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Abstract: Smart Grids (SGs) represent electrical power systems that incorporate increased information
processing and efficient technological solutions. The integration of local prosumers, demand response
systems and storage allows novel possibilities with regard to energy balancing and optimization of
grid operations. Unfortunately, the dependence on IT leaves the SG exposed to security violations. In
this paper, we contribute to this challenge and provide a methodology for systematic risk assessment
of cyber attacks in SG systems. We propose a threat model and identify possible vulnerabilities in
low-voltage distribution grids. Then, we calculate exploitation probabilities from realistic attack
scenarios. Lastly, we apply formal verification to check the stochastic model against attack properties.
The obtained results provide insight into potential threats and the likeliness of successful attacks. We
elaborate on the effects of a security violation with regard to security and privacy of energy clients. In
the aftermath, we discuss future considerations for improving security in the critical energy sector.

Keywords: smart grid; risk assessment; threat modeling; formal verification; probabilistic model checking

1. Introduction

A Smart Grid represents an enhanced energy supply network that relies on informa-
tion and communication technologies for enhanced energy supply services. It offers greater
efficiency than traditional grids, where the latter’s centralized one-way flow direction is
replaced with two-way communication and energy flows [1]. The initial concept of an SG
was defined by the National Institute of Standards and Technology (NIST) [2] and, in fact,
it is still under development [3]. Devices from the operational technologies (OT) side of
this critical infrastructure, which were physically segregated in the past, are now more
and more connected to the internet in a series of highly-distributed hierarchical network
systems. By integrating distributed renewable energy sources, this next generation electric
power system offer enhanced efficiency and reliability. In general, SGs are revolutionizing
the energy supply sector and this trend is expected to rise [4,5].

Unfortunately, these facts make SGs a target of cyber attacks as well. In fact, a short
time after its foundation, exploitation attempts by adversaries have been reported [6].
One of the first large-scale attacks on power systems was carried out against the Iranian
nuclear program. A distributed malware caused severe malfunction and self-destruction
of the system [7]. In 2016, a series of cyber attacks was successfully carried out against
the power systems in Ukraine. The incident affected 225,000 clients by disconnecting
them from the grid system for three hours. The subsequent investigation found out that
the attackers possessed sophisticated hacking skills and a broad knowledge about the
functionality of the power system [8]. Furthermore, several attacks were committed against
the energy infrastructure and high-profile US organizations and private companies over
the years (e.g., [9,10]). Apparently, the TRITON attack in 2017 targeted the Triconex safety
instrumented system (SIS) of Schneider Electrics. SIS is responsible for safety from a higher
level and takes immediate action in case of process control failure [11]. In addition to that,
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known attacks like phishing, Denial-of-Service (DoS), malware and eavesdropping are
carried out against SGs [1]. Furthermore, more destructive attacks like BlackEnergy [12]
or WannaCry [13,14] are common. Furthermore, another issue for security in the grid
domain represents the human factor [15]. Therefore, fake honey pots can be inserted into
the system in order to increase the uncertainty of the attacker [16]. For this matter, ensuring
the security of smart grids represents a critical issue in the domain of power infrastructure.

This paper proposes a formal risk assessment of cyber attacks in SG systems, based
on the threat modeling and probabilistic model checking. An extensive literature survey,
as one of the contributions of this paper, is provided at the beginning of the paper, in
order to determine the state of the art in the related fields. Afterwards, a methodology that
systematically describes involved steps and processes is given.

A smart grid demonstration case proposed in this paper serves as the common basis
on which further security analysis are carried out. It takes into account the customer,
the prosumer and the grid operator perspective, and encompasses three different attack
surfaces in a form of three use cases: (i) smart home and HVAC hijacking attack, (ii)
smart home and smart meter hijacking attack and (iii) smart grid and black-out attack.
Threat modeling is applied on the whole demonstration case in order to identify threats and
vulnerabilities within the system architecture. The resulting threat list is used as an input for
vulnerability detection and for defining potential attack scenarios. An important parameter
in the risk assessment is the exploitation probability–the likelihood that one particular
vulnerability will be successfully exploited. While this parameter, in similar approaches, is
most commonly determined through extensive literature survey, our approach includes
calculation of exploitation probabilities using Common Vulnerability Scoring System
(CVSS) [17]. As the last step, we apply formal verification on defined use cases, in order
to perform formal risk analysis and to obtain an indication on how safety and security
requirements can be fulfilled within the given environment. Subsequently, a model checker
is used to check the probabilistic model against attack properties. In the conclusion, we
elaborate on the effects of a security violation with regard to security and privacy of
energy clients, and we discuss future considerations for improving security in the critical
energy sector.

The remainder of the paper is structured as follows: Section 2 provides an overview
about existing literature in the domain. Section 3 describes methodology used. Then,
Section 4 describes demonstration case, including three use cases, and included compo-
nents. Section 6 includes modeled attack scenarios and results of exploitation probability
assessment. Section 7 describes available probabilistic formal verification tools and in-
cludes a description of modeled use cases and scenarios, and resulting attack probabilities.
Section 8 elaborates on implications on security risks in SGs and concludes the paper.

2. Related Work

Ensuring the security of SG systems against cyber attacks represents a great challenge
for public infrastructure. Therefore, an important step in this task is the identification
of potential security issues. Subsequently, the classification of these attacks serves as a
starting point in ensuring effective defense mechanisms. Therefore, several approaches
exist that tackle the problem from different angles. In this paper, the existing literature is
divided into three distinctive topics. The first topic discusses stochastic methods, including
risk assessment, for the estimation of cyber threats in SGs. The second section discusses
works on real security exploits against SGs to date. The final topic provides an overview
on formal verification methods for the same challenge.

2.1. Stochastic Modeling of Cyber Attacks in Smart Grid Systems

In the context of cyber security, stochastic models are used to estimate the effect of
the behavior of an attacker. For this sake, they analyze probability distributions of specific
variables for a vulnerability. On the other hand, risk assessment is applied in order to
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identify existing threats, vulnerabilities or potential risks from potential consequences, as
given by Paté-Cornell et al. [10].

Langer et al. [18] performs a cyber security risk assessment for attacks in SGs. For this
matter, they methodically analyze the impact and likelihood of cyber attacks against such
systems. Therefore, they implemented the toolbox Smart Grid Information Security (SGIS),
which is applied for the estimation of risks for information assets. The toolbox is applied to
two use cases, namely, voltage control and power flow optimization. The authors possible
consequences for SGs due to exploitation of information assets.

The paper by Jauhar et al. [19] introduces a generalized model-based approach to
assess realistic security risks for failure scenarios in SGs. The authors apply an assessment
tool to analyze several of such scenarios. Each scenario is formalized in a structured model,
which contains information about concrete vulnerabilities and attacker characteristics.
These models are used in order to reason about failures in every scenario. The authors
emphasize the advantage of their tool, namely the re-usability of generated models for
different attacker profiles and systems.

Lee [20] provides a thorough theoretical analysis on risk assessment and failure
scenario ranking in the electric sector. The work analyzes vulnerabilities as well as the
resulting consequences and possible mitigation mechanisms. These vulnerabilities are
listed and suggestions are given to define their naming conventions and classification. In
fact, this work couples failure scenarios with security controls from [21].

Salehi Dobakhshari and Ranjbar [22] proposes a cloud-based solution for fault location
estimation in grid systems. For this matter, the approach relies on a weighted least-squares
(WLS) method, which is used to model a fault location estimation problem as a non-linear
estimation problem. The authors observe that the probability of inaccuracy estimation
increases as a consequence of multiple measurements. However, since the approach detects
erroneous measurements, the overall estimation error remains below 1% at different points
in the SG system.

The work from Rao et al. [23] introduces game-theoretic models for the estimation of
attack probabilities. For this sake, the authors analyze the interactions between attacker
and defender in a grid network. Then, they apply game theory in order to implement a
probabilistic model. This represents a systematic Boolean attack–defense model, thereby
analyzing the overall infrastructure in a top-down manner. In their example, in authors
assume that the attacker obtained information about the target system prior to the attack.
In this way, the probabilistic model returns success rates for both the attacker and defender.
In the attack scenario, both parties assume certain action after calculating the opponent’s
success rate. However, in order to reproduce this approach, broad knowledge about the
capabilities of the infrastructure is necessary, which is provided by facility users. For both
sides to draft a probabilistic strategy, knowledge about incidental degradation, incurred
costs, defender strategies and defense priorities is mandatory.

The approach Gao et al. [24] applies a Monte Carlo method, which is based on Markov
chains for operation reliability in power systems. For this sake, the authors focus on time-
dependent state probabilities for state prediction. In this method, a system state is defined
in terms of a specific situation of its composite states. In this case, the probability of each
state is depicted with corresponding state models. Subsequently, the resulting multi-state
Markov model relies on a state transition matrix in order to derive failure and repair rates
of a specific state in the system. In this way, security issues in states can be addressed and
evaluated in advance.

Hao et al. [25] focuses on a false-data injection against SG distribution systems. In this
approach, false-data injection is used in order to exploit a voltage regulation mechanism.
This stealthy attack sends false voltage data to the system in order to cause load distur-
bances in voltage regulators. Eventually, the attack causes a malfunction in the system. In
order counter face the attack, the authors compute the best response strategy by relying on
a concept from game theory, namely the adaptive Markov strategy (AMS). This method
is especially suitable in situations where a system is attacked by unpredictable attackers.
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Therefore, the AMS comprehends online learning mechanisms so optimal defense strategies
are computed against an estimated behavior of the attacker.

In Leszczyna [26], the author provides a review on standards for cyber security
assessments in Smart Grids. He identifies six relevant standards that provide a general
guidance on this matter. However, they do not present a technical specification so far.

2.2. Cyber Security in Smart Grid Systems

As already mentioned, cyber attacks against the SG infrastructure can lead to severe
consequences. Due to the complexity of this emerging technology, the behavior of attacker
is difficult to predict. Several types of attacks like injection and malware target multiple
systems across the network. Until now, several successful exploitations are executed in
theory and practice.

Khan et al. [12] provides a detailed overview on one of the most destructive malwares
in the energy sector, namely BlackEnergy. This Trojan horse has a long history with critical
infrastructures so its capabilities evolved in time. In general, it targets real-time grid
monitoring and control and causes coordinated DoS, eavesdropping, information theft,
remote access, etc. Due to its evolving nature, providing effective defense mechanisms
represents a difficult challenge. Therefore, the authors explain existing protection strategies
and warn about the persistence of the attack in the future.

The work from Sun et al. [27] presents a description on the impact of coordinated cyber
attacks against SG systems. Distributed attacks are usually well-organized and contain an
elaborated attack plan before the execution. The latter constitutes an attack pattern, where
each step is related to other steps that constitute an attack plan.

On the other hand, Soltan et al. [28] proposes a new class of potential attacks against
SGs, which they call Manipulation of demand via IoT (MadIoT). For this matter, they
address inherited vulnerabilities from the technology of IoT in the domain of power
grids. In this scenario, attackers compromise less protected IoT devices and disrupt the
functionality of an SG. Such attacks cause consequences like frequency instability, line
and cascading failures and subsequently, increase in operational costs. Additionally, the
authors utilize an IoT botnet that is meant to execute an attack against a power system.
They perform the MadIoT attacks against an SG simulator and analyze different scenarios
with regard to produced impact.

Security considerations for SCADA systems are discussed in detail by Pliatsios et al. [29].
First, a broad overview on the technology of SCADA and the underlying communication
protocols is given. Then, security incidents are discussed as well as their impacts with
regard to public health and safety. In the aftermath, the authors discuss the implementation
of defense mechanisms. Thorough surveys of cybersecurity threats and issues in SCADA
networks are given by Nazir et al. [30], Irmak and Erkek [31], Ghosh and Sampalli [32] and
Antón et al. [33], respectively.

Furthermore, a broad discussion about cybersecurity issues in Industrial Control
Systems is given by McLaughlin et al. [34]. In their review of theoretical frameworks,
the authors assume worst case scenarios, i.e., that attackers are highly competent and in
possession of complete knowledge about the system. Security measures are discussed that
fit such attacker’s profile for this matter.

A slightly different approach is given by Garcia et al. [35], which introduces a physics-
aware cyber attack against power systems. The analyzed attacks target the system’s
underlying embedded programmable logic controller (PLC) by manipulating existing
control commands. Thus, the malware is constructed in a way to cause severe impact
to the physical power equipment. In order to make the malware functional and more
efficient, the authors reverse engineer the central PLC to extract information about its
control instructions. In this way, an adversary model is drafted in order to carry out attacks
against the control system. Similar to other attack scenarios, the approach assumes that
knowledge about the target domain is available prior to the attack. In fact, the attack is
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very effective because it is executed in a stealthy fashion. In this way, its existence is not
obvious and causes a more enduring impact than strong short attacks.

Other attacks against PLCs in power systems are presented by Brüggemann and
Spenneberg [36] and Klick et al. [37].

The work by Amini et al. [38] analyzes dynamic load altering attacks (LAAs) in power
grids. Such cyber attacks are meant to control and destabilize a system by targeting its
unsecured loads. The paper provides a model about the system and an estimation on the
consequence of attacks against the system under a specific configuration. For this matter,
the authors take into consideration the exposure of parameters to fluctuation and discuss
mitigation mechanisms.

Security-related aspects of connected SGs in IoT infrastructures are discussed in
the work from Dvorkin and Garg [39]. In these scenarios, distributed electric loads are
interconnected and simultaneously controlled by a supervisory IoT system. For this sake,
cybersecurity issues must be considered specifically for IoT-operated loads in order to
guarantee undisrupted grid operation. Therefore, the authors provide a hypothetical
scenario where an SG is targeted by distributed cyber attacks. Hence, the proposed
modeling framework reveals the propagation and impact of cyber attacks on IoT-controlled
electrical loads. In the aftermath, an attacker is able to alter the power consumption and
cause severe damage to the system. In addition to that, the compromised IoT devices can be
exploited further to launch additional attacks, like DoS, against other services. In addition
to that, the authors discuss several attack strategies and the resulting consequences.

Li et al. [40] focuses on challenges for producing efficient defense mechanisms in SGs.
For this reason, the authors introduce a sequential detector that is based on an adaptive
sampling technique. In order to test their approach, malicious data is submitted to the
monitoring systems of an SG. The efficiency of attack detection is compared in centralized
and distributed attack detections. The authors claim their method is efficient against a
broad variety of attacking strategies and unexpected situations. Furthermore, the proposed
method considerably reduces overheads in the system without having a negative impact
on the robustness and average detection performance.

Another discussion on coordinated data injection attacks against a power network
and appropriate detection methods is given by Cui et al. [41]. First, the authors analyze an
attack model for a stealth attack against an SG network. Therefore, they introduce a system
model for state estimation on the example of a linearized model. In this method, the goal is
to estimate possible electrical states by dynamically analyzing real-time redundant meter
measurement data in a system. Subsequently, the authors provide a survey on common
approaches against data injection attacks and discuss future research directions.

A more practical approach is given by Marksteiner et al. [42]. The paper provides a
smart grid-specific methodology based on risk assessment and threat modeling for the
development of security requirements. The given approach takes into account cyber threats
on different levels, namely the architectural, the protocol and the device level.

Major security challenges and evolving cyber attacks in SGs are described by
Li et al. [43], Rawat and Bajracharya Chandra [44], Shapsough et al. [45] and Gunduz
and Das [46]. Yan et al. [47] summarizes cyber security requirements and existing solutions
in communication systems and protocols. Security challenges with regard to technical
foundations of SGs are described in detail by El Mrabet et al. [7].

2.3. Formal Verification in Smart Grids

The application of formal methods for the prevention of cyber attacks in the SG
domain is addressed from different perspectives. These include quantitative as well as
qualitative properties. On the protocol level, two relevant publications exist for this matter.
Rashid et al. [48] addresses the performance and efficiency of Smart Grids by checking
a ZigBee-based routing protocol for the communication network. The focus of this work
is the functionality of the protocol. This is confirmed by the conducted verification of
collision avoidance and liveness properties. On the other hand, Odelu et al. [49] focuses on
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the secure authentication key agreement in the Canetti–Krawczyk adversary model. The
authors emphasize the importance of several software components for the security and
privacy in the SG domain. Therefore, the authors propose a provable secure authentication
key agreement scheme.

In Naseem et al. [50], PRISM is used for a reliability analysis and investigation of
accuracy, stability and efficiency. The analysis was committed in cases where faults were
detected in the transmission line system of a Smart Grid. In addition to that, the approach
is applicable to calculate failure probabilities in network components. The reliability of a
G3-Power Line Communication (PLC) networks is considered by Uddin et al. [51]. The
work puts focus on the accuracy and reliability of the information flow. For this sake,
it specially emphasizes the Fault Detection, Isolation and Supply Restoration behavior.
Hamman et al. [52] uses the model checker SPIN in order to check the wide-area backup
protection system (WABPS). This is specifically designed to offer a high degree of reliability
in different failure scenarios. However, due to the advanced design, the calculation of the
fault tolerance proves difficult. Therefore, the authors applied SPIN to check the limits of
a failure. Garlapati [53] applies the model checker UPPAAL for verification of the Agent
Aided Distance Relaying Protection Scheme. This represents a hierarchically distributed
and non-intrusive concept for decreasing blackout probability. In their work, this scenario
occurred due to hidden failures of distance relays in the Advanced Metering Infrastructure.

Bashar et al. [54] provides a security risk management solution for the protection
of Smart Grids in case of cyber attacks. The authors use probabilistic model checking to
model the attacker’s behavior in form of a Markov Decision Process. For this sake, they
rely on the model checker PRISM. Two types of attacker behaviors are considred, namely
non-persistent and persistent behaviors, as well as their effect on critical components in
an SG. On the other hand, Diovu and Agee [55] studies the effects of distributed DoS
attacks on the Advanced Metering infrastructure. The authors estimate best and worst case
analyses in the context of a cloud-based openflow firewall. In the aftermath, they study
DoS attacks with respect to different detection probabilities of the firewall.

Similar to our proposed work, Krivokuća et al. [56] conduct a risk analysis for Smart
Water Distribution use case. The corresponding authors focus on two main scenarios,
namely water contamination and water tank overflow. Therefore, risk exposure scores
are calculated for both scenarios. Additionally, these scores provide recommendations for
system configurations to improve safety and security.

3. Methodology

The methodology for the research presented in this paper is shown on Figure 1. The
steps in the process are sequentially marked in Figure 1. The first step is the definition of the
system architecture, its components and communication channels. The system architecture
is used for the threat modeling step, which as a result provides a list of threats. The
vulnerabilities of the system and the attack possibilities are identified based on the threat
list. Next, the exploitation probabilities for the identified vulnerabilities are calculated
and the attacker’s behavior is modeled. The formal system model is created based on the
system architecture, the identified vulnerabilities with exploitation probabilities, and the
modeled attacks. The formal properties of the attacks are identified next, and the model is
checked against the identified properties using the model checker. This finally results in
risk exposure scores.

A significant part of this research was the development of a non-deterministic system
model as Markov Decision Process (MDP). The Markov model incorporates the system
architecture, the attacker’s behavior and the existing vulnerabilities of the system with
identified exploitation probabilities. The required input elements for formal verification
are the system model, together with the identified attack properties. The chosen tool for
formal verification is the PRISM model checker.
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Figure 1. Risk analysis based on threat modeling and formal methods methodology.

4. Demonstration Use Case

The digitized bi-directional power infrastructure connecting production, distribution
and prosumer assets offers the attackers different ways to penetrate the LV Grid via the
ICT environment. The so called attack vectors, describing the attack route and the attack
technique, can be very diverse depending on the hardware, software, communication
channels and physical access. This large attack surface built up by different attack vectors
and assets under different ownership has to be carefully addressed. Each new component
added to such a configuration can introduce new unforeseen risks, both from HW and
SW side.

The use case architecture described in this paper (Figure 2) simplifies the redesign
of the energy network, which will be common in the future, towards a decentralized
distributed generation and independent islanding. It serves as a starting point for our
approach to a differentiated cyber risk assessment and takes into account the customer, the
prosumer and the grid operator perspective.

The described architecture consists of various devices and services both on consumer
and production/distribution side and, as such, it is analyzed from the cyber security
perspective, taking into account three attack surfaces:

• UC1: Smart home and HVAC hijacking attack
• UC2: Smart home and smart meter hijacking attack
• UC3: Smart grid and black-out attack

The components included in each use case are described below. The components
are carefully considered in the different steps of the proposed research, including threat
modeling, attack assessment and model checking.
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Figure 2. Smart energy system cyber security use case architecture.

4.1. Smart Home and HVAC Hijacking Use Case Components

Humidity, Ventilation and Air Condition (HVAC) system, including actuators controlling
heating and cooling, and thermometer, is a technology used to control indoor thermal
comfort and air quality. It is used in indoor applications, including for example residential,
industrial and professional, environments, as well as in vehicular environments.

Home Energy Management System (HEMS) is a technology platform that introduces
and connects sensors within smart home devices, via home networks. It consists of
hardware and software components, and it is used to carry out home automation and
control processes.

Gateway (G), or a residential gateway, is a consumer-grade system which provides net-
work and internet access to various smart systems connected to a local area network (LAN).

4.2. Smart Home and Smart Meter Hijacking Use Case Components

Smart Meter (SM) is a digital device used in smart home applications, with the main
function to collect and record information such as electric energy consumption, current,
voltage levels, etc.

In-house display (IHD) is a user interface, in a form of a small monitor, directly con-
nected to a smart meter. It usually shows the current system parameters, like current
energy consumption.

This use case also includes distributor side components such as the Data Concentrator
Unit (DCU), the Meter Data Collector (MDC) and the Meter Data Management System
(MDMS), that are described bellow, in the third use case.

4.3. Smart Grid and Black-Out Attack Use Case Components

Power Electronic Device (PED) consists of an Intelligent Local Energy Manager (ILEM),
which is responsible for the management of the device components, a Power Conversion
System and a Battery Management System with hybrid energy storage features, based on
predefined voltage support actions configured by the operator.

Phasor Measurement Unit (PMU) is a metering and control device for measuring phasor
data (voltage and current synchronization), voltage and current waveforms.

Power Quality Monitor (PQM) is a lightweight metering device with a measurement
and control unit and enables the calculation of all power quality parameters required
according to EN 50160.
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Wide Area Monitoring System (WAMS) collects processes and monitors geo- referenced
spatial temporal field data coming from distributed PMUs and PQMs located both on low
voltage and on the medium voltage side.

The Remote Terminal Unit (RTU) provides communications features to field devices to
exchange telemetry data and control messages with the capability of processing data.

Distribution Management System (DMS) provides sophisticated functionality for ad-
vanced monitoring and control of the distribution grid to the DSO, which is important to
handle increased customer generation and energy storage facilities as well as the manage-
ment of demand response capabilities.

Supervisory Control and Data Acquisition System (SCADA) is in charge of real-time moni-
toring and control of the distribution grid and manages diverse remote control systems via
a telecommunication network and provides data analytics and data storage functionality.

Enterprize Service Bus (ESB) is a middleware that enables the messaging and routing
capabilities as well as the integration of distributed services and applications.

Data Concentrator Unit (DCU) is a unit responsible for the gathering of measurement
data from multiple metering devices installed at the substation.

Meter Data Management System (MDMS) stores large quantities of smart meter data
performs their validation and analytical processing.

Meter Data Collector (MDC) collects and manages the measurement data received by
the data-concentrating units (DCUs) which is then forwarded to MDMS.

Photovoltaic system (PV) is a standalone solar PV with a power conditioning unit, a
DC/AC converter and which is connected via the gateway to delivers data.

Switchgear (SwG) is a motorized switchgear which enables coupling and decoupling
of the grid sector.

5. Threat Modeling

In general, threat modeling aims to identify threats and vulnerabilities within IT-
related system architectures [57]. Furthermore, it helps to put security and privacy by
design into practice. In this paper, a threat modelling approach is meant to secure a project
setup with a systematic security analysis. In [42], a feasible list of requirements obtained
by risk assessment for different components. In our paper, however, risk assessment is
performed for each individual component, without analyzing their interaction within the
overall system.

Figure 3 depicts the threat model based, which is based on the demonstration use
case from Section 4. The model was created by using the Microsoft Threat Modeling
Tool [58], which works on data flow diagrams that describes data stores, processes and
communication lines and provides threats based on the STRIDE model [59]. STRIDE
divides threats into the following six categories:

• Spoofing: refers to the illegally access and usage of foreign authentication information
to obtain illegitimate access.

• Tampering: is associated with the malicious modification of data.
• Repudiation: denies an action that was performed by an entity without having a

possibility to uncover this malicious action.
• Information disclosure: denotes the exposure of information to users who are not

authorized to have access to this information.
• Denial of service: affects the availability of services so that they are not accessible for

authorized users.
• Elevation of privilege: denotes obtaining privileged access by an unprivileged user

and thus ultimately the possibility of compromising the entire system.

The Microsoft Threat Modeling Tool is not limited to a set of threats but offers the
possibility to create individual templates for a given domain. Furthermore, we rely on the
Azure cloud and IoT templates from Microsoft for the smart home area. We combine these
templates with our own, which are based on our research in the smart energy domain.
In the model itself, different trust zones were identified according to our use case. First,
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the trust zone of components is identified within the smart home, then in the outsourced
cloud area and the immediate personal area. In the SG environment, the trust zones at the
control center include DMS, SCADA and a monitoring system. At the substation level, two
zones exist, namely, one that covers the PED and SwG, and a second dealing with metering
components. Finally, measurement components that cover additional metering points in
the network constitute a separate trust zone.

Figure 3. Threat Model.

In total, the modelling approach resulted in the identification of 1137 threats. These
are classified according to STRIDE, with additional one that describes threats in smart
home components. The latter also cover physical threats, which contribute to the overall
number of threats. A list of all categories is given in Table 1.

However, for the conducted assessment we rely just on the threats from Table 2.

Table 1. Threat asignment to category.

Category Amount

S Spoofing identity 51
T Tampering with data 15
R Repudiation 38
I Information disclosure 33
D Denial of Service 85
E Elevation of privilege 116
- Smart energy components related 798
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Table 2. List of threats.

Id Title Category Description

51 Elevation by Changing the
Execution Flow in WAMS

Elevation Of
Privilege

Gateway may be able to remotely execute code for
WAMS.

187 PQM May be Subject to Elevation of
Privilege Using Remote Code
Execution

Elevation Of
Privilege

Gateway may be able to remotely execute code for
PQM.

230 Data Flow MODBUS TCP IP Secure
Is Potentially Interrupted

Denial Of
Service

An external agent interrupts data flowing across a
trust boundary in either direction.

353 Data Flow IEEE C37.118 over IEC
61850-8-1 Is Potentially Interrupted

Denial Of
Service

An external agent interrupts data flowing across a
trust boundary in either direction.

478 Data Flow IEEE C37.118 over IEC
61850-8-1 Is Potentially Interrupted

Denial Of
Service

An external agent interrupts data flowing across a
trust boundary in either direction.

593 Data Flow MODBUS TCP IP Secure
Is Potentially Interrupted

Denial Of
Service

An external agent interrupts data flowing across a
trust boundary in either direction.

597 Spoofing the ESB Adaper Processd Spoofing ESB Adaper may be spoofed by an attacker and this
may lead to unauthorized access to ESB.

618 Data Flow IEC 60870-5-104 Is
Potentially Interrupted

Denial Of
Service

An external agent interrupts data flowing across a
trust boundary in either direction.

621 Elevation by Changing the
Execution Flow in RTU

Elevation Of
Privilege

An attacker may pass data into RTU in order to
change the flow of program execution within RTU to
the attacker’s choosing.

640 Data flowing sniffing across
MODBUS TCP IP

Information
Disclosure

Data flowing across MODBUS TCP IP may be sniffed
by an attacker. Information may may be used to attack
other parts of the system or simply be a disclosure of
information leading to compliance violations.

647 Elevation by Changing the
Execution Flow in PED

Elevation Of
Privilege

RTU may be able to remotely execute code for PED.

661 Elevation by Changing the
Execution Flow in SCADA System

Elevation Of
Privilege

An attacker may pass data into SCADA System in
order to change the flow of program execution within
SCADA System to the attacker’s choosing.

672 Data Flow IEC 60870-5-104 Is
Potentially Interrupted

Denial Of
Service

An external agent interrupts data flowing across a
trust boundary in either direction.

686 Elevation by Changing the
Execution Flow in RTU

Elevation Of
Privilege

An attacker may pass data into RTU in order to
change the flow of program execution within RTU to
the attacker’s choosing.

857 Elevation by Changing the
Execution Flow in DCU

Elevation Of
Privilege

An attacker may pass data into DCU in order to
change the flow of program execution within DCU to
the attacker’s choosing.

880 Spoofing the In-house display
External Entity

Spoofing In-house display may be spoofed by an attacker and
this may lead to unauthorized access to Smart Meter.

903 An adversary may block access to
the application or API hosted on
In-house display through a denial
of service attack

Denial Of
Service

An adversary may block access to the application or
API hosted on In-house display through a denial of
service attack

1005 An adversary may gain elevated
privileges and execute malicious
code on HEMS host

Elevation Of
Privilege

If an application runs under a high-privileged account,
it may provide an opportunity for an adversary to
gain elevated privileges and execute malicious code
on host machines

1013 An adversary may execute
unknown code on Heating/Cooling

Tampering An adversary may launch malicious code into Heating
and execute it

1028 Potential Excessive Resource
Consumption for IoT Gateway or
Thermometer

Denial Of
Service

Resource consumption attacks can be hard to deal
with, and there are times that it makes sense to let the
OS do the job.
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Table 2. Cont.

Id Title Category Description

1052 Elevation by Changing the
Execution Flow in PMU

Elevation Of
Privilege

An attacker may pass data into PMU in order to
change the flow of program execution within PMU to
the attacker’s choosing.

1057 Data Flow Sniffing Information
Disclosure

Data flowing across IEEE C37.118 over IEC 61850 8 1
may be sniffed by an attacker. Information may be
used to attack other parts of the system or simply be a
disclosure of information leading to compliance
violations

1111 Elevation by Changing the
Execution Flow in IoT Gateway

Elevation Of
Privilege

An attacker may pass data into IoT Gateway in order
to change the flow of program execution within IoT
Gateway to the attacker’s choosing.

6. Attack Scenarios and Exploitation Probability Assessment

In this section, three different exploitation attempts against the system architecture are
described (Figure 2). Each scenario describes a sequence of attack steps, which lead from
an attacker to the exploitation of the system. In general, the SG system represents an inter-
connection of devices that are linked in an online infrastructure. Usually, every connection
is implemented using different technology and communication protocols. Because of this,
each device in the network represents a distinctive security challenge for the attacker. From
the outside, the system can be accessed either physically or via a web interface. In the latter
case, exploiting such interface represents the first security challenge for an attacker. In fact,
connecting to the system and gaining access to an online device remains a challenge in
every attack scenario. This paper omits the technological details about the target devices
and focuses on the ways to exploit their vulnerabilities. However, it should be noted that
advanced hacking skills and domain knowledge are mandatory in order to carry out the
described attacks.

6.1. Smart Home and HVAC Hijacking Attack Scenarios

In this use case (UC1), the attacker successfully exploits the vulnerabilities in tem-
perature regulation systems and their sensors. The ultimate target represents the HVAC
system, which represents the last link in a chain of devices. As already mentioned, the
attacker must gain control over the internet system of the smart home. Then, the attacker
must find a way to compromise the gateway of a single smart home. Afterwards, she
injects a payload to obtain operational access in the corresponding HEMS system. Finally,
by controlling HEMS, instructions can be sent to the targeted HVAC system. The overall
attack steps are depicted in Figure 4.

Cloud 
device

access
network

gain
control

Web 
interface

compromise
Gateway

HVAC

infect
device

HEMS
manipulate

Figure 4. Attack scenario for hijacking of heating and the HVAC system.
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6.1.1. Attack Scenario 1.1—Hijack Heating

In case the attacker gains control over the heating, she can manipulate the internal
thermal sensors at will. The heating can be switched on and off, which eventually leads to
discomfort and might cause health issues for inhabitants. Furthermore, extreme overheat-
ing can cause irreparable damage to the smart home system or surrounding devices.

6.1.2. Attack Scenario 1.2—Hijack HVAC

In addition to manipulating the heating, a remote attacker can affect ventilation and
air conditioning in smart homes as well. By assuming control over the HVAC system, she is
able to cause a temperature overload in the system. In this way, the system can be damaged
and increases the power consumption. A known intrusion against the HVAC system, called
HVACKer [60], relies on an already installed malware in order to manipulate temperature
settings. This attack exploits a vulnerability that is caused by the lack of insights about
thermal communication protocols.

6.2. Smart Home and Smart Meter Hijacking Attack Scenarios

The attack in this use case (UC2) exploits vulnerabilities in a household’s smart meters.
As already mentioned, this SG device gathers information about energy consumption
and monitors user behavior, which is displayed at the IHD interface. In turn, this private
information can be linked to real persons on the internet. In our case, we chose a setup
where the SM is connected via the HAN to the gateway. In our scenario, the attacker gains
via the gateway access to the SM. Afterwards, she is able to interfere with the smart homes’
energy consumption in different ways. The use case for this attack is shown in Figure 5.

Cloud 
device

access
network

gain
control

Web 
interface

compromise
Gateway

IHD
notify Smart 

power 
meter

manipulate

Figure 5. Attack scenario for hijacking of smart meters in smart homes.

6.2.1. Attack Scenario 2.1—Fraud

In this case, the attacker alters the SM of another smart home in the local network.
Subsequently, she increases a neighbor’s power consumption and simultaneously decreases
her own. By balancing the energy expenditure in the local network, the attacker conceals
the committed fraud at the cost of the neighbor.

6.2.2. Attack Scenario 2.2—Decrease Bill

If the attacker compromises her own SM or concentrator, she might decrease her
recorded energy consumption. In this way, the attacker decreases her bill without changing
her consumption habits.

6.2.3. Attack Scenario 2.3—Increase Bill

The attacker compromises the SM that is responsible for collecting information about
the energy consumption of another user. Therefore, the expenditure of the unsuspecting
victim is increased for the time being.
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6.2.4. Attack Scenario 2.4—Increase Bill, no Alarm

Similar to the previous case, the attacker hijacks a victim’s SM and alters its consump-
tion for the worst. However, in this scenario, the victim is never alerted about this issue,
eventually causing long-lasting consequences.

6.3. Smart Grid and Black-Out Attack Scenarios

The next use case (UC3) differs from the above two scenarios since the attacker
targets the main distribution grid. The DMS executes control over a number of distinctive
SG devices, which manage and measure energy distribution and exchange information
between individual grid components. The goal of this highly sophisticated attack is to
disrupt the functionality or to cause a breakdown of the parts designed for islanding and
which are supported by storage units. In the most severe case, the attack leads to a complete
black-out in an area of the grid network. In order to achieve this ambitious goal, the attacker
must get control over the decentralized energy generation and local storage devices. In
addition, the attacker must access the switchgear devices to disconnect this section from the
grid as well as to disable the monitoring devices to remain unnoticed by the grid control
center. In general, Figure 6 depicts an abstract overview of this attack scenario.

access
network

ESB

jam/
compromise

gain control

PED

SCADA

PMU PQM

WAMS

jam/
compromise

SwG

RTU RTU

jam/
compromise

jam/
compromise

jam/
compromise

gain control

Figure 6. Attack scenario for black-outs in an SG.

6.3.1. Attack Scenario 3.1

This scenario covers the aspect of manipulating various sensor values without at-
tacking the implemented control functionality itself. After the attacker gained access to
the ESB, she proceeds further by trying to confiscate the WAMS and, respectively, use it
as gateway to perform a lateral movement to the connected PMUs and PQMs. Besides
that, the same appears for SCADA and the connected components RTU, SwG and PED.
By doing so, the possibility is given that the SCADA initiates the island mode in order to
ensure further functionality. From this moment on, the attacker can proceed in one of the
following direction.

• Sub scenario 3.1.1
The attacker manipulates the PED to send a message to the SCADA system that it is
fully charged, while in fact, the storage units are empty. The metering devices, PMU
and PQM, are also targeted, and they report a power undervoltage or bad quality.
This will then lead to the attacker’s goal–the SCADA system will initiate islanding in
that section by opening the SwG.

• Sub scenario 3.1.2
The first steps of this scenario is the same as in the previous scenario. Instead of
manipulation of the PMUs and PQMs sensor values, this scenario includes the ma-
nipulation of the WAMS functionality, where the power undervoltage telegrams are
delivered to the control center.

• Sub scenario 3.1.3
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In this scenario, the attacker manipulates the RTU of a PED in order to report that
the latter is fully charged. The rest of the attack proceeds similarly to scenario 3.1.1,
where the PMU and PQM both report undervoltage, and SCADA issues a command
to open the SwG.

• Sub scenario 3.1.4
The first steps of this scenario are the same as in the scenario 3.1.3. Instead of manipu-
lation of the PMUs and PQMs sensor values, the WAMS functionality is manipulated,
and the power undervoltage telegrams are delivered to the control center.

6.3.2. Attack Scenario 3.2

The first few steps of this scenario are similar to the previous example. After the
attacker gains access to the ESB network, she proceeds further to the SCADA system and
to the connected components RTUs and PED.

• Sub scenario 3.2.1
Here, the attacker gathers information about the status of PED by sniffing the Modbus
TCP/IP. Then she interrupts the connection to the PMU2, PQM2 and PED by jamming
the communication lines so that no status info is transferred to the control center. In
the aftermath, the compromised RTU issues a command to open the SwG when the
battery of the PED is empty.

• Sub scenario 3.2.2
Another option after obtaining information about the status of the PED would be to
jam the SCADA system altogether. The RTU will send a SwG open command when
the battery is empty.

• Sub scenario 3.2.3
Instead, to access the Modbus TCP/IP, the attacker can focus on the IEC 60870_5_104
in order to gather information on PED’s status. In the aftermath, the attacker is capable
of disabling the status transfer from PMU2, PQM2 and PED by jamming them. The
RTU connected to the SwG behaves in the same way as in the above examples.

• Sub scenario 3.2.4
This case is similar to the previous example with the difference that the attacker jams
the SCADA system directly instead of the metering and PED control devices.

6.3.3. Attack Scenario 3.3

The first few steps of this scenario are similar to the previous examples. After the
attacker gains access to the ESB network, she proceeds further to the WAMs and the
SCADA system and the connected components, the PMUs and PQMs, the RTUs and the
PED. However, in this case, the attacker is waiting for an undervoltage event by the grid
itself. If such an event occurs, the attacker switch of the PV and triggers the battery loading.
In this scenario, the attacker gathers information about the status of the grid and the status
of the PED by sniffing.

• Sub Scenario 3.3.1 In this scenario, the attacker gathers information about the status of
PED by sniffing the Modbus TCP/IP. Additionally, the attacker gathers the informa-
tion about the status of the grid itself by sniffing the PMU2 and PQM2 measurement
values. If the attacker detects an undervoltage event and the possibility to load the
batteries, the attacker will trigger the battery load process.

• Sub Scenario 3.3.2 Instead, to access the Modbus TCP/IP, the attacker can focus on the
IEC 60870_5_104 in order to gather information on the PED’s status, and the stability
info about the grid is directly collected via the WAMS.

6.3.4. Attack Scenario 3.4

Instead of targeting the different devices, the attacker launch a direct attack on the
SCADA system. By doing so, the attacker can trigger via the SCADA system the event to
open the SwG and send the battery load command to the PED.
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6.4. Exploitation Probability Assessment

In order to effectively address the different threats, and to model detected vulnerabili-
ties, an assessment of the system components from the exploitation probability point of
view is very useful. This is reflected in the fact that different vulnerabilities have different
security protection mechanisms in place, and that probability to exploit such vulnerabilities
differs. The risk assessment of system components outlined by Marksteiner et al. [42] was
obtained by the organization responsible for the specific component. In similar approaches
proposed by Mohsin et al. [61] and Krivokuca et al. [56] exploitation probabilities were
defined through extensive literature research. Their work proposes a new methodology for
quantifying the likelihood of the compromise of a cyber component of SG, and includes
risk assessment based on direct or indirect impact of the breach.

In our approach, the CVSS tool is adopted for the calculation of exploitation probabili-
ties, with certain methodology modifications compared to the existing approaches. The
first step is a mapping of the components in use and their interrelation at the evaluated
environment, based on the threats obtained by the threat modeling process of the specified
use cases.

The CVSS tool have several modules available, where the base score module, according
to Wadhawan et al., provides a good basis for the calculation of the probability of an attack.
Base score module have three sub-modules that can be used for calculating probabilities:
exploitability, scope and impact sub-modules. Exploitability sub-module reflects how easily
a vulnerability can be exploited, while the scope and impact sub-modules quantify the
consequences of a successful exploit.

In contrast to [62], our work takes into account, apart from exploitability of the sub-
module, also the core and impact sub-modules, because in penetrating the smart grid, these
impact-related parameters are also in the focus of an attacker and, therefore, should be part
of the calculation.

The exploitability sub-module takes into account:

• The attack vector—reflects the context by which a vulnerability can be exploited;
• The attack complexity—outlines how much effort in the preparation or execution of

the attack against a vulnerable component the attacker have to invest;
• Privileges required—denote the level of privileges an attacker must obtain in order to

successfully attack a component;
• User interaction—if another human user must be involved for a successful attack.

The scope sub-module rates if a vulnerability in one asset affects other assets, which
are outside of this security authority.

The impact sub-module takes into account the CIA Triade:

• Confidentiality—to what extent confidentiality is affected;
• Integrity—refers to the trustworthiness and correctness;
• Availability—rates the impact of a successful attack to the availability of the

affected component.

For less complex attacks, the base metric score is higher because such an attack
have a higher likelihood. The score obtained from the CVSS system in range 1–10, and
is normalised to the range 0–1 for further calculations. In Tables 3–5, the exploitation
probabilities related to the different threats and for the different use cases are listed.

Table 3. UC1 Exploitation probabilities.

Threat Id Title Expl. Prob.

1005 An adversary may gain elevated privileges and execute malicious code on HEMS host 0.57
1013 An adversary may execute unknown code on heating/cooling 0.59
1028 Potential excessive resource consumption for IoT gateway or thermometer 0.65
1111 Elevation by changing the execution flow in IoT gateway 0.59
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Table 4. UC2 Exploitation probabilities.

Threat Id Title Expl. Prob.

857 Elevation by changing the execution flow in DCU 0.57
880 Spoofing the in-house display external entity 0.68
903 An adversary may block access to the application or API hosted on in-house display

through a denial of service attack
0.65

Table 5. UC3 Exploitation probabilities.

Threat Id Title Expl. Prob.

51 Elevation by changing the execution flow in WAMS 0.59
187 PQM may be subject to elevation of privilege using remote code execution 0.59
230 Data flow MODBUS TCP IP secure is potentially interrupted 0.75
353 Data flow IEEE C37.118 over IEC 61850-8-1 is potentially interrupted 0.75
478 Data flow IEEE C37.118 over IEC 61850-8-1 is potentially interrupted 0.75
593 Data flow MODBUS TCP IP secure is potentially interrupted 0.75
618 Data flow IEC 60870-5-104 is potentially interrupted 0.65
621 Elevation by changing the execution flow in RTU 0.59
640 Data flowing sniffing across MODBUS TCP IP 0.53
647 Elevation by changing the execution flow in PED 0.57
661 Elevation by changing the execution flow in SCADA system 0.64
672 Data flow IEC 60870-5-104 is potentially interrupted 0.65
686 Elevation by changing the execution flow in RTU 0.59
1052 Elevation by changing the execution flow in PMU 0.59
1057 Data flow sniffing 0.53

7. Risk Analysis Using Formal Methods

One of the methods to detect weaknesses and possible vulnerabilities at an early stage
is formal verification. Available probabilistic formal verification tools, that found their
application in risk analysis, are described at the beginning of this section.

Selected model checker, PRISM, is applied on the three different use cases, in order
to perform formal risk analysis and to obtain an indication on how safety and security
requirements can be fulfilled within a given environment. Within each use case, several
example attack scenarios are modeled. The modeled attacks scenarios are selected from the
scenarios outlined in Section 6. This section includes a description of modeled use cases
and scenarios, and resulting attack probabilities.

7.1. Formal Methods Overview

Formal verification relies on a diverse set of mathematical and logical methods. These
methods can be used to check different parts of a system, including the functional correct-
ness of implementations, programming bugs, hardware Trojans, and security properties,
and they can provide both a qualitative and quantitative analysis [63–66].

A survey of probabilistic model checking, including the main probabilistic models,
algorithms and abstraction techniques is given in [67], while more details can also be
found in [68,69]. In general, there are several different formalisms with difference in
the notion of time. Those formalisms can be either non-deterministic or deterministic.
When it comes to the notion of time, discrete-time models and continuous-time mod-
els have to be distinguished. The basic probabilistic model is the discrete-time Markov
chain (DTMC), a deterministic model for discrete time. Its continuous version is called
continuous-time Markov chain (CTMC). The Markov decision process (MDP) extends
the discrete-time Markov chain with non-determinism. Similarly, its continuous version
is called continuous-time Markov decision process (CTMDP). Originally, the MDP was
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introduced as probabilistic automata (PA). MDP and PA are very similar, with the small
difference, that PA allows internal non-determinism, while MDP does not. Probabilistic
timed automata (PTA) can be considered as MDP with clock variables. The final probabilis-
tic model, Markov Automata (MA), is a generalization of interactive Markov chains and
MDPs, and it is able to express discrete randomness. The selection of probabilistic model
depends on the nature of modeled system and processes.

There is a variety of formal verification tools available, covering different aspects. While
classic verification gives answers to questions such as “Will a given assertion ever be violated?”,
and focus on qualitative properties, the evaluation of dependability aspects such as, e.g., reliability,
availability and performance need a focus on quantitative properties and models, including prob-
abilistic behavior and real-time aspects [70]. An extensive overview of quantitative verification,
including its different formalisms, modeling languages, properties and verification approaches
is given in [70]. The main approaches for quantitative verification are probabilistic model check-
ing and statistical model checking. There is a wide variety of tools with such a focus, including
FACT (https://www-users.cs.york.ac.uk/~cap/FACT/, accessed on 31 May 2021), MODEST
(http://www.modestchecker.net/, accessed on 31 May 2021), MRMC (http://mrmc-tool.org/,
accessed on 31 May 2021), PASS (https://depend.cs.uni-saarland.de/tools/pass/, accessed
on 31 May 2021), PARAM (https://depend.cs.uni-saarland.de/tools/param/, accessed on
31 May 2021), PRISM (http://www.prismmodelchecker.org/, accessed on 31 May 2021),
UPPAAL (http://www.uppaal.org/, accessed on 31 May 2021), STORM (https://www.
stormchecker.org/, accessed on 31 May 2021). The different tools focus on different parts of
qualitative model checking. This section describes in more detail the most commonly used
tools in the literature–UPPAAL and PRISM, and the most recent tool STORM, and discusses
the reasons for the selection of PRISM for the following experiments.

7.1.1. PRISM

The probabilistic model checker PRISM, developed at the University of Birmingham,
focuses on quantitative verification in a wide area of application domains including wire-
less communication protocols, quantum cryptography and systems biology [65,71,72]. It
supports probabilistic models such as DTMCs, CTMCs, MDPs, PAs, and PTAs, including
extensions of these models with costs and rewards. Its state-based input language is based
on the Reactive Models formalism of Alur and Henzinger [73].

The tool uses symbolic data structures and algorithms based on Binary Decision
Diagrams and Multi-Terminal Binary Decision Diagrams. It has a discrete-event simulation
engine providing support for approximation/statistical model checking including different
analysis techniques as quantitative abstraction refinement and symmetry reduction.

7.1.2. UPPAAL

The toolbox UPPAAL was developed by the Department of Information Technology at
Uppsala University in Sweden, in cooperation with the Department of Computer Science
in Aalborg University in Denmark for the verification of real-time systems [74,75]. It is
intended for systems modeled as a collection of non-deterministic processes with finite
control structure and real-valued clocks, communicating through channels or shared
variables. The model checker is based on the theory of timed automata especially suited
for checking invariant and reachability properties. UPPAAL SMC (http://people.cs.aau.
dk/~adavid/smc/, accessed on 31 May 2021) [76,77] (UPPAAL Statistic Model Checking)
is an extension of UPPAAL, used for performance property analysis of networks of priced
timed automata. Priced timed automata are timed automata whose clocks can be modeled
with different rates in different locations.

7.1.3. STORM

The probabilistic model checker STORM has been developed at the RWTH Aachen Univer-
sity, Germany for the analysis of systems involving random or probabilistic
phenomena [78,79]. It is especially suited for checking quantitative aspects of models, e.g.,

https://www-users.cs.york.ac.uk/~cap/FACT/
http://www.modestchecker.net/
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security in randomized key generation, systems biology or embedded systems. STORM
supports several different input languages, and has a modular set-up allowing to exchange
solvers and symbolic engines easily. STORM supports several models as DTMCs, CTMCs,
MDPs and MAs. It focuses on reachability queries and its supports, including probabilistic
computation tree logic, continuous stochastic logic, expected rewards, long-run average
rewards, conditional probabilities and multi-objective model checking.

7.1.4. Comparison of Probabilistic Model Checkers

A comparison of the described model checkers’ capabilities, and their technical details
are given in Table 6. A comparison of features is presented in Table 7.

An extensive comparison between the tools UPPAAL and PRISM is given in [80]. The
authors used timed automata and a benchmark study for the modeling and verification
in both tools. Another comparison of several tools for probabilistic model checking is
given in [70]. This study also includes the tools PRISM and STORM. The authors state
that STORM is clearly the most versatile tool. STORM covered all formalism considered
in the most of competition. The authors conclude that PRISM and STORM tools support
the widest range of properties, comparing to wide variety of available tools. Moreover,
they have a wide range of algorithms implemented. On the other hand, the authors
state that the PRISM is the most commonly used tool in research, due to its extensive
online documentation, the graphical user interface and since it is independent on the
platform used.

Table 6. Comparison of probabilistic model checking tools.

PRISM UPPAAL STORM

Operating System Windows, Linux, Mac Windows, Linux, Mac Linux (min Debian 9,
Ubuntu 16.10 ), Mac (min
10.12)

Last Version version 4.7 (March 2021) official release 4.0.15 (Nov.
2019)

version 1.6.3 (Nov. 2020)

Licence GNU GPL 2 free for non-commercial
applications in academia
only

GNU GPL 3

Type of input PRISM language XTA and XML PRISM, JANI, GSPNs,
DFTs, cpGCL, explicit

Simulator yes yes no
GUI 3 3 7
Case Studies 3 3 7

Table 7. Probabilistic model checkers’ feature comparison.

PRISM UPPAAL STORM

Statistical model checking 3 3 7
Probabilistic model checking 3 7 3
DTMC 3 7 3
CTMC 3 7 3
MDP 3 7 3
MA 7 7 3
PA 3 7 7
PTA 3 7 7
priced TA 7 3 7

Considering all discussed aspects in this section, the PRISM tool is selected for the
following experiments.
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7.2. UC1: Smart Home and HVAC Hijacking
7.2.1. Probabilistic Model Generation

Figure 7 shows the configuration analyzed in UC1. The system is modeled in the
PRISM model checker as MDP (Markov Decision Process) because of the non-deterministic
nature of cyber-attacks.

Figure 7. Smart home and HVAC hijacking use-case architecture.

An attack in the modeled system usually leaves traces in a form of unusual values.
The response of the system is defined through service policies:

• A1 policy: If controller HEMS receives a low temperature reading from sensor ST, it
sends a command to actuator A1 to start the heating process;

• A2 policy: If controller HEMS receives a high temperature reading from sensor ST, it
sends a command to actuator A2 to start the cooling process;

• ST policy: ST sends regularly temperature readings to HEMS.

In the modeling process it is assumed that an attacker actively attacks the system, and
has skills and means to perform certain attacks by exploiting existing vulnerabilities. An
attacker’s skills are measured through the maximum number of vulnerabilities that he can
try to exploit in one attack scenario—the cost value. For example, the attacker’s skill level
in range one to five (cost = (1 : 5)) means that a less skilled attacker is able to exploit only
one vulnerability in one attack scenario, while a more skilled attacker can exploit up to five
vulnerabilities at the same time in one attack scenario.

The threat modeling and attack modeling processes identified the minimum set of
vulnerabilities that can be exploited in order to perform a HVAC hijack attack. Table 8
presents the list of vulnerabilities, which are linked to the threats from Table 2. It is assumed
that the attacker is aware of these vulnerabilities, and that the exploitation of at least one
vulnerability is necessary in order to successfully carry out an attack. The model also
implies that in one iteration the choice of vulnerabilities that are going to be exploited is
random. All listed vulnerabilities have defined exploitation probabilities, described in
more detail in Section 6. The exploitation probability is the likelihood that an attempt
to exploit that particular vulnerability is going to be performed and successful, under
previously given assumptions.

The next step, after the system modeling is completed, is the definition of the attack
properties. These properties are the formal definition and precondition of the successful
attempt of an attack within the modeled system. The properties are defined by using



Appl. Sci. 2021, 11, 5149 21 of 31

the Probabilistic Computation Tree Logic (PCTL) [81], embedded in the PRISM model
checker. The formal verification of the defined attack properties results in the maximum
likelihoods of successful attack attempt–risk exposure scores. Table 9 describes the modeled
attack properties.

Table 8. Vulnerabilities, exploitation probabilities and associated threats for UC1.

Vulnerability Associated Threat Threat Id Expl. Prob.

ST–G1 link Link jammed: denied transmission 1028 0.65
HVAC (actuation A1/A2) Tailored context/incorrect actuation 1013 0.59
G (gain control) Tailored context/incorrect reading 1111 0.59
HEMS (actuation A1/A2) Tailored context/incorrect actuation 1005 0.57

Table 9. Modeled attacks, their impact and properties for UC1.

Attack Impact Attack Properties

Attack scenario 1.1:
Hijack heating

High Attacker takes control over heating, high or optimal temperature is
detected, heating is switched on, resulting in damage

Attack scenario 1.2:
Hijack HVAC

High Attacker takes control over HVAC, optimal temperature is detected,
both cooling and heating are switched on, resulting in damage and high
power consumption

7.2.2. Results

The results–risk exposure scores are presented in Figure 8.
Table 10 presents the obtained values of risk exposure scores, under the previously

described assumptions.

Table 10. Smart home and HVAC hijack use case risk exposure scores.

Attack cost = 1 cost = 2 cost = 3 cost = 4 cost = 5

1.1 Hijack heating 0.0000 0.3481 0.4908 0.5473 0.5473
1.2 Hijack HVAC 0.0000 0.0000 0.2054 0.3709 0.4365

The presented results show the maximum likelihood of a successful attempt of the
attack, considering different cost values. Considering that the goal of an attacker is to
carry out an attack by exploiting the smallest amount of vulnerabilities, the presented
analysis considers cases where the number of exploited vulnerabilities is in range one to
five (cost = (1 : 5)).

The results show that the attack 1.2 (hijack HVAC) is less likely to be successful com-
paring to the attack 1.1 (hijack heating). This is due to the fact that in order to successfully
conduct attack 1.2 more vulnerabilities need to be exploited. The attack 1.1 requires ex-
ploitation of two vulnerabilities, while the attack 1.2 requires exploitation of at least three
vulnerabilities to be successful.

7.3. UC2: Smart Home and Smart Meter Hijacking
7.3.1. Probabilistic Model Generation

The UC2 configuration is presented in Figure 9. Similarly to the previous use case, the
system is modeled in the PRISM model checker as an MDP process.
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Figure 8. Smart home and HVAC hijack use case results.

Figure 9. Smart home and smart meter hijacking use-case architecture.

The following service policies, reflecting the system response, permeate through the
system model:

• SM1/2 policy: Smart meters SM1 and SM2 measure the power consumption and notify
IHD in near real time, and MDMS periodically (every 15 min);

• MDMS policy: The MDMS is periodically updated, and checks the consistency of the
consumption/billing in the neighborhood;

• Service Cloud policy: The MDMS is periodically polled with the credentials provided
by customer;

• User policy: The service cloud periodically notifies the user about the power consumption;
• Maintenance policy: The service cloud notifies responsible actors in case of a consump-

tion inconsistency.

Similarly to the first use case, it is assumed that an attacker actively attacks the system, and
that he has skills and means to perform a certain attack by exploiting existing vulnerabilities.
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The minimum set of vulnerabilities that can be exploited in order to perform a de-
scribed attack, identified by the threat modeling and attack modeling processes, is pre-
sented in Table 11. The system is modeled with the assumptions similar to UC1 – the
attacker identified vulnerabilities, and the exploitation of one or more vulnerabilities is
necessary in order to successfully carry out an attack. Exploitation probabilities are defined
for all listed vulnerabilities, and presented in Table 11.

Table 11. Vulnerabilities, exploitation probabilities and associated threats for UC2.

Vulnerability Associated Threat Threat Id Expl. Prob.

IHD–SM link Link jammed: denied transmission 903 0.65
SM1, SM2 (reading) Tailored context/incorrect reading 880 0.68
C (reading SM1/SM2) Tailored context/incorrect reading 857 0.57
G (gain control) Tailored context/incorrect reading 1111 0.59

The attack properties, similarly to UC1, are defined using the PCTL. Table 12 describes
modeled attack properties, with different impacts (medium and high).

Table 12. Modeled attacks, their impact and properties for UC2.

Attack Impact Attack Properties

Attack scenario 2.1: Fraud High The user takes control over their and neighbor’s smart meter or
concentrator, decreases their own power consumption, increases their
neighbor’s power consumption, responsible actors are not alerted

Attack scenario 2.2:
Decrease bill

Medium The attacker takes control over their own smart meter or concentrator,
and decreases the power consumption

Attack scenario 2.3:
Increase bill

Medium The attacker takes control over the user’s smart meter or concentrator,
and increases the power consumption

Attack scenario 2.4:
Increase bill, no alarm

Medium The attacker takes control over the user’s smart meter or concentrator,
increases the power consumption, the user is not alerted

7.3.2. Results

Figure 10 presents the results–risk exposure scores for the modeled system and at-
tack properties.

Table 13 presents the resulting values of the risk exposure score.

Table 13. Smart home and smart meter hijacking use case risk exposure scores.

Attack cost = 1 cost = 2 cost = 3 cost = 4 cost = 5

2.1 Fraud 0.0000 0.0000 0.2287 0.4098 0.4851
2.2 Decrease bill 0.0000 0.4012 0.5390 0.6467 0.6467
2.3 Increase bill 0.0000 0.4012 0.6467 0.6467 0.6467
2.4 Increase bill, no alarm 0.0000 0.3363 0.5063 0.5063 0.5063

Similarly to UC1, the presented analysis considers cases where the number of exploited
vulnerabilities is in the range one to five (cost = (1 : 5)).



Appl. Sci. 2021, 11, 5149 24 of 31

Figure 10. Smart home and smart meter hijacking use case results.

The results show that the attack 2.1 (fraud) has the least likelihood to be successful, un-
der given assumptions. Attack 2.1 requires the exploitation of at least three vulnerabilities,
while the other three scenarios considered in this use case can be conducted by exploiting
only two vulnerabilities. Attack 2.1 requires the exploitation of at least five vulnerabilities
for maximum likelihood, attack 2.2 requires exploitation of three, while attacks 2.3 and
2.4 only require the exploitation of two vulnerabilities for the maximum likelihood. It has
to be emphasized that although both attacks 2.3 (or 2.2) and 2.4 require the exploitation
of a minimum of two vulnerabilities to be successful, the risk exposure scores of 2.4 are
lower because this attack requires the exploitation of parts of the system that have a higher
security level (reflected in the lower exploitation probability).

7.4. UC3: Smart Grid and Black-Out Attack
7.4.1. Probabilistic Model Generation

Configuration analyzed in UC3 is presented on Figure 11.
The system response is defined through the following service policies:

• PQM/PMU policy: PQM/PMU send regularly Grid Stability (GS) status to WAMS;
• WAMS policy: Based on PQM/PMU readings WAMS sends GS value to SCADA; GS

value is considered available when at least one PQM and at least on PMU readings
are available;

• PED policy: PED sends its status to SCADA via RTU, upon request;
• SCADA policy: SCADA initiates island mode for the network segment based on GS

and PED readings;
• SwG actuator policy: SwG opens when island mode is initiated by SCADA.
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Figure 11. Smart grid and black-out attack use case architecture.

Table 14 presents the minimum set of vulnerabilities that can be exploited in order to
perform described attacks, identified by the threat modeling and attack modeling processes.

Table 14. Vulnerabilities, exploitation probabilities and associated threats for UC3.

Vulnerability Associated Threat Threat Id Expl. Prob.

PQM1/2–SCADA link Link jammed: denied transmission 230/353 0.75
PMU1/2–SCADA link Link jammed: denied transmission 478/593 0.75
WAMS Tailored context/incorrect reading 51 0.59
SCADA–RTU(SwG) link Link jammed: denied transmission 618 0.65
RTU(PED)–SCADA link Link jammed: denied transmission 672 0.65
RTU(SwG) Tailored context/incorrect actuation 621 0.59
RTU(PED) Tailored context/incorrect reading 686 0.59
PED Tailored context/incorrect reading 647 0.57
PED sniffing Sniffing 1057 0.53
PQM/PMU sniffing Sniffing 640 0.53
PMU Tailored context/incorrect reading 1052 0.59
PQM Tailored context/incorrect reading 187 0.59
SCADA Highjacking 672 0.64

The modeled attack properties are described in Table 15. Modeled attacks include
four attack scenarios selected from the attack scenarios described in Section 6 as the most
representative ones. One additional attack scenario, Grid stability unavailable/jammed, is
modeled because it is a part of an other described scenarios as middle step (e.g., 3.2.1,
3.2.3), but it has final outcome and impact, completely masking GS value for the rest of
the system.
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Table 15. Modeled attacks, their impact and properties for UC3.

Attack Impact Attack Properties

Attack scenario 3.1.1:
Black-out

High The attacker causes network segment black-out by manipulating status
reading on PED, and GS reading on WAMS;

Attack scenario 3.1.2:
Black-out

High The attacker causes network segment black-out by manipulating PED
status reading on RTU, and GS reading on WAMS;

Attack scenario 3.2.1:
Black-out

High The attacker causes network segment black-out while PED is discharged
by sniffing PED status, and jamming PMU2, PQM2 and PED
communication lines;

Attack scenario 3.2.2:
Black-out

High The attacker causes network segment black-out while PED is discharged
by sniffing PED status, and jamming SCADA communication lines;

Attack scenario: Grid
stability jammed

Medium Grid stability (GS) value is jammed, and there is no reliable sensor
reading for that network segment.

7.4.2. Results

The resulting risk exposure scores are graphically presented on Figure 12, and given
in Table 16.

Figure 12. Smart grid and black-out attack use case results.

Table 16. Smart grid and black-out attack use case risk exposure scores.

Attack cost = 1 cost = 2 cost = 3 cost = 4 cost = 5

3.1.1 Black out 0.0000 0.3363 0.3363 0.3363 0.3363
3.1.2 Black out 0.0000 0.3481 0.3481 0.3481 0.3481
3.2.1 Black out 0.0000 0.0000 0.0000 0.0000 0.1337
3.2.2 Black out 0.0000 0.0000 0.0000 0.1545 0.1545
GS jammed 0.0000 0.5625 0.7031 0.8086 0.8086

The results show that none of the considered attacks can be successfully conducted
by exploiting only one vulnerability. Attacks 3.1.1, 3.1.2 and 3.3 need at least two vul-
nerabilities exploitations, while attack 3.2.2 requires four and attack 3.2.1 requires five
vulnerabilities exploitations. The attack GS jammed has the highest likelihood, due to the
fact that it is more simple from the attacker point of view. Additionally, the modeled
attack sub scenarios from scenario 3.2 have lower risk exposure scores comparing 3.1 sub
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scenarios because these attacks require the exploitation of parts of the system that have a
higher security level, such as SCADA, reflected in the lower exploitation probability.

8. Conclusions and Discussion

In this paper, we addressed persistent security issues in modern power energy sys-
tems. For this sake, we presented a methodology for conducting a risk assessment for cyber
attacks in SGs. The assessment takes into consideration the technological aspects of the SG
architecture. According to that, we developed a threat model from our research templates
from the energy and IoT domains, respectively. Based on the identified threats, we intro-
duced several attack scenarios, which exploit the inferred vulnerabilities. Therefore, we
estimated the probability of such exploitations based on CVSS. Afterwards, a formal model
of the system was implemented in the form of a Markov Decision Process. This model
integrates the attacker behavior and vulnerabilities with the exploitation probabilities. In
turn, we applied a probabilistic model checker to verify our model. The obtained results
yield to the risk exposure scores for different attack scenarios.

With our methodology, we were able to identify 1137 possible threats that fit our
scenarios. It is important to note that our calculations are drawn from just 2% of that
number. Furthermore, our results provide information on the exposure of individual
devices in the SG system. In this way, prevention mechanisms can be applied to prevent
such scenarios. This is especially important in dynamic systems that are under limited
control of their owners. With this paper, we tackle an important problem in the field of SG
security, namely, the lack of general and automatized approaches. For this sake, we provide
a reusable methodology for the calculation of exploitation probabilities in complex systems,
as one of the novelties of our approach. An additional contribution of our paper is an
extensive analysis of the relevant literature in the smart grid domain, including stochastic
modeling of cyber attacks, cyber security and formal verification. We also include a detailed
comparison between existing formal verification tools.

Our results show that in a smart home environment, an attacker needs to exploit at
least two vulnerabilities to successfully perform an attack, and that more complex attack
scenarios requires successful exploitation of at least three vulnerabilities. The results of
the risk analysis of the smart grid use case also show that none of the considered attacks
can be successfully conducted by exploiting only one vulnerability. Some attack scenarios
need to exploit at least two vulnerabilities, while some requires at least five vulnerabilities
to be exploited. Additionally, the modeled attack scenarios in a smart grid system have
lower risk exposure scores comparing to the smart home scenarios because these attacks
require the exploitation of parts of the system that have a higher security level, like SCADA,
reflected in the lower exploitation probability. These results clearly indicate that all use
cases could benefit from a layered security approach, that includes several protection
mechanisms in place.

In the future, we want to introduce automation to the individual layers of our method-
ology. In practice, processes at each level in the hierarchy of the SG system should be
automatized. This can be established, for example, by coupling with other applications,
like security scanners or testing tools. Furthermore, the conducted assessment should
be extended to comprehend other identified threats. The coupling of our approach with
common vulnerability exploitation approach represents another challenge . Since our sce-
narios do not consider implemented countermeasures, applying defense strategies would
lead to other assessment results. In addition to that, the methodology provides guidance
to address bigger and more complex scenarios. For example, it can be applied in order
to address security in smart cities. Since the formal risk analysis differs with respect to
applied model checkers, gaining results from other checkers is of interest as well.

Besides technological challenges for secure SG systems, regulatory implications must
be considered as well. Initially, the centralized structure of the electric system left the
grid exposed to damage in terms of security and safety [23]. The progressing use of IT
results in greater diversity and a decentralized system structure [27]. In this way, security
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issues are diminished by distributing the danger to multiple devices. However, different
devices are owned by non-utility stakeholders with different technology choices. This
means that security of the overall grid is not imposed by a single organization with a
common policy [3]. In fact, the existence of different regulative standards causes confusion
with regard to best practices in handling security issues [82]. For this sake, a common
framework for critical infrastructure is needed, which provides common guidelines for
individual organizational profiles [83].
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