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Abstract: Surface plasmon polaritons (SPPs) propagating at the interfaces of composite media possess
a number of fascinating properties not emerging in case of conventional SPPs, i.e., at metal-dielectric
boundaries. We propose here a helpful algorithm giving rise for investigation of basic features of
complex conductivity dependent SPPs at the interface separating nanocomposite and hypercrystal.
The main goal of the work is to investigate dispersion of the SPPs propagating at the boundary
separating two different media. Aiming to achieve the aforementioned goal that the effective Maxwell
Garnett model is used. It is demonstrated that the SPPs dispersive properties are dramatically affected
by the material conductivity. Correspondingly, the filling ratio of the nanoparticles in the composite
and their dielectric properties also allow one to engineer characteristics of the SPPs. Having a deep
insight into the conductivity dependent functions, we concluded, on their behavior for the case of
hyperbolic regime and Dyakonov surface waves case. Our model gives rise for studying features of
surface waves in the complex conductivity plane and provides more options to tune the fundamental
features of SPPs at the boundaries correlated with composite media.

Keywords: conductivity; surface plasmon polaritons; metamaterial

1. Introduction

During the last decades plasmonics attracted significant attention as the novel field
pivoting the way for modern technologies, such as spectroscopy and sensing [1] and optical
tweezers [2]. Surface plasmons (SPs) are introduced as the collective oscillations of the
delocalized electrons presenting at metal-dielectric interfaces. SPs open the wide avenues to
escape the diffraction limit of conventional optics [3] because of their capability to confine
light in subwavelength dimensions with high efficiency. Doing so, the previous provides a
fertile ground for a broad spectrum of applications ranging from surface enhanced spec-
troscopy [4], biomedical sensing [5] and solar cell photovoltaics [6] to optical antennas [7].
It is worthwhile noting that surface-plasmon-based circuits are established to bridge the
disciplines of photonics and electronics at the nanoscale. The former allows to escape the
current problems associated with the large size difference between the micrometer-scale
bulky components of photonics and the nanometer-scale electronic chips.

The resonant oscillations of free electrons at the interface of nanocomposite media due
to optical radiations give rise to surface plasmon polaritons (SPPs) [8]. The propagation
of SPPs in nanocomposites has been extensively studied in [9–11]. Composite media
with metal nanoparticles are of particular importance aiming to create nanostructured
metal–insulator systems and novel approaches of manipulating light based on them. The
emerge of transparent conductive oxides (TCOs) has attracted tremendous interest within
the scientific community. These stand for as the alternative approach for plasmonics [12] in
the near-infrared region. In contrary to noble metals, TCOs such as indium tin oxide (ITO)
demonstrate a great tunability of their optical and electronic properties [13]. The former is
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possible via doping and electric bias. The construction and fabrication of ultra-compact
electroabsorption modulators [14] and for the proposal of new multimode modulator
architectures [15] has benefited from the option of actively switching between a low-loss
dielectric regime and a high-absorption plasmonic regime.

In the present work, we discuss complex conductivity of the medium, which dramati-
cally affects tunability of SPPs. The obtained results may have significant applications in
storage and sensing devices. Herein, we provide a detailed study of SPPs characteristics
at the interface separating a nanocomposite and hypercrystal. Engineering properties of
the nanocomposite and that of hypercrystal, the SPPs properties are tuned significantly.
We present a complete description of the SPPs dispersion relation with different control-
ling parameters. Our study is extended aiming to examine the complex conductivity
dependent properties.

2. Materials and Methods

Herein, we deal with the plane boundary separating a nanocomposite (NC) semi-
infinite layer, which fills the half-space x < 0 and adjacent to it, hypercrystal filling the
half-space x > 0 (Figure 1). It should be stressed that the surface waves under consideration
propagate along z axis. It is worthwhile noting that the structure under the study can be
constructed by means of molecular beam epitaxy [16], chemical vapor deposition, atomic
layer deposition and sacrificial etching [17]. The nanocomposite is presented as a non-
conductive transparent matrix with a permittivity εn, in the volume of which regularly
distributed semiconductor nanoparticles with permittivity εm. The frequency dependent
dielectric function of the TCO based nanoparticles is of particular interest. An emergence of
high-conducting metal being transparent has opened wide avenues recently. The issue has
attracted lots of interest within the scientific community because of the metal being opaque
for light. From the perspectives of the potential applications, transparent conducting
metals described by high DC conductivity (σDC) are anticipated for optoelectronic devices,
ranging from solar cells to electronic paper, touch screens and displays. Though, since
σDC = nee2τ/m (with τ being relaxation time of the electron and m—electron mass) of
a metal is associated with plasmon frequency ω2

p = nee2/ε0m through the free-electron
density ne, a high-conducting metal (with a high ne) is certainly opaque for light because
of its permittivity ε being typically very negatively affected by its high ωp. Conventional
techniques to produce transparent conducting metals include the decrease of the ne, by
utilizing transparent conducting oxides (TCOs). The parameters of the Drude–Lorentz
approach for aluminum-doped zinc oxide (AZO), Ga-doped ZnO (GZO) and indium tin
oxide (ITO) gained from experimental data [12] are presented in Table 1.

Table 1. Drude–Lorentz parameters of plasmonic materials obtained from experimental data.
One may approximate the materials dielectric function by the complex dielectric function:

εTCO = εb −
ω2

p

ω(ω+iγp)
+

f1ω2
1

(ω2
1−ω2−iωγ1)

, with the values of the parameters outlined in the table [18].

Here εb is the polarization response from the core electrons (background permittivity), ωp is the
plasma frequency, γp is the Drude relaxation rate.

AZO GZO ITO TiN (Deposited at 800 ◦C) TiN (Deposited at 500 ◦C) ZrN

εb 3.54 3.23 3.53 4.86 2.49 3.47

ωp (eV) 1.75 1.99 1.78 7.93 5.95 8.02

γp (eV) 0.04 0.12 0.16 0.18 0.51 0.52

f 1 0.51 0.39 0.39 3.29 2.04 2.45

ω1 (eV) 4.29 4.05 4.21 4.22 3.95 5.48

γ1 (eV) 0.10 0.09 0.09 2.03 2.49 1.74
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Figure 1. Schematic system under consideration, involving a semi-infinite hypercrystal (x > 0) and a nanocomposite with 

semiconductor inclusions (x < 0) (a) and metamaterial (hypercrystal) unit cell (b). 
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Figure 1. Schematic system under consideration, involving a semi-infinite hypercrystal (x > 0) and a nanocomposite with
semiconductor inclusions (x < 0) (a) and metamaterial (hypercrystal) unit cell (b).

The dielectric function of metallic medium in the complex conductivity and frequency
domain is written as [19]:

εr(σ, ω) = 1 +
(

χ +
|σ|eiφ

ωε0

)
(1)

where χ is the susceptibility of the system, |σ| is absolute value of complex conductivity
and φ is its phase.

The dispersion relation of SPPs at a planar interface between the dielectric medium
and metal forming a simple plasmonic structure in the complex conductivity and frequency
domain is written as [20]:

ksp(σ, ω) =
2π

λ

√
εr(σ, ω)εd

εr(σ, ω) + εd
(2)

where εd is the permittivity of the host material. By making a step forward towards complex
nanostructures, we made an assumption that the wavelength and the electromagnetic field
penetration depth in the material are much larger that the size of inclusions suspended
in a dielectric matrix. It is worthwhile mentioning that effective Maxwell Garnett model
can be employed aiming to characterize the optical properties of the nanocomposite under
consideration. The former approach is possible, if the interference effects of the inclusions
are neglected and their volume fraction is as small as 1/3. Thus, one may apply the
homogenization procedure and the effective complex permittivity of the nanocomposite
can be expressed as follows

εnc(σ, ω) = εn

[
1 +

f
(1− f )/3 + εn/(εm(σ, ω)− εn)

]
(3)

where εn is the permittivity of the host material of the nanocomposite and f is the number
of nanoparticles in the matrix.

Based on the effective medium approximation one may calculate the effective permit-
tivities of the anisotropic nanowire metamaterial (hypercrystal) according to [21]:

ε⊥(σ, ω) = εd

[
εm(σ, ω)(1 + ρ) + εd(1− ρ)

εm(σ, ω)(1− ρ) + εd(1 + ρ)

]
(4)

ε ||(σ, ω) = εm(σ, ω)ρ + εd(1− ρ) (5)
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where εd is the permittivity of the host material, εm is the permittivity of the inclusions em-
bedded into the host material and ρ is the metal filling fraction ratio, which is calculated as:

ρ =
nanowire area
unit cell area

(6)

The metal filling fraction (ρ) is calculated based on the values of the pore diameter
(d) and spacing (S) (Figure 1b). By taking into account a perfect hexagonal structure, the
equation [22,23] is applied as follows:

ρ =
πd2

2
√

3S2
(7)

Based on this assumption one may derive a dispersion relation for the surface modes
propagating at the interface between two anisotropic media. It is of particular importance
to obtain a single surface mode with the propagation constant [24] by calculating the
tangential components of the electric and magnetic fields at the interface

β(σ, ω) = k


(

ε ||(σ, ω)− εnc(σ, ω)
)

ε⊥(σ, ω)εnc(σ, ω)

ε⊥(σ, ω)ε ||(σ, ω)− ε2
nc(σ, ω)

1/2

(8)

By substituting (3)–(5) in (8), one may result in the dispersion relation as follows:

β(σ, ω) = k

− εnb(σ, ω)a(σ, ω)(εna(σ, ω)+εm(σ, ω)ρ−εd(ρ−1))(
ε2

na(σ, ω)2+
(εm(σ, ω)ρ−εd(ρ−1))b(σ, ω)

εd(ρ+1)−εm(σ, ω)(ρ−1)

)
(εd(ρ+1)−εm(σ, ω)(ρ−1))

1/2

a(σ, ω) =
f

f
3 +

εn
εn−εm(σ, ω)

− 1
3
− 1, b(σ, ω) = (ρ− 1)ε2

d − εm(σ, ω)εd(ρ + 1).

(9)

It is worthwhile noting, that Equation (9) stand for as the analytical expression of the
dispersion relations investigated in the frame of the present work.

3. Results

The propagation of SPPs at the boundary of nanocomposite and hypercrystal is
investigated. The absolute value of complex conductivity |σ| varies from 0 to 6 × 107 S/m.
Herein, the permittivity components of a hypercrystal and nanocomposite versus frequency
are studied numerically aiming to identify the frequency ranges of Dyakonov surface waves
(DSWs) and SPP waves existence (Figure 2). In the frequency ranges below the frequency
ω||0 [25] the semiconductor-dielectric metamaterial possesses hyperbolic properties. It
is worthwhile noting that in this frequency range the presence of conventional surface
plasmon polaritons waves with propagation parallel to the optical axis is feasible under
specific conditions. One may conclude from Figure 2 that propagation of DSW is possible
in case of εn = 2.25, εd = 11.8. It is worthwhile noting that the regime of DSW propagation
takes place if ε ||(ω), εnc(ω) > 0. To have a deeper insight into the problem, we investigated
permittivity components versus conductivity. Doing so, in Figure 3 permittivity function
is plotted if ω = 0.3 × 1014 Hz (Figure 3a) and ω = 3 × 1014 Hz (Figure 3b). The former
allows us to investigate conductivity dependent permittivity functions for both regimes,
i.e., hyperbolic and conventional. Moreover, we studied the phenomenon of conductivity
dependent functions for the DSW regime (Figure 4a). Comparing Figures 3a and 4a, one
may conclude that εnc(σ) > ε⊥(σ) in case of the hyperbolic regime and εnc(σ) < ε⊥(σ) for
DSW waves. Moreover, it is interesting to compare the conditions that are valid in case of
hyperbolic and DSW regimes for both, i.e., frequency and conductivity dependent functions.
Thus, it is seen in Figure 2a that hyperbolic properties of metamaterial are possible if
εnc(ω), ε⊥(ω) > 0 and ε ||(ω) < 0. Dealing with the conductivity dependent functions,
one may conclude that the same conditions are needed in other to obtain hyperbolic
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regime. On the contrary to the described case conditions for existence of DSW regime are
different in two different planes, i.e., DSW is obtainable if εnc(ω), ε⊥(ω), ε ||(ω) > 0 and if
εnc(σ), ε⊥(σ) > 0, ε ||(σ) < 0.
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Figure 2. Relative permittivity components of the nanocomposite and hypercrystal versus frequency.
Herein, f = 0.3. (a), εn = 11.8, εd = 2.25; (b) εn = 2.25, εd = 11.8. Herein ITO inclusions are employed
in nanocomposite and hypercrystal.
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Figure 3. Relative permittivity components of the nanocomposite and hypercrystal versus conductiv-
ity. Herein, f = 0.3, εn = 11.8, εd = 2.25. Herein ITO inclusions are employed in nanocomposite and
hypercrystal. (a) ω = 0.3 × 1014 Hz; (b) ω = 3 × 1014 Hz.



Appl. Sci. 2021, 11, 5255 7 of 15Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

Figure 4. Relative permittivity components of the nanocomposite and hypercrystal versus conduc-

tivity. Herein, f = 0.3, 
2.25n =

, 
11.8d =

. Herein ITO inclusions are employed in nanocompo-

site and hypercrystal. (a) ω = 0.3 × 1014 Hz; (b) ω = 3 × 1014 Hz. 

In Figures 5–10 the plots are obtained for real and imaginary parts of the dispersion 

relation along with the transmittance characteristics. The real part of propagation constant 

is related to group velocity and the imaginary part is related to damping of SPPs. If Re(β) 

> k0 then SPPs propagate at the interface and if Re(β) < k0 then SPPs cannot propagate at 

the interface of two media. k0 = 2πω/c is the wave vector of the electromagnetic wave in 

free space. Here ω1 = 0.3 × 1014 Hz, ω2 = 0.3 × 1014 Hz and c = 3 × 108 m/s, which gives k01 = 

6.28 × 105 1/m and k02 = 6.28 × 106 1/m. The value of Re(β) varies from 0 to 15 × 106 1/m 

versus conductivity. The variations of Re(β) and Im(β) versus conductivity are shown in 

Figures 5–10. The absolute value of complex conductivity strongly affects the SPPs prop-

agation at the interface of two media. The real part of dispersion relation of SPPs increases 

with the absolute value of complex conductivity. 

In Figures 9 and 10 plots are obtained for the propagation length Lp of SPPs versus the 

absolute value of complex conductivity. The Im(β) is related to the propagation length Lp. 

Figure 4. Relative permittivity components of the nanocomposite and hypercrystal versus conductiv-
ity. Herein, f = 0.3, εn = 2.25, εd = 11.8. Herein ITO inclusions are employed in nanocomposite and
hypercrystal. (a) ω = 0.3 × 1014 Hz; (b) ω = 3 × 1014 Hz.

In Figures 5–10 the plots are obtained for real and imaginary parts of the dispersion
relation along with the transmittance characteristics. The real part of propagation constant
is related to group velocity and the imaginary part is related to damping of SPPs. If
Re(β) > k0 then SPPs propagate at the interface and if Re(β) < k0 then SPPs cannot propagate
at the interface of two media. k0 = 2πω/c is the wave vector of the electromagnetic wave
in free space. Here ω1 = 0.3 × 1014 Hz, ω2 = 0.3 × 1014 Hz and c = 3 × 108 m/s, which
gives k01 = 6.28 × 105 1/m and k02 = 6.28 × 106 1/m. The value of Re(β) varies from 0 to
15 × 106 1/m versus conductivity. The variations of Re(β) and Im(β) versus conductivity
are shown in Figures 5–10. The absolute value of complex conductivity strongly affects the
SPPs propagation at the interface of two media. The real part of dispersion relation of SPPs
increases with the absolute value of complex conductivity.

In Figures 9 and 10 plots are obtained for the propagation length Lp of SPPs versus the
absolute value of complex conductivity. The Im(β) is related to the propagation length Lp.
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Figure 5. Solution of the dispersion equation versus frequency (a) and versus conductivity (b).
εn = 2.25, εd = 11.8. Herein ITO inclusions are employed in nanocomposite and hypercrystal,
f = 0.3 in (b).
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Figure 6. Solution of the dispersion equation versus frequency (a) and versus conductivity (b).
εn = 11.8, εd = 2.25. Herein ITO inclusions are employed in nanocomposite and hypercrystal,
f = 0.3 in (b).
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Figure 7. Dependence of imaginary part of propagation constant versus frequency for different filling
factors (a) and versus conductivity for f = 0.3 (b). εn = 2.25, εd = 11.8. All the presented results are
obtained for the ITO inclusions.
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Figure 8. Dependence of imaginary part of propagation constant versus frequency for different filling
factors (a) and versus conductivity for f = 0.3 (b). εn = 11.8, εd = 2.25. All the presented results are
obtained for the ITO inclusions.
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Figure 9. Dependence of propagation length versus frequency for different filling factors (a) and
versus conductivity for f = 0.3 (b). εn = 2.25, εd = 11.8. All the presented results are obtained for
the ITO inclusions.
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Figure 10. Dependence of propagation length versus frequency for different filling factors (a) and
versus conductivity for f = 0.3 (b). εn = 11.8, εd = 2.25. All the presented results are obtained for
the ITO inclusions.

4. Conclusions

In conclusion, the SPPs properties were investigated versus conductivity at the inter-
face of nanocomposite and hypercrystal. The amplitude of complex conductivity signifi-
cantly influenced the SPPs propagation. The real part of SPPs dispersion relation was very
large in comparison with the value of the free space wave-vector Re(β) > k0. It is worth-
while mentioning that propagation of SPPs was achieved at the interface with variation of
complex conductivity. The conducted study allows one to conclude on the conditions of
surface waves propagation in the complex conductivity plane. Thus, εnc(σ), ε⊥(σ) > 0 and
ε ||(σ) < 0 in the case of hyperbolic regime and εnc(σ), ε⊥(σ) > 0, ε ||(σ) < 0 for Dyakonov
surface waves. The potential applications of this works are in the fields of the develop-
ment of waveguides sources, near-field optics, surface-enhanced Raman spectroscopy, data
storage, solar cells, chemical sensors and biosensors.
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