-02255-1
http://doi.org/10.1504/IJPD.2008.016371
http://doi.org/10.1016/S0951-8320(01)00048-5
http://doi.org/10.1007/s00158-007-0121-7
http://doi.org/10.1137/0704019
http://doi.org/10.1137/S003614459631241X
http://doi.org/10.1145/838250.838251
http://doi.org/10.3390/app11104708

	Introduction 
	Structural Reliability 
	Mathematical Basis 
	First-Order Reliability Method 
	Second-Order Reliability Method 

	Reliability-Based Design Optimization 
	Proposed Method for Sensitivity Analysis of SORM-Based Estimates 
	SORM-Based Determination of the Sensitivity of the Failure Probability 
	Complex-Step Derivative Approximation 
	Sensitivity Analysis of the Failure Probability Obtained Using the SORM via the CS Derivative Approximation 

	Numerical Applications 
	Comparative Study on the Accuracy in the Reliability Assessment and Sensitivity Analysis 
	RBDO of the Three-Bar Truss under the Displacement Constraints 
	RBDO of the Cantilever Beam under the Displacement Constraint 
	RBDO of the Ductile Frame Structure under the Moment Strength Constraints 
	RBDO of the Truss Cantilever Structure under the Displacement Constraints 

	Concluding Remarks 
	References

