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Abstract: Assessment of soil quality under different management practices is crucial for sustainable
agricultural production and natural resource use. In this study, different statistical methods (principal
component analysis, PCA; stepwise discriminant analysis, SDA; partial least squares regression
with VIP statistics, PLSR) were applied to identify the variables that most discriminated soil status
under minimum tillage and no-tillage. Data collected in 2015 from a long-term field experiment
on durum wheat (Triticum durum Desf.) were used and twenty soil indicators (chemical, physical
and biological) were quantified for the upper soil layer (0–0.20 m). The long-term iteration of
different management strategies affected soil quality, showing greater bulk density, relative field
capacity (RFC), organic and extractable carbon contents (TOC and TEC) and exchangeable potassium
under no-tillage. PCA and SDA confirmed these results and underlined also the role of available
phosphorous and organic carbon fractions as variables that most discriminated the treatments
investigated. PLSR, including information on plant response (grain yield and protein content),
selected, as the most important variables, plant nutrients, soil physical quality indicators, pH and
exchangeable cations. The research showed the effectiveness of combining variable selection methods
to summarize information deriving from multivariate datasets and improving the understanding of
the system investigated. The statistical approaches compared provided different results in terms of
variables selected and the ranking of the selected variables. The combined use of the three methods
allowed the selection of a smaller number of variables (TOC, TEC, Olsen P, water extractable nitrogen,
RFC, macroporosity, air capacity), which were able to provide a clear discrimination between the
treatments compared, as shown by the PCA carried out on the reduced dataset. The presence of a
response variable in PLSR considerably drove the feature selection process.

Keywords: variable selection; principal component analysis; stepwise discriminant analysis; partial
least squares regression; PLS-VIP statistics; minimum tillage; no-tillage; long-term field experiments

1. Introduction

Soil is increasingly recognized as major provider of ecosystem services [1,2]. Food
and biomass production, climate change mitigation through carbon cycling and carbon
sequestration, prevention of land degradation, water purification and supply are some
of the services supported, regulated and provided by soils [3,4]. In addition, soil quality
has strong implications on human health, both by producing safe and nutritious food
and protecting from environmental pollution, thus demonstrating its important role in
both society and the environment [5,6]. These evidences have raised the awareness that
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soil resources must be protected from degradation, and increased the need for effective
and reliable information on soil quality modifications/alterations as a consequence of its
management [4].

Intensive agricultural activity and not sustainable management practices may give rise
to soil degradation processes with a consequent decline of crop yield and soil quality [4,7],
and an associated reduction in ecosystem functions and services [8,9]. Among land-use
and soil management practices, tillage strongly affects soil physical quality since it directly
modifies soil aggregation and structural stability [10], soil porosity [11,12] and hydrological
properties [13] and thus the soil ability to store and transmit water and air [14,15]. In
addition, tillage management plays a key role in soil organic matter turnover, microbial
abundance and diversity, carbon storage and thus CO2 emissions [16,17]. Several researches
described the beneficial effects of no-tillage management on soil properties [17–20]. How-
ever, significant effects on soil carbon changes and overall soil quality are often difficult to
detect in the short- and medium-term period, due to the two-stage responses to change
exhibited by many fundamental soil properties [17,21]. In this context, long-term field
experiments may be considered ideal research tools where relatively stable conditions are
likely to be observed [12,15,21–23].

Soil quality can be inferred by identifying and measuring the soil quality indicators, which
are specific soil properties and processes sensitive to land use and management [5,24–27]. Most
Authors have used single indicators to assess soil quality and its relationship with land
uses [5]; however, univariate approaches do not always allow a comprehensive judgement
on soil status. In addition, increasing the number of indicators may increase collinearity or
provide conflicting results, making difficult the soil quality evaluation [15,28]. A selection
and combination of indicators of different nature (physical, chemical and biological),
through the computation of soil quality indices (SQIs), is essential to gain a “holistic image
of soil quality” [28]. Generally, the assessment of a SQI comprises three main steps: (1)
measurement and selection of the most relevant soil attributes; (2) normalization and
scoring of the selected soil properties using appropriate scoring functions; (3) integration
of the scored attributes to construct the final index [6,29,30]. The selection of the most
relevant soil properties is a critical step as it is the basis of the soil quality index. Selected
indicators represent the minimum dataset variables [28]. Many studies have focused on
selecting soil variables, exploring a broad range of approaches from qualitative -expert
opinion and literature review results- to semi-quantitative and quantitative statistically
based methodologies [30,31]. There is, however, a general consensus on the need of relying
on rigorous approaches based on feature selection methods to avoid biased results.

Feature selection methods result in a subset of the original features or variables [32,33],
selecting “relevant” variables which capture most of the information on processes and
functioning of the system investigated, while excluding “irrelevant” and/or “redundant”
variables. Among feature selection approaches, principal component analysis (PCA) has
mainly been used [29]. Supervised methods and regressive techniques, such as discriminant
analysis and partial least squares regression, are progressively being evaluated for their
effectiveness in several studies [30,34,35].

Partial least squares regression (PLSR) is a powerful tool used in chemometrics [36]
and has proven to be very versatile with applications in several research fields [32]. PLSR
is a supervised method, relating the variations in one (PLS1) or multiple (PLS2) response
variables to the variations of several predictors; the method selects successive orthogonal
factors, which maximize the covariance between predictors and response variables. PLSR is
particularly useful when the number of predictors is higher than the number of observations
and/or when predictors are highly correlated, as frequently happens for soil indicators.
Even though PLSR is usually adopted for predictive purposes, a large number of methods
for variable selection in PLSR have been proposed. Among them, filter methods (loading
weight vectors, PLS regression coefficients and variable importance on projection statistics-
VIP) use the output of the PLS-algorithm to identify a subset of important variables [32].
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In particular, VIP statistics are able to summarize the contribution of both predictors and
response variables [37].

Principal component analysis (PCA) is a widespread procedure designed to summa-
rize large datasets of correlated variables into a reduced number of components bearing the
greatest part of the original information [38]. Variable weights or loadings of the retained
components are useful to identify the variables that most contribute to each selected PC
and investigate their relationships. Variables correlations and stepwise and canonical
discriminant analysis (SDA and CDA) have been adopted in previous studies [15,33,39]. In
particular, SDA allows the selection of variables which can best differentiate treatments
or classes.

In a study aimed to assess the effects of different management practices on soil physi-
cal quality (SPQ) in long-term field experiments, Castellini et al. [15] applied correlation
analysis, PCA and SDA to select key soil physical quality indicators. The results high-
lighted the complementary and supplementary role of the three methods applied and the
importance of simultaneously using different approaches to gain a complete understanding
of the processes investigated. De Paul Obade et al. [35], after a preliminary comparison of
different multivariate approaches, used PLSR to define a standardized soil quality index for
different soil conditions, natural vegetation or woodlands and different soil management,
conventional tillage and no-tillage. Soil organic carbon, bulk density, carbon-nitrogen ratio
and electrical conductivity were identified as the major variables influencing soil quality
status and the index provided a comprehensive evaluation of the management investigated.
Shukla et al. [24] used factor analysis to identify appropriate soil quality indicators under
different land use and management practices. Soil organic carbon was the most dominant
measured attribute; other key soil attributes were mainly physical indicators—i.e., field
water capacity, air-filled porosity, bulk density- and pH. Pulido Moncada et al. [34] applied
decision trees and assessed soil quality using visual soil assessment in the field and a
limited number of physical and chemical soil properties.

Regardless of the approach used, little research is available on the comparison and
combined use of different statistical methods for selection of soil indicators. Therefore,
the main objectives of this study were to (i) identify the most suitable variables for dis-
criminating soil status under different soil management strategies and (ii) compare the
performance of three multivariate statistical approaches to select soil indicators. Data
collected in 2015 from a long-term field experiment investigating the effects of two soil
management strategies on durum wheat (Triticum durum Desf.) in a Mediterranean area
were used. The performance of PCA was compared to SDA and PLSR using VIP statistics
(PLS-VIP) for feature selection.

2. Materials and Methods
2.1. Study Area and Long-Term Field Experiment

The study was carried out on a dataset collected from a long-term field experiment,
performed at the experimental farm of the Council for Agricultural Research and Economics
(CREA-AA) in Southern Italy (Foggia, 41◦27′03′′ N, 15◦30′06′′ E).

The climate of the study area is classified as “accentuated thermomediterranean” [40],
with temperatures that may fall below 0 ◦C in winter and exceed 40 ◦C in summer. Rainfall
is unevenly distributed throughout the year and is mostly concentrated in the winter
months, with a long-term annual average of 550 mm [41]. The soil is clay of alluvial
origin (42.7 and 29.6% of clay and sand, respectively), classified as fine, mesic, Typic
Chromoxerert [42].

The rain-fed durum wheat monoculture tillage trial, established in 2002 and still
ongoing, compares the effects of two soil management strategies (i.e., minimum tillage,
MT, and no-tillage, NT) on durum wheat yield response and on soil fertility. Minimum
tillage consists of a two-layer soil tillage at 40 cm depth (i.e., a chisel and rotary tiller
combination) performed in autumn before durum wheat sowing. No-tillage consists of a
direct sowing of durum wheat after a chemical weeding treatment. Treatments are arranged
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in a randomized complete block design with three replicates and unit plots of 500 m2 size.
For both treatments, in September straw was chopped into 10- to 15-cm lengths and spread
back onto the plot. Weeding with glyphosate was carried out in early November on NT
plots. Sowing was performed for both treatments at the end of November with a seeder for
direct sowing, appropriately equipped with shaped blades. All other agronomic techniques
(fertilization, pest control and weed management during crop growth) were carried out
uniformly for the two soil management compared. At harvesting, yield was measured at
each soil location within a subarea of 1 × 1 m. Further information on plot management
can be found in Castellini et al. [15].

2.2. Soil Sampling and Laboratory Measurements

Undisturbed soil cores were collected at wheat heading (April 2015) within each
experimental unit of the RCBD experimental design in 4 sub-replicate locations, for a total
of 24 observations. Soil samples were collected at 0–0.20 m depth. The following indicators
were quantified on the soil samples:

(i) chemical indicators: total organic carbon and total nitrogen (TOC and N), alkali-
extractable carbon (TEC), humic and fulvic acid carbon (HA_FA), water extractable nitrogen
and organic carbon (WEN and WEOC), Olsen available phosphorus (P_Olsen), exchange-
able cations (Ca2+, Mg2+, Na+, K+), pH and electrical conductivity (EC);

(ii) physical indicators: texture, dry bulk density (BD), macroporosity (PMAC), air
capacity (AC) and relative field capacity (RFC);

(iii) biological indicator: microbial biomass carbon quantified with the fumigation-
extraction method [43].

WEOC and WEN, which are indicators for labile organic C and N pools, were extracted
from field-moist soil samples according to the protocol reported in Armenise et al. [28].
TOC, TEC, HA_FA and total N were quantified on dried and 2-mm sieved samples,
following protocols reported in Ferrara et al. [17]. In detail, for TOC quantification, soil
samples were ground to a fine powder (0.5 mm) using an agate ball mill. TEC was obtained
by 0.1 M NaOH + 0.1 M Na4P2O7 extraction at 65 ◦C for 48 h. Humic and fulvic acids
were fractionated by acidification to pH = 2.0 with H2SO4. The purification of FA from
non-humic substances was carried out by adsorption onto polyvinylpyrrolidone columns.
Total organic carbon in soil samples, as well as C fractions in alkali extracts and C and N
fractions in water extracts, were quantified through dry combustion using a TOC Vario
Select analyzer (Elementar, Lomazzo, Germany), which conducts a catalytic combustion of
the sample at high temperatures in air environment. Total N was quantified according to
the Kjeldahl procedure.

Both BD and some points of soil water retention curve, namely the relationship be-
tween volumetric soil water content (θ) and water pressure head (h), were determined
using undisturbed soil cores. Specifically, stainless steel rings with sharp edges (8 cm inner
diameter; 5 cm height) were used to determine soil BD and water retention curve at high
pressure heads (h≥ 120 cm). A disturbed soil sample was collected close to the undisturbed
sample collection points to determine the water retention curve at low pressure heads
(h ≤ 330 cm). The θ values were determined on each undisturbed soil core by a hanging
water column apparatus [44] for h values ranging from −5 to −120 cm, and on repacked
soil cores by pressure plate method [45] for h values ranging from −330 to −15,300 cm [46].
The soil water retention function was obtained fitting the experimental data with the van
Genuchten model [47], and a set of capacitive indicators that give into account of water/air
availability were estimated: macroporosity (PMAC = θs − θm) (cm3 cm−3), air capacity
(AC = θs − θFC) (cm3 cm−3) and relative field capacity (RFC = θFC/θs) (dimensionless),
where θs, θm, θFC are the volumetric water contents corresponding to a pressure head of 0,
−10 and −100 cm, respectively. Evaluation of soil physical quality (SPQ) was carried out
according to classifications gathered from literature [14]. In particular, the SPQ was consid-
ered optimal when 0.9 ≤ BD ≤1.2 g cm−3, PMAC ≥ 0.07 cm3 cm−3, AC ≥ 0.14 cm3 cm−3
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and 0.6 ≤ RFC ≤ 0.7. Supplementary information on the described indicators can be found
in Castellini et al. [15].

2.3. Data Analysis

Descriptive statistics were computed to summarize the main features of data distri-
bution of response variables to be used in the regressive approach. In addition, variables
were tested for normality, using Shapiro-Wilk and Kolmogorov-Smirnov tests, and for
heteroscedasticity by soil management with Levene homogeneity of variance test. Data
distribution and presence of heteroscedasticity were also examined for soil variables.

The set of twenty soil variables was first analyzed through a nested analysis of
variance (ANOVA) considering replicates within plots as pseudo-replicates. Then, data
were analyzed using Principal Component Analysis (PCA), Stepwise Discriminant Analysis
(SDA) and Partial Least Square Regression (PLSR) with Variable Importance for Projection
(VIP) statistics.

PCA was applied to the correlation matrix of the soil variables in order to obtain few
new components explaining most of the variation of the original variables. The principal
components (PCs) that explained cumulatively a high percentage of the total variance
and had an eigenvalue greater than one (Kaiser criterion) were retained. Together with
eigenvalue, percentage of variation explained by the single component was taken into
account, considering the threshold of 5% suggested by Wander and Bollero [48]. Variable
loadings were examined. Within each PC, only highly weighted loadings, defined as
having absolute values within 10% of the highest loading [49], were considered and signs
were examined to investigate relationships among selected variables.

SDA was applied to identify the variables enabling maximum discrimination among
the compared classes (soil management treatments). The Wilks’ lambda statistic was used as
multivariate measure of separability [50]. The use of SDA requires that a set of assumptions
should be checked, among which normality of data distributions, homoscedasticity and
not complete redundancy of considered variables. However, a moderate departure from
such assumptions does not affect seriously analysis outcomes as shown by a large literature
concerning SDA application [51–53]. SDA was carried out using the STEPWISE algorithm
of STEPDISC procedure of SAS/STAT [54]; significance level to entry and to stay was set
at 0.05.

PCA and SDA were first performed separately on the set of chemical variables (plus
carbon of the microbial biomass) and physical variables, and then were carried out on the
whole dataset of indicators.

PLSR was carried out on mean-centered and variance-scaled data of predictors and
response variables. In this study, predictors were represented by soil chemical, physical
and biological properties; response variables were grain yield and grain protein content,
as integrated indicators of quantitative and qualitative crop response to different soil
management conditions. The optimal number of factors to be retained in the model was
based on the minimum predicted residual sum of squares statistics (PRESS) [54]. In this
study, both approaches were used in running PLSR: PLS1 and PLS2 [55,56]. In PLS1,
PLSR was carried out using grain yield or protein content as single response variable;
in PLS2, grain yield and protein content were considered simultaneously as multiple
response variables.

VIP statistics were used for variable selection [57]. Since the average of squared VIP
scores equals 1 [58], only the variables with a VIP score greater than 1 are generally consid-
ered significant. However, thresholds between 0.83 and 1.21 have also been suggested [32].
A value of 0.8 is also considered by Wold [59] for retaining or deleting variables. The soil
variables with the highest VIP values were selected. PLS regression was performed using
PLS procedure of SAS/STAT [54].
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3. Results
3.1. Preliminary Statistical Analysis

Preliminary statistical analysis carried out on grain yield and protein content, response
variables in PLSR, showed close mean and median values and coefficient of skewness and
kurtosis equal or lower than 0.5. These results were confirmed by normality tests indicating
for both variables a not significant deviation from normal distribution (P = 0.5198 and
P = 0.0970 for the Shapiro-Wilk test, for grain yield and protein content, respectively).
Variances were homogeneous over management treatments for both variables according to
Levene test (P = 0.4128 for grain yield and P = 0.2432 for protein content). Average values
of grain yield and protein content were respectively 5.247 Mg ha−1 and 13.39 g 100 g−1.

Soil variable distributions did not significantly deviate (microbial biomass C, TOC,
TEC, HA_FA, N, Olsen P, pH, K+, Mg2+, Na+, BD, AC, RFC, clay and sand) or only
slightly deviated (EC, Ca2+, PMAC) from normal distribution, except for WEOC and WEN.
Homoscedasticity was also observed in the larger part of the cases (except for WEN and
PMAC). For this reason, data were analyzed for all the variables in the original scale.

3.2. Analysis of Variance

Different soil management strategies significantly affected both total organic and total
extractable carbon (TOC and TEC), and water extractable nitrogen (WEN) concentrations,
with higher TOC and TEC content observed in the upper soil layer under more conservative
soil management (Table 1). In particular, an average TOC value of 21.87 g kg−1 was
recorded under no-tillage (NT) in comparison to 17.45 g kg−1 under minimum tillage (MT)
management. A greater significant concentration of exchangeable potassium (K+) was also
observed in untilled soils (Table 1). Under minimum tillage, higher WEN concentrations
were observed.

Table 1. Results of nested analysis of variance carried out on soil chemical and biological parameters.

Source of
Variation

WEOC
mg kg−1

WEN
mg kg−1

C_biomass
mg kg−1

TOC
g kg−1

TEC
g kg−1

HA_FA
g kg−1

N
g kg−1

P_Olsen
mg kg−1 pH EC

dS m−1
Ca2+

mg kg−1
K+

mg kg−1
Mg2+

mg kg−1
Na+

mg kg−1

Soil
management

(mean)
Pr(>F)

49.351
0.1732

25.186
0.0273 *

491.03
0.8461

19.66
0.0325 *

12.088
0.0415 *

6.782
0.3280

1.470
0.4441

54.045
0.4609

8.10
0.1674

0.139
0.6251

6880.9
0.9698

1043.89
0.0233 *

215.84
0.1663

29.122
0.1882

No-tillage
(NT) 70.44 10.11 b 509.8 21.87 a 13.63 a 6.23 1.52 60.72 8.07 0.14 6880.3 1120.18 a 211.65 27.87

Minimum
tillage (MT) 28.26 40.26 a 472.3 17.45 b 10.54 b 7.34 1.42 47.37 8.14 0.13 6881.6 967.60 b 220.03 30.37

* and ** indicate respectively differences at P ≤ 0.05 and P ≤ 0.01. Means followed by different letters are significantly different
according to the SNK test (P = 0.05). Pr(> F) indicates the probability value (p-value) to determine whether to reject the null hypothesis.
WEOC = water extractable organic carbon; WEN = water extractable nitrogen; C_biomass = microbial biomass carbon; TOC = total organic
carbon; TEC = alkali-extractable carbon; HA_FA = humic and fulvic acid carbon; N = total nitrogen; P_Olsen = Olsen available phosphorus;
EC = electrical conductivity; Ca2+, Mg2+, Na+, K+ = exchangeable cations. (n = 24).

Soil management also affected physical properties with a significantly greater bulk
density (BD) in untilled soils and, as a consequence, lower air capacity (AC), indicating
a tendency to soil compaction (Table 2). Macroporosity (PMAC) confirmed this trend,
although not significant differences were recorded. Relative field capacity (RFC), that gives
an account of the balance between water capacity and air capacity of the soil (in other
words, it is an index of the relative importance of meso-micropores to total porosity), was
higher in NT than in MT, suggesting major potential risks of anaerobic conditions due to
reduced presence of air in the soil porosity.
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Table 2. Results of nested analysis of variance carried out on soil physical and hydrological parameters.

Source of Variation BD
g cm−3

PMAC
cm3 cm−3

AC
cm3 cm−3

RFC
-

Clay
g 100 g−1

Sand
g 100 g−1

Soil management (mean) 0.96729 0.03329 0.08473 0.8151 48.15 11.03
Pr(>F) 0.0316 * 0.0992 0.0370 * 0.0302 * 0.1854 0.5042

No-tillage (NT) 1.04516 a 0.00890 0.04112 b 0.90814 a 45.44 11.41
Minimum tillage (MT) 0.90240 b 0.05362 0.12107 a 0.73764 b 50.85 10.65

* and ** indicate, respectively, differences at P ≤ 0.05 and P ≤ 0.01. Means followed by different letters are significantly different according
to the SNK test (P = 0.05). Pr(> F) indicates the probability value (p-value) to determine whether to reject the null hypothesis. BD = dry bulk
density; PMAC = macroporosity; AC = air capacity; RFC = relative field capacity. (n = 22 for BD, PMAC, AC, RFC. n = 24 for clay and sand).

According to Reynolds et al. [14], optimal and intermediate values were observed
under MT for bulk density (0.9–1.2 g cm−3, optimal range), air capacity (0.10–0.14 cm3

cm−3, intermediate range) and macroporosity (0.04–0.07 cm3 cm−3, intermediate range)
and values slightly over than the optimal threshold for RFC (0.6–0.7, optimal range). Except
for BD, values recorded under NT were all indicative of limited aeration conditions.

The long-term iteration of the different management strategies slightly affected grain
yield response (P = 0.0603), with average values of 5.45 and 5.04 Mg ha−1 recorded under
no-tillage and minimum tillage, respectively. No significant effect of the management
compared was instead observed for grain protein content.

3.3. Principal Component Analysis

PCA was first performed separately on the set of chemical and physical variables, and
then carried out on the whole dataset.

In the analysis of the chemical indicators, the first three components (PCs) explained
about 65.16% of total variance, whereas in the analysis of the physical indicators, the first
two PCs were able to explain 80.12% of total variance (Table 3).

Table 3. Eigenvalues and variance explained by the first five principal components (PCs) of the analysis carried out on the
set of (a) chemical and biological indicators (14 variables) and (b) physical indicators (6 variables).

(a) Eigenvalues of the Correlation Matrix: Total
=14 Average = 1

(b) Eigenvalues of the Correlation Matrix: Total
=6 Average = 1

Eigenvalue Difference Proportion Cumulative Eigenvalue Difference Proportion Cumulative

1 5.1000 2.6932 0.3643 0.3643 1 3.7885 2.7698 0.6314 0.6314
2 2.4068 0.7911 0.1719 0.5362 2 1.0187 0.1054 0.1698 0.8012
3 1.6158 0.4237 0.1154 0.6516 3 0.9133 0.6757 0.1522 0.9534
4 1.1921 0.2644 0.0851 0.7368 4 0.2376 0.1971 0.0396 0.993
5 0.9278 0.2123 0.0663 0.803 5 0.0404 0.0389 0.0067 0.9998

. . . . . . . . . .

The score plots of the first two components showed that both chemical and physical
variables were able to discriminate the different soil management compared (Figure 1).
The inspection of the loadings of the first PCs highlighted that no-tilled soils (NT) were
characterized by a greater TOC and TEC, together with exchangeable K+ content, and by a
larger bulk density and RFC, whereas a lower PMAC and AC were detected.
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The analysis on the whole set of soil indicators (chemical, physical and biological)
confirmed these results with an even clearer treatment discrimination and the same highly
weighted variables showing the greatest loadings (Tables 4 and 5; Figure 2).

Table 4. Eigenvalues and variance explained by the first five principal components (PCs) of the
analysis carried out on the whole dataset of soil indicators (20 variables).

Eigenvalues of the Correlation Matrix: Total
=20 Average = 1

Eigenvalue Difference Proportion Cumulative

1 8.2424 5.7211 0.4121 0.4121
2 2.5213 0.3911 0.1261 0.5382
3 2.1302 0.5153 0.1065 0.6447
4 1.6149 0.4059 0.0807 0.7254
5 1.2089 0.2821 0.0604 0.7859

Table 5. Variable loadings of the first four components in the analysis carried out on the whole dataset. Values are multiplied
by 100 and rounded to the nearest integer. Variance explained: PC1 = 41.21%; PC2 = 12.61%; PC3 = 10.65%; PC4 = 8.07%.

Factor1 Factor2 Factor3 Factor4

WEOC 54 * −22 44 * 5
WEN −77 * 4 −11 6

C_biomass 32 53 * 21 53 *
TOC 91 * −29 12 2
TEC 93 * −27 6 15

HA_FA −36 * −59 * 7 40 *
N 36 * 7 34 60 *

P_Olsen 33 −63 * −21 26
pH −70 * 52 * −14 −3
EC 50 * 43 * 13 42 *

Ca2+ 2 2 79 * −23
K+ 82 * −8 −36 * 26

Mg2+ −46 * −9 57 * 18
Na+ −52 * 41 * 43 * 12
BD 83 * 37 * 12 −12

PMAC −84 * −34 * 16 18
AC −91 * −26 8 21
RFC 92 * 27 −6 −18
clay −43 * 45 * −10 12
sand 23 −21 58 * −49 *

* indicates the significance of the variable loadings. The sign of variable loadings indicates the positive or negative correlation be-
tween the variables and the principal component. WEOC = water extractable organic carbon; WEN = water extractable nitrogen;
C_biomass = microbial biomass carbon; TOC = total organic carbon; TEC = alkali-extractable carbon; HA_FA = humic and fulvic acid
carbon; N = total nitrogen; P_Olsen = Olsen available phosphorus; EC = electrical conductivity; Ca2+, Mg2+, Na+, K+ = exchangeable
cations. BD = dry bulk density; PMAC = macroporosity; AC = air capacity; RFC = relative field capacity.
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Figure 2. Plots of the component loadings (a) and scores (b) of the first two principal components extracted in the analysis
carried out on the whole set of soil indicators. Variance explained: PC1 = 41.21%; PC2 = 12.61%. MT = minimum tillage; NT
= no-tillage. WEOC = water extractable organic carbon; WEN = water extractable nitrogen; C_biomass = microbial biomass
carbon; TOC = total organic carbon; TEC = alkali-extractable carbon; HA_FA = humic and fulvic acid carbon; N = total
nitrogen; P_Olsen = Olsen available phosphorus; EC = electrical conductivity; Ca2+, Mg2+, Na+, K+ = exchangeable cations.
BD = dry bulk density; PMAC = macroporosity; AC = air capacity; RFC = relative field capacity.

In detail, the first four PCs explained cumulatively about 72.54% of total variance
(Table 4). In the first PC (41.21% of total variance) the highly weighted variables were
TOC and TEC among chemical variables, whereas RFC and AC, followed by PMAC, for the
hydrological soil parameters (Table 5). Slightly under the threshold of 10% of the highest
factor loading [50], there were exchangeable K+ and bulk density and, at a lower extent,
WEN. In the second PC (12.61%), available P and humic and fulvic acids showed the
highest loadings, with microbial biomass carbon and pH slightly under the threshold. In
the third (10.65%) and fourth (8.07%) components, exchangeable Ca2+ and N were selected,
respectively (Table 5). The inspection of these results showed that the first PC summarized
main findings of the analysis of variance. The second component highlighted instead the
role of available nutrients (P) and some carbon fractions (humic and fulvic acids C and
microbial biomass C), adding, in this way, further elements to explain differences observed
in the experimental conditions.

3.4. Stepwise Discriminant Analysis

SDA was first performed separately on the set of chemical and physical variables, and
then carried out on the whole dataset.

Variables enabling maximum discrimination among treatments for the analysis carried
out on the dataset of chemical and biological indicators were TOC (P < 0.0001) and HA_FA
(P = 0.0004), followed at a lower extent by Olsen P (P = 0.0111), EC (P = 0.0258), WEOC
(P = 0.0397) and TEC (P = 0.05). In the analysis carried out on the set of physical indicators,
the variables selected were RFC (P < 0.0001) and clay (P = 0.037).

Finally, the analysis carried out on the whole dataset summarized the results obtained,
selecting TOC (P < 0.0001), RFC (P < 0.0001) and WEOC (P = 0.003) as variables enabling
maximum discrimination among treatments (Table 6).
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Table 6. Summary selection of STEPDISC procedure carried out on the whole dataset of chemical, physical and biological
indicators.

Step Number Entered Removed Partial F Value Pr > F Wilks’ Pr < Average Pr >

In R-Square Lambda Lambda Squared ASCC
Can Corr

1 1 TOC 0.8297 97.46 <0.0001 0.17026571 <0.0001 0.82973429 <0.0001
2 2 RFC 0.5631 24.49 <0.0001 0.07439379 <0.0001 0.92560621 <0.0001
3 3 WEOC 0.3941 11.71 0.003 0.0450772 <0.0001 0.9549228 <0.0001

Both PCA and SDA, as well as univariate analysis of variance, returned TOC and
RFC among the most influential variables both on the set of chemical and physical data
analyzed separately as well as on the whole dataset. In addition, WEOC was selected
among the most discriminating variables in the SDA carried out on the whole dataset of
soil indicators. These findings are in agreement with results reported by previous studies
in the selection of the most relevant indicators for assessing soil quality status.

3.5. Partial Least Squares Regression and VIP Statistics

PLSR was applied to gain further information in the selection of the most informa-
tive variables to describe the effects of the two soil management practices compared.
The method was applied to the whole set of soil indicators and considering grain yield
and grain protein content as single response variables (PLS1) and as multiple response
variables (PLS2).

When wheat grain yield was considered as single response variable, the first two
factors accounted cumulatively for 47.20% of total variance in predictors and 48.17% in the
response variable. VIP coefficient profiles (Figure 3a) showed that the highest values were
recorded for Olsen P and PMAC, followed by TOC, TEC, pH and Mg2+ (for the chemical
variables) and by clay, RFC and AC (for the physical variables).

The use of grain protein content as response variable further modified the rank
of indicators selected. The first two factors accounted cumulatively for 49.54% of total
variance in predictors and 23.59% in response. The greatest PLS-VIP statistics values were
recorded for N and Olsen P, followed by WEN and sand, thus indicating the contribution
of macro-elements, with particular regard to N (total and labile form), in affecting grain
protein concentration (Figure 3b). In addition, TOC, TEC, Ca2+ and pH showed important
contribution.

The inspection of both VIP profiles (Figure 3a,b) underlined the role of physical
soil indicators (PMAC, AC and RFC), which were selected as important variables in both
analyses.

Finally, PLSR was carried out considering simultaneously, as response variables,
the grain yield and protein content (PLS2). The first two factors extracted accounted
cumulatively for 48.56% of total variation in predictors and 27.16% in the response variable.
From the inspection of the VIP profile (Figure 3c), the role of available nutrients (Olsen P
and, secondary, WEN) and hydrological variables (PMAC, AC and RFC) in explaining plant
response emerged again. These variables were followed by soil carbon contents (TOC and
TEC), pH and exchangeable cations.

The inclusion of a response variable in PLSR—yield, protein content or both—significantly
modified the rank of soil indicators selected, giving greater emphasis to plant macro-
nutrients (available P and N), particularly when the grain protein content was used as
dependent variable. These results underline the importance of using combined approaches
to explore the data and interpret the behavior of the system investigated.

Finally, for a further exploratory purpose, PCA was carried out on the variables more
frequently selected with the combined use of SDA, PCA and PLSR, namely TOC, TEC,
Olsen P, WEN, RFC, PMAC and AC. Figure 4 shows that the seven variables were able to
discriminate the treatments under investigation. Additionally, a clear improvement in the
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percentage of variance explained by the first two components (89.34%) was observed in
comparison to the analysis performed on the whole set of soil indicators.
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Wold criterion.
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MT = minimum tillage; NT = no-tillage. TOC = total organic carbon; TEC = alkali-extractable carbon; WEN = water
extractable nitrogen; P_Olsen = Olsen available phosphorus; PMAC = macroporosity; AC = air capacity; RFC = relative
field capacity.

4. Discussion

Long-term experiments can be considered valuable research infrastructures, which
enable the long-term study and monitoring of the effects of agricultural strategies or
management scenarios. Among agricultural practices, soil tillage strategies are major deter-
minants of soil status and quality. By directly acting on soil physical properties—modifying
porosity (total pore space and pore size distribution), soil aggregate size and stability, hy-
draulic conductivity, soil tillage modifies air-water capacity relationships and thus induces
changes in soil organic carbon dynamics, nutrient cycling and solute transport [60]. Signifi-
cant effects can usually be observed when stable or near-stable conditions are established,
after transition periods [61]. In this study, the long-term iteration (over about 13 years) of
two soil management strategies—minimum tillage and no-tillage—considerably affected
certain physical and chemical properties of the upper soil layer in the system investigated.

Analysis of variance showed that significantly greater bulk density (BD) and relative
field capacity (RFC) values and, consequently, lower air capacity (AC), were recorded
under no-tillage soil management. Since RFC is the ratio between the water content at the
field capacity and that at water saturation, relatively higher RFC values highlight a reduced
availability for soil air. In accordance with previous results on fine-textured soils [62], soil
physical quality was thus indicative of lower aeration conditions under no-tillage.

The long-term no-tillage soil management also enhanced total organic and extractable
carbon contents (TOC and TEC). The behavior observed is in agreement with several
studies [19,63,64], since the reduced soil disturbance reduces the turnover of soil aggregates
favoring the accumulation and stabilization of organic matter within micro- and macro-
aggregates, thus leading to a net gain of soil carbon. Significantly different values of C and
N of the microbial biomass, bulk density, hydraulic conductivity and average weight of
soil aggregates were also observed by Sharma et al. [49] under conventional and no-tillage
in a long-term field experiment. Laudicina et al. [65], comparing the effect of different
cropping systems (wheat/wheat and wheat/bean) and most used tillage managements
(conventional, dual layer and no-tillage), in a long-term field experiment on soil organic C
pools (total and extractable organic C, microbial biomass C, basal respiration), observed
that tillage management affected the soil organic C stored in the first 15 cm of soil more than
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cropping system. No-tillage caused a 3.6 Mg ha−1 increase of C content in a wheat/faba
rotation, and an increase of 5.6 Mg ha−1 in wheat monoculture after 19 years [65]. A greater
exchangeable K+ content was also observed under no-tillage. PCA and SDA confirmed and
summarized results of analysis of variance but also underlined the role of organic carbon
fractions -humic and fulvic acids and WEOC-, and available P as main sources of variability
in describing the data (PCA), and as the variables that most discriminated the treatments
compared (SDA). In a study assessing the suitability of different labile C fractions as
soil quality indicators, Bongiorno et al. [66] found that WEOC (dissolved organic C) was
not sensitive to soil tillage, unlike the particulate organic C; in any case, WEOC content
highly depends on environmental conditions and soil sampling time [66]. In accordance
with the present study, López-Fando and Pardo [67] measured higher concentrations of
exchangeable K+ and available P under no tillage compared to minimum tillage, at a
soil depth of 0–20 cm. Similarly, Martin-Rueda et al. [68] found greater concentrations of
plant-available K and P in surface soil (0–20 cm) under no-tillage compared to minimum
tillage system, but no difference was observed between the two soil management systems
at higher soil depths. The accumulation of available P, K and other nutrients in surface
soil layers under no-tillage is usually ascribed to the decomposition of organic matter
(which is more abundant in no-tilled soils) and to the accumulation of mineral fertilizers
in topsoil [69]. The tillage system also influences the relations occurring between plant
roots, soil and microorganisms at the rhizosphere level. After long-term no tillage, a higher
activity of alkaline phosphatase and acid phosphatase was measured by Balota et al. [70].
These two enzymes, which can be released both by plant roots and soil microorganisms,
are involved in the release of labile P from the organic pools. Moreover, the organic
acids exuded by plant roots and/or released through organic matter decomposition could
compete with P for the binding sites on soil particles, thus enhancing P availability [69].

Finally, PLSR, by considering simultaneously soil indicators and plant response (grain
yield, protein content or both), selected as important variables the mineral nutrients
(available P, and both total and water extractable N), particularly when grain protein content
was used as dependent variable, together with soil physical quality indicators (PMAC, AC,
RFC), pH and exchangeable cations. To this regard, VIP statistics, being a weighted
sum of the squares of PLS X-score coefficients for the retained components, with the
weights calculated from the amount of dependent variable (Y) variance explained by each
retained component [33,37], were able to summarize the contribution of both predictors
and response variables. Thus, the contribution of mineral nutrients in determining plant
response was also highlighted. Results of both PCA and SDA, as well as of univariate
analysis of variance, returned TOC and RFC among the most influential variables both on
the set of chemical and physical indicators analyzed separately as well as on the whole
dataset. Previous studies highlighted the role of RFC among soil indicators in assessing
soil physical quality. This variable was able to summarize part of the information given
by AC and PMAC and, supported also by BD and plant available water content, showed
the highest discriminating capability of the soil and crop residues management strategies
compared [15]. TOC selection is important because is a necessary input for soil structural
quality indicators [71]. This variable is also indicative of the soil chemical quality, being
positively related with soil CEC and nutrient retention capacity. Moreover, TOC can be also
indicative of the soil biological quality, due to its key role in maintaining the soil trophic
relations and stimulating both the plant and soil microbial activity. Shukla et al. [24],
selecting key soil indicators by means of factor analysis, concluded that TOC was the
most dominant measured soil attribute as soil quality indicator for the two soil depths
investigated and suggested its use for monitoring soil quality changes [24,34].

Overall, the inspection of VIP profiles, together with the results of all methods com-
pared, underlined the role of physical soil indicators (PMAC, AC and RFC), which were
selected as important variables in all the analyses performed. This reinforces the idea that
such soil capacitive indicators (e.g., RFC) can be suggested for several practical applications
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including, for example, the estimation of optimal rate of amendments in laboratory, before
use in the field.

In the assessment of soil quality modifications as effect of agronomic management,
the number and type of the indicators considered are strictly related to the aim of the study
and to the spatial scale investigated [72]. Our research was performed at field scale and
had a methodological and exploratory aim, focused on comparing the strength and ability
of different statistical approaches to extract crucial information from soil data and gain an
improved understanding of the system investigated. In any case, the combined approach
described in this study can be applied to the analysis of different datasets and conditions,
including also different spatial scales.

5. Conclusions

This methodological study shows the effectiveness of using variable selection methods
to summarize the information deriving from multivariate datasets and improving the
understanding and interpretability of the system investigated. The results also highlight
the importance of simultaneously using different approaches because they may provide
different and complementary information. The statistical approaches compared provided
different results in terms of variables selection and ranking of the selected variables. The
presence of a response variable, in the regressive technique, significantly drove the feature
selection process. In particular, the inclusion of yield or protein content, as response
variables in PLSR, modified the rank of selected soil indicators, giving greater emphasis to
plant nutrients, particularly when the grain protein content was considered. The variables
more frequently selected with the combined use of the three methods (TOC, TEC, Olsen P,
WEN, RFC, PMAC, AC) were able to provide a clear discrimination between the treatments
compared, as shown by the PCA carried out on the reduced dataset. Results finally
emphasize the role of multi-year datasets which are invaluable tools to explore benefits
and limits of different methodologies and management practices.

Author Contributions: Conceptualization, A.M.S. and M.C.; methodology, A.M.S.; formal analysis,
A.M.S.; investigation, M.C., R.R. and A.M.S.; data curation, A.M.S., M.C., M.D., R.R. and C.E.G.;
writing—original draft preparation, A.M.S. and M.C.; writing—review and editing, A.M.S., M.C.,
M.D., R.R. and C.E.G. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the EU and MIUR for funding the present methodological
contribution, in the frame of the collaborative international consortium DESERT financed under the
ERA-NET Cofund WaterWorks2014 Call; this ERA-NET is an integral part of the 2015 Joint Activities
developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI).
The work was also supported by the projects “BIOTILLAGE, Approcci innovativi per il migliora-
mento delle performances ambientali e produttive dei sistemi cerealicoli no-tillage”, financed by PSR-
Basilicata 2007–2013 and PRIMA Fundation, call 2019-Section 1–GA n.1912 “Research-based participa-
tory approaches for adopting Conservation Agriculture in the Mediterranean Area—CAMA” project.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors want to acknowledge Carolina Vitti, Luisa Giglio and Marcello
Mastrangelo for their skillful work in laboratory analysis. In addition, they want to acknowledge
Sabrina Moscelli, Vittorio Vonella and Franco Fornaro, for data collection and agronomic trial
management.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 5099 15 of 17

Abbreviations

AC air capacity
BD dry bulk density
C_biomass microbial biomass carbon
HA_FA humic and fulvic acid carbon
MT minimum tillage
NT no-tillage
N total nitrogen
PCA principal component analysis
PLSR partial least squares regression
PMAC macroporosity
P_Olsen Olsen available phosphorus
RFC relative field capacity
SDA stepwise discriminant analysis
SPQ soil physical quality
SQIs soil quality indices
TEC alkali-extractable carbon
TOC total organic carbon
VIP and PLS-VIP variable importance for projection
WEN water extractable nitrogen
WEOC water extractable organic carbon
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