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Abstract: This in-vitro study aimed to investigate whether intraoral scanners (IOS) are suitable for
wear measurement compared to optical profilometry (WLP). A zirconia cast representing the teeth
(24–28) was fabricated. It was digitized six times using three different intraoral scanners, Cerec
Omnicam AC (OC), Trios 3 (Tr3), and True Definition (TD). The scans were conducted at baseline (t0)
and at three different stages of simulated wear (t1–t3), each at one wear-facet on FDI 26 and FDI 27.
WLP was used as a reference method. Within each acquisition system, the maximum wear at each
facet was analyzed by superimposing the STL data of t0 with t1–t3. A power analysis was performed
(G*Power), and the Wilcoxon-signed-rank-test was used to evaluate whether there were statistically
significant differences between the groups (Bonferroni corrected) (α = 0.05). At wear-facet FDI 27,
differences from +4% t1 TD up to +19% t2 OC, corresponding to a metric value of 8 µm and 45 µm,
were measured. At FDI 26 deviations between −2% t1 Tr3, and +10% OC and Tr3, were observed.
Considering some limitations, the IOS are a promising alternative to wear measurement based on
WLP due to its simple application to capture surface changes in a reasonable and quick way.

Keywords: digital dentistry; tooth wear; intraoral scanner; diagnostic imaging

1. Introduction

The evaluation and monitoring of tooth wear are essential for therapeutic strategies
and scientific purposes. For scientific investigations, wear measurement is still predomi-
nantly based on a conventional workflow [1,2] by taking impressions and fabricating casts.
Depending on the analytical method, different subsequent steps are essential. The cast can
be digitized with a laboratory or an industrial high-resolution scanner [3–6]. The obtained
3D data files of different wear statuses are superimposed with 3D analyzing software to
calculate metrical wear values. If optical profilometry is applied, the wear facets have
to be identified by scanning electron microscopy (SEM). Then, the identified areas are
captured by profilometry. The digital data files are superimposed, and vertical height loss
is analyzed between two different stages of wear. In summary, conventional workflows
are time-consuming and, therefore, far away from real-time analysis. Although single
steps of the conventional workflow like SEM and profilometry are highly accurate, some
other essential procedures like conventional impression taking and producing the casts
limit the overall accuracy. Intraoral scanning offers direct access to 3D data files without
the necessity of intermediate steps. In literature, the first insights towards implementing
optical impression systems are reported [7,8]. Hartkamp et al. showed that in vitro wear
analysis based on data files obtained with an intraoral scanner was comparable to optical
profilometry. The Lava C.O.S.’s (Chairside Oral Scanner, 3M ESPE) optical principle was
based on wavefront sampling, and “dusting” of the scanned surface with titanium dioxide
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was required. Therefore, the study aimed to test if wear measurements based on data files
obtained with powder-free scanners are comparable to results based on profilometry.

The null hypothesis stated was:
The exclusively digital workflow with data acquired on the basis of intraoral optical

impression systems is equal to the white light profilometer for wear measurement within
deviations of a maximum of 10%.

2. Materials and Methods
2.1. Digitization of the Study Cast

A zirconia (VITA YZ HT, VITA Zahnfabrik, Bad Säckingen, Germany) cast representing
the posterior teeth of the left maxillary quadrant (FDI 24–28) (Figure 1) was produced.
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vertical working distance of 17 mm using TD, as an example. According to the manufac-
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After all scans at t0 were accomplished, wear areas were manually simulated using 
a diamond-bur (Ø1.2 mm, grit size 46 µm) [11]. In total, three stages of wear (t1–t3) were 
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Figure 1. The zirconia model, consisting of the teeth 24–28, is shown at baseline.

It was based on the scan data of a typodont (Basic model, KaVo Dental GmbH,
Biberbach, Germany). After milling, sintering, and polishing, the cast was scanned at
baseline t0 using three intraoral scanners (IOS): Cerec Omnicam AC (OC) (V4.5, Dentsply
Sirona Deutschland GmbH, Bensheim, Germany), Trios 3 (Tr3) (V.1.16.1.0, 3Shape A/S,
Copenhagen, Denmark) and True Definition Scanner (TD) (S1548041, 3M Deutschland
GmbH, Seefeld, Germany). The use of TD required a slight dusting with titanium dioxide
particles (3M High-Resolution Scanning Spray, 3M Espe Dental products St. Paul, USA) in
order to create randomly distributed landmarks for the optical system applying wavefront
sampling [9]. In the case of the powder-free IOS, Tr3, and OC, scans of the powdered (p) and
unpowdered (non-p) cast were accomplished in order to evaluate whether the modification
of the surface influenced the data. Tr3 utilizes the imaging principle of confocal microscopy
and OC uses active triangulation. To obtain a highly accurate digital reference, a high-
resolution non-contact white light profilometer (WLP) (CT 100 and the sensor P-CHR-6000,
z-res 200 nm Cybertechnologies, Ingolstadt, Germany) was used. The sensor of CT 100
provided a vertical resolution up to 3 nm and a lateral resolution of 0.05 µm [10]. Before
capturing data with WLP, the model was air-abraded with 50 µm aluminum oxide at 2 bar.
With both acquisition systems, IOS and WLP, the partial arch was captured. The sensor’s
spot size was 16 µm, combined with a 150 × 150 × 40 mm scanning area at maximum x,
y, z resolution. The zirconia cast was always orientated on the WLP scanning platform in
the identical occluso-apical direction (base of the zirconia cast). Simultaneously, the WLP
could always capture the entire occlusal surface from the cusps to the anatomical equator.
The IOS had a field of view of approximately 10 × 13 mm at a vertical working distance
of 17 mm using TD, as an example. According to the manufacturers’ recommendations, a
complete partial-arch scan was conducted applying the IOS.

After all scans at t0 were accomplished, wear areas were manually simulated using a
diamond-bur (Ø1.2 mm, grit size 46 µm) [11]. In total, three stages of wear (t1–t3) were
created successively at tooth 26 mesio–oral and tooth 27 disto–buccal (Figure 2). At t1, t2,
and t3, the cast was scanned again with the scanners mentioned above, and WLP. At each
stage, the cast was scanned six times one after another by the same experienced operator
with each intraoral scanning system. Before each scanning session, the scanning system
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was calibrated according to the manufacturer’s recommendations. Optical profilometry
(WLP) served as a reference and was carried out once per stage.
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Figure 2. The study model was digitized and imported into Geomagic Qualify. The several wear steps are presented:
Baseline t0 (A) and the wear stages [t1] (B), t2 (C), and t3 (D).

2.2. Analysis of the Obtained Data Using a Reference Best-Fit-Alignment

The captured 3D data were analyzed with Geomagic Qualify 2012 (V.2012_08_08_E,
64-bit, Morrisville, NC, USA). The files were imported as STL (Standard triangulation
language) datasets. The surface of the obtained datasets consisted of a triangle mesh. In
this mesh, one triangle adjoined other triangles, creating a vertex at each meeting point.

First, each dataset (t1–t3) was superimposed with its respective baseline data file.
Before superimposition, the worn areas were virtually excluded in the software to achieve
a more accurate best fit alignment (tolerance value 0.01 mm [8]) [12–14].

Thus as an example, OC p t0/n(1–6) was defined as a reference and registered with OC
p t1/n(1–6), t2/n(1–6), and t3/n(1–6). The superposition of the datasets required the definition
of a reference and a test dataset. The reference t0 was fixed in the coordinate system.
Therefore, the test dataset t1–t3 could be positioned as identically as possible. The WLP
was the key dataset, which determined the surface area to be superimposed since it has a
smaller field of view than the IOS. To ensure comparability, the same area size was therefore
included in the registration.

Figure 3A shows the result of the superimposition of two meshes according to best fit
alignment. The bluish color-coded area indicates the wear facet between the baseline t0 and
a stage of wear. The schematic drawing in Figure 3B displays the distance measurement
principle between two datasets: a perpendicular was dropped from one vertex of the
baseline dataset to a corresponding triangular facet that belongs to another dataset where a
wear facet was simulated.

The maximum wear rate was determined manually. Therefore, each value could be
analyzed, avoiding outliers such as punctual peaks which could be identified as artifacts.
The color code, given in a 3D comparison mode, was modified until the maximum loss
was indicated. Applying this scale mode, it was possible to check if the area of maximum
wear was located in the corresponding area of different IOS and WLP. As six datasets of
each wear status were available, the mean maximum vertical height loss and the standard
deviation of each group (OC non-p, OC p, Tr3 non-p, Tr3 p, TD) was calculated with Excel
2016. Divergences from the reference measurements obtained from WLP were expressed in
µm and as percentage deviations.
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Figure 3. The principle of vertical height loss measurement is illustrated. The wear area of tooth 26 is presented in 3D
comparison mode in Geomagic Qualify (A). Part (B) displays more detailed the program’s method of determination of
vertical deviations by dropping a perpendicular.

2.3. Evaluation of the Accuracy of Each Intraoral Scanning System (IOS)

The accuracy combines two components: trueness and precision (DIN ISO 5725-1) [15].
Trueness investigates the deviations from the test dataset to the reference dataset. In
contrast, precision means the intergroup’s deviation analysis and indicates repeatability. In
order to determine the trueness, each of the six scan datasets of OC non-p, OC p, Tr3 non-p,
Tr3 p and TD at t0–t3 were superimposed and compared with the respective reference
dataset, WLP; (n = 6). To acquire precision values, the scan datasets of the IOS at t0–t3 were
compared to each other (each scanner; including the modifications: p and non-p per wear
stage: n = 15). Incorporating the whole tooth surfaces 24–28, the assessment of accuracy
was conducted with Geomagic Qualify 2012 performing the best-fit-alignment and 3D
comparison mode.

2.4. Using Cross Sections for 2D Analysis

To examine whether specific surface textures in the different datasets of WLP and
of the IOS led to some outliers, with respect to wear measurement, the different data
acquisition systems’ surface profile was investigated. Thus, the 2D analysis visualized
the different modes of surface representation of an intraoral scanning system compared
to WLP. For the wear stages t1, t2, and t3, one dataset each out of the six captured by OC,
Tr3, and TD was randomly selected. Since there was only one dataset from WLP available,
this one was used. All datasets were superimposed in order to align them within the same
coordinate system. This procedure was mandatory to define an identical cross-section for
all datasets in the area of maximum vertical height loss. In Figure 4 for WLP, Figure 5 for
TD, Figure 6 for Tr3, and Figure 7 for OC, the yz-planes are shown as they were identically
placed as described above. The sections display the wear status at t1, t2, and t3 in relation
to the baseline dataset t0, which is represented by the purple line. The cross-sections were
evaluated qualitatively based on Figures 4–7:
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2.5. Statistical Analysis

The program G*Power 3.1.9.4 [16] was applied for a post hoc power analysis (α err
prob = 0.05, Power (1-β err prob) = 1.0, effect size f = 2.011, and the total sample size
was 36). The data were evaluated descriptively with Excel 2016. The Kolgomorov–Smirnov
test was performed to evaluate the normal distribution of the results of wear measurement
and accuracy evaluation. In order to test for statistically significant differences (α = 0.05)
of the measured wear values, the Wilcoxon signed-rank test (Bonferroni corrected) was
applied. The Kruskal–Wallis test was used to analyze statistically significant differences
within the different groups of IOS in the context of accuracy measurements.

3. Results

The Kolgomorov-Smirnov-test revealed a normal distribution for all groups since the
significance was greater than α > 0.05.

3.1. Wear Measurement on the Basis of the IOS Compared to WLP
3.1.1. Wear Values at the Wear Step t1

As can be seen in Table 1, at t1 a mean maximum vertical height loss between 229 µm
and 237 µm was obtained for tooth 27 on the basis of the different IOS. For tooth 26, the
mean maximum wear results ranged from 217 µm to 239 µm, when using IOS for data
acquisition. Using WLP, wear of 227 µm was measured at FDI 26 and 221 µm at FDI 27.
Tr3 p had the largest deviation from WLP with +7%.

Table 1. Wear values at the wear step t1.

FDI 26 (t1) FDI 27 (t1)

WLP (reference) 227 221
OC non-p 217 (±4) + 4% 232 (±4) + 5%

OC p 239 (±7) + 5% 234 (±6) + 6%
Tr3 non-p 231 (±2) + 2% 235 (±6) + 6%

Tr3 p 223 (±13) − 2% 237 (±6) + 7%
TD 220 (±2) − 3% 229 (±6) + 4%

3.1.2. Wear Values at the Wear Step t2

Applying IOS at t2, wear data at tooth 27 ranged from 267 µm to 287 µm. Wear
measured on the basis of WLP was 242 µm. At tooth 26, values based on the IOS were
between 314 µm and 330 µm, and WLP revealed 300 µm. The percentage deviation exceeds
10% in 4 out of 10 cases up to 19% at tooth 27, like it is presented in Table 2.

Table 2. Wear values at the wear step t2.

FDI 26 (t2) FDI 27 (t2)

WLP (reference) 300 242
OC non-p 328 (±9) + 9% 267 (±7) + 10%

OC p 329 (±11) + 10% 287 (±11) + 19%
Tr3 non-p 330(±9) 10% 276(±13) + 15%

Tr3 p 320 (±9) + 7% 281 (±8) + 16%
TD 314 (±7) + 5% 273 (±9) + 13%

3.1.3. Wear Values at the Wear Step t3

The mean maximum wear values for the last simulated wear level are shown in
Table 3. Whereby, the highest wear value obtained from the IOS was 390 µm at tooth 27.
The WLP data revealed 344 µm. At t3, there was a range of 415 µm to 441 µm for the IOS at
tooth 26. The WLP measured 417 µm. At this point, 3 out of 10 cases showed a maximum
deviation of +13%.
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Table 3. Wear values at the wear step t3.

FDI 26 (t3) FDI 27 (t3)

WLP (reference) 417 344
OC non-p 415 (±6) + 0% 371 (±4) + 8%

OC p 428 (±10) + 3% 387 (±7) + 13%
Tr3 non-p 441 (±6) + 6% 361 (±9) + 5%

Tr3 p 434 (±10) + 4% 390 (±12) + 13%
TD 432 (±4) + 5% 328 (±9) + 11%

The comparisons of the wear values within the IOS did not show statistically sig-
nificant differences between the different intraoral optical impression systems (α < 0.05,
Bonferroni corrected).

3.2. Accuracy Values of the IOS

The results of the accuracy evaluation and the distribution of those are shown in
Table 4 and Figure 8. Trueness values ranged from 22.5 µm (±4.8 µm) OC non-p to 12.8 µm
(±0.7 µm) Tr3 non-p, whereby the results for precision varied between 19.5 (±4.5) µm OC
non-, Tr non-p and 10.7 µm (±5.2 µm) OC p.

Table 4. Accuracy (trueness and precision) values for the applied IOS.

IOS Trueness [n = 6]
Mean (±SD) [µm]

Precision [n = 15]
Mean (±SD) [µm]

t0

OC non-p 22.5 (±4.8) 19.5 (±4.5)
OC p 14.6 (±0.9) 13.6 (±7.6)

Tr3 non-p 14.9 (±1.8) 19.5 (±7.1)
Tr3 p 15.7 (±1.2) 15.1 (±3.7)
TD 17.1 (±1.0) 11.9 (±2.8)

t1

OC non-p 22.5 (±1.4) 12.1 (±3.2)
OC p 14.3 (±0.4) 15.3 (±7.5)

Tr3 non-p 12.8 (±0.7) 18.0 (±5.3)
Tr3 p 15.7 (±0.6) 17.2 (±7.0)
TD 20.6 (±1.4) 17.5 (±4.2)

t2

OC non-p 21.8 (±1.7) 14.7 (±3.8)
OC p 17.6 (±0.8) 11.2 (±3.5)

Tr3 non-p 14.5 (±1.2) 14.6 (±4.5)
Tr3 p 14.2 (±1.3) 13.9 (±5.4)
TD 19.9 (±1.4) 15.3 (±5.0)

t3

OC non-p 19.2 (±1.4) 16.7 (±4.2)
OC p 21.8 (±1.3) 10.7 (±5.2)

Tr3 non-p 13.6 (±1.3) 14.5 (±4.3)
Tr3 p 18.3 (±2.2) 12.2 (±5.2)
TD 21.3 (±1.2) 11.6 (±3.3)
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Tr3 non-p showed statistically significant lower trueness results than TD and OC
non-p, as well as the powdered variation of Tr3 in comparison to OC non-p.

The statistical results concerning the precision of the different IOS did not
differ significantly.

3.3. Using Cross Sections for 2D Analysis

The surface profile of the IOS and WLP is shown in Figures 4–7. The IOS present the
worn areas as even regions, as can be seen in Figures 5–7. WLP in Figure 4, exhibits another
perspective on the surface quality of the wear areas. At t1 and t3, an evenly wavy surface
is shown, whereas, at t2, large peaks are visible. Comparing the two imaging systems, it
becomes evident that the IOS do did not provide the same level of detail as WLP.

4. Discussion
4.1. Material and Method

Due to its thermal and optical properties, zirconia is a suitable material for in-vitro
accuracy measurements. Therefore, the zirconia was the material of choice in the present
study [17–19]. In terms of the concept of the ground truth, a reference model is established
that can be used to collect datasets that serve as a reference (gold standard) to study
the performance of the acquisition systems under investigation like it is described by
Cardoso et al. [20]. Furthermore, various research groups investigating the accuracy of
optical impression systems follow this workflow: one master model was digitized with both
a high-accuracy optical impression system to establish a reference dataset and the optical
impression system under investigation [7,8,21–23]. Commercially available intraoral optical
impression systems have the potential to simplify clinical wear measurement. However,
there is a need to investigate their suitability compared to conventional methods [13].

According to the consensus paper “Severe Tooth Wear: European Consensus State-
ment on Management Guidelines” [24], it is of major interest whether tooth wear shows
physiological or pathological patterns. Based on this decision, the management of tooth
wear is characterized by multi-layered aspects of diagnosis, patient enlightenment, and
monitoring to clarify the severity of wear, wear progress, and its probably multifactorial
origin. Especially TWES [25] is a well-established and further developed (TWES 2.0) tool
in the context of the multifaceted complex of tooth wear diagnosis and management. Nev-
ertheless, Wetselaar et al. define the use of intraoral scanning systems as a prospective
standard in the dentist’s daily routine and as a supporting tool alongside taxonomies like
TWES. Additionally, it appears advantageous to explore different approaches and combine
multiple benefits of different systems to provide the best possible treatment for patients.
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Advantages of intraoral scans are their ease of production, the storage of the 3D data for
permanent documentation and availability, and the possibility of quick analysis of the
entire arch by superimposing different scans. By true color display, the character of the
wear facets is also visible. Consequently, the detection, analysis, treatment, and monitoring
of tooth wear require various features to arrive at therapeutic decisions [26].

The key prerequisite for the introduction of digital wear measurement on the basis
of digital intraoral impressions as a standard method is the sufficient accuracy of the
digital workflow. Therefore, the optical impression systems were compared with the
optical profilometry, which is the gold standard and shows the highest accuracy in wear
measurement with a resolution of 0.2 µm in vertical direction [2,27,28]. The test was
performed as a direct, pure comparison of the acquisition systems because the IOS data
were compared with the data from WLP, obtained by direct profilometry of the samples. In
clinical reality, using WLP as a measurement tool, several additional steps are necessary,
like impression taking and cast production. These steps were avoided intentionally in order
to obtain the pure profilometry data without any bias. In contrast, to the investigation of
Hartkamp et al., the novelty of the present study is that the study model is made out of
zirconia, due to the fact that metallic surfaces lead to higher accuracy values [29]. Lava
C.O.S. was very accurate but a mandatory powder system. Therefore, this investigation
considered powder-free scanning systems to check if they can provide similar results.

4.2. Method of Wear Simulation and Data Acquisition

Six datasets per IOS were performed. The power estimation revealed that the number
of data sets was sufficient, which can be explained by the low standard deviations. WLP as
a reference method was performed once. At t1, the simulated wear was 230 µm. Compared
with in-vivo wear results, this is a relatively high value [2,3,27,30]. In further investiga-
tions, the wear simulations should be imitated by smaller steps ideally by a CNC-driven
process [31–33]. Apart from the tooth and material-related wear, there is also the possibil-
ity of grinding procedures carried out by the dentist. Thus, a relevant side effect of the
present study was whether intraoral scanners are able to capture artificial traces caused
by grinding.

4.3. Discussion of the Results

The wear values investigated on the basis of intraoral scanners showed higher values
than those obtained from the optical profilometry (Tables 1–3). 23 out of 30 measurements,
based on the IOS, exhibited wear deviations of less than 10% compared to WLP. In order to
decide from which values IOS are suitable for wear measurement, it was necessary to define
a threshold value. Hartkamp et al. measured a maximum difference of 12.6% between the
applied IOS and the optical profilometry [7]. Based on these findings, a threshold of 10%
was established. The maximum deviation was 19% (+45 µm). One potential explanation
for the outlier values (>10% from WLP) is that for the manual wear simulation a diamond
bur was used. The cross-sections visualize that WLP detected the traces caused by the
diamond bur when simulating the wear facets (Figure 4) by grinding. The cross-sections of
the surfaces delivered by TD (Figure 5), Tr3 (Figure 6), and OC (Figure 7), show a smoother
texture of the wear areas. The IOS were not able to detect the peaks in detail resulting from
the grinding procedure. In particular, the pronounced peaks at t2 compared to t1 and t3
provide a rationale for explaining the increased deviations at the wear level t2 (tooth 27).

With respect to the present study, wear measurements based on the IOS led to higher
wear results than those evaluated with the WLP data at the same stage because pronounced
surface structures were captured less detailed by the IOS. Conventional wear measurement
requires several working steps, such as impression taking and cast production. The digital
workflow of the wear measurement is decisively determined by the data acquisition and
the analysis strategies. Key aspects are the characteristic of the triangle meshes and the
alignment and measuring strategies. Figure 9 shows the variety of triangular structures.
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Poor mesh quality is characterized by triangles with a low edge ratio or tiny interior
angles and non-equilateral triangles. Extremely tilted triangles may be the cause of mis-
leading wear measurements. High-quality meshes are defined by homogenous triangles,
comprising the same homogenous, equilateral triangles in their neighborhood while keep-
ing the detail and edge sharpness of the geometry [34,35]. In future investigations, it has to
be elaborated to what extent the mesh quality and a kind of re-meshing is necessary for
the context of wear measurement. The three most common strategies for superimposing
datasets are an exclusively landmark-based approach, a standard best fit alignment, and a
reference best fit [12,36,37]. In terms of wear measurement, the exclusively landmark-based
alignment is inaccurate, especially due to the difficulty of positioning landmarks with
micrometer accuracy. In contrast, the standard best-fit alignment, including the whole
surface of the datasets, is based on an iterative closest point (ICP) algorithm. The absolute
distance between two datasets is minimized as far as possible. Another modification of the
standard best fit alignment is the reference best fit. If it is possible to determine which areas
of the scanned tooth surface have been worn, these changes can be excluded. The operator
manually determines the areas to be included in the alignment. Although the reference best
fit is user-dependent and therefore more error-prone, O’Toole et al. were able to achieve
the most accurate results in their investigation. Applying the exclusive landmark-based
alignment or the standard best fit alignment, wear has been underestimated [12]. Therefore,
the reference best-fit alignment is the preferred alignment strategy. Due to the manual
wear simulation, the worn areas were known and excluded to achieve the best possible
alignment. In clinical situations, this is only possible to a limited extent by identifying
grinding and clenching facets. To avoid the consideration of wear facets during best fit
calculation a threshold value should be defined so that the algorithms exclude surfaces
from the registration process if they differ too much.

If excluding the worn regions, the remaining areas of the scans should fit perfectly.
However, every scan differs depending on the accuracy (trueness and precision) of the
scanning system. Zimmermann et al. measured local accuracy values. The term local
referred to analyses that were limited to a single tooth preparation. The authors found
trueness values of 36.7 µm for OC and 23.3 µm for Tr3. In terms of precision, 14.0 µm Tr3
and 20.3 µm OC were reported [21]. According to Ender et al., Tr3 showed a precision
of 15.5 µm ± 1.7 µm and trueness of 27.5 µm ± 1.8 µm when capturing a posterior
tooth segment (13–17). OC exhibited a precision of 18.8 µm ± 4.1 µm and trueness of
28.9 µm ± 3.2 µm [22]. The mean trueness of a single-tooth acquisition by Lee et al. was
13.8 ± 1.4 µm (max. 16.3 µm, min. 12.0 µm) when OC was used. The precision was
12.5 ± 1.4 µm (max. 18.8 µm, min. 7.7 µm) [23].

Deviations of trueness and precision depend on the applied scanning system and the
surface material to be scanned. Dutton et al. examined the impact of different materials
on the scanner’s accuracy. Scanning a zirconia crown, OC exhibited a mean trueness
of 29.3 µm ± 5.7 µm and Tr3 22.1 µm ± 5.7 µm. Whereas Tr3 showed no statistically
significant influence on the accuracy due to the surface material. IOS applying the optical
principle of active triangulation, like OC are more prone to errors [38]. However, Lim et al.
compared metallic and non-metallic materials. Concerning the applied IOS, Tr3 revealed
significantly worse results concerning the metallic materials. Additionally, the impact of
surface conditioning (application of powder) was focused on. Comparable to the findings
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of the present study, no significant differences were identified [29]. It has to be emphasized
as a limitation of this investigation that the present results refer to scanned zirconia surfaces,
but no additional material beyond that.

The literature reports an average accuracy of about +/−20 µm in relation to a single
tooth measurement, which correlates with the present accuracy values of this study. In
particular, OC non-p exhibited the highest values for trueness (22.5 µm–19.2 µm) and
the highest deviation in wear measurement (45 µm) at the same time. Therefore, a mean
maximum error of approximately +/−40 µm could be postulated if two digital impressions
of different wear statuses are compared with each other. This corresponds to the maximum
deviation of 45 µm of the IOS compared to WLP.

5. Conclusions

The null hypothesis can be confirmed to a limited extent. The investigated digital
impression systems are a promising alternative to wear measurement based on WLP due
to their simple application, although inaccuracies of +/−20 µm per partial arch impression
have to be taken into account. Limitations of this study included the examination of
only one material (zirconia), the scanner’s disability to capture needle-like structures,
and the extended simulated wear. These shortcomings have to be weighed against the
ability to capture surface changes in a reasonable, quick, and user-friendly way so that
high volumes of 3D data can be processed nearly in real-time for patient monitoring and
scientific purposes.
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