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Abstract: Machine Learning and Artificial Intelligence (AI) more broadly have great immediate and
future potential for transforming almost all aspects of medicine. However, in many applications, even
outside medicine, a lack of transparency in AI applications has become increasingly problematic. This
is particularly pronounced where users need to interpret the output of AI systems. Explainable AI
(XAI) provides a rationale that allows users to understand why a system has produced a given output.
The output can then be interpreted within a given context. One area that is in great need of XAI is
that of Clinical Decision Support Systems (CDSSs). These systems support medical practitioners in
their clinic decision-making and in the absence of explainability may lead to issues of under or over-
reliance. Providing explanations for how recommendations are arrived at will allow practitioners to
make more nuanced, and in some cases, life-saving decisions. The need for XAI in CDSS, and the
medical field in general, is amplified by the need for ethical and fair decision-making and the fact that
AI trained with historical data can be a reinforcement agent of historical actions and biases that should
be uncovered. We performed a systematic literature review of work to-date in the application of XAI
in CDSS. Tabular data processing XAI-enabled systems are the most common, while XAI-enabled
CDSS for text analysis are the least common in literature. There is more interest in developers for the
provision of local explanations, while there was almost a balance between post-hoc and ante-hoc
explanations, as well as between model-specific and model-agnostic techniques. Studies reported
benefits of the use of XAI such as the fact that it could enhance decision confidence for clinicians,
or generate the hypothesis about causality, which ultimately leads to increased trustworthiness and
acceptability of the system and potential for its incorporation in the clinical workflow. However, we
found an overall distinct lack of application of XAI in the context of CDSS and, in particular, a lack of
user studies exploring the needs of clinicians. We propose some guidelines for the implementation of
XAI in CDSS and explore some opportunities, challenges, and future research needs.

Keywords: artificial intelligence; explainable AI; XAI; clinical decision support systems; CDSS; medicine;
machine learning; deep learning; explainability; transparency; interpretability

1. Introduction

Artificial Intelligence (AI), generally, and Machine Learning (ML), specifically, have
demonstrated remarkable potential in varied application domains, from self-driving cars [1]
to beating humans at increasingly complex games such as Go [2]. Almost all processes
driven by software can benefit from techniques that can automatically learn from previous
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data, gaining knowledge from experience, and gradually improving the ability to make
predictions based on new data. Recent rapid progress in ML has been driven by many
factors including the development of new statistical learning algorithms, the availability
of large datasets, and low-cost yet powerful hardware including storage and networking
advances which make tools such as cloud storage not only feasible but the norm [3].

Aside from hardware and other advances, the recent growth in ML systems is partly
due to the widespread use of increasingly complex models, for example, Deep Neural
Networks [4]. However, this complexity comes at a cost. Such systems are often, in effect,
black boxes [3] with users or those otherwise affected having little to no understanding
of how they make predictions. This lack of understanding presents numerous problems
with serious consequences, including, potentially catastrophic errors when flawed models
(or decisions based on them) are deployed in real-world contexts [5]. Additionally, even
when successful, this opacity can prevent these tools from being accepted by regulated
industries, legislation, and society at large [6]. Humans seem to be programmed to seek
cause behind action, likely for good reasons. Because of this, humans are reticent to adopt
techniques that are not directly interpretable, tractable, and trustworthy [7], especially
given the increasing demand for ethical AI [8].

The use of ML systems is expanding not just in software engineering [9] but also
into socially delicate application domains such as education [10], law enforcement and
forensics [11], and healthcare [12], which further complicates their use especially when
their inner workings are simply beyond the understanding of many of those affected by
the predictions that these systems make.

The medical domain is home to many critical challenges that stand to be overcome
with the use of AI. Many examples have gained traction recently with large volumes
of work on automated diagnosis, prognosis, drug design, and testing [13–17]. This is
fueled by the importance of medical care and the generation of data in massive quantities
from sources such as medical imaging, biosensors, molecular data, and electronic medical
records [12]. The aims of AI in medicine include the personalization of medical decisions,
health practices, and therapies to individual patients [3]. However, the current state of
AI in medicine has been summed up as “high on promise and relatively low on data and
proof” [12]. A number of AI-based systems have been validated in real-world settings
for diabetic retinopathy, detection of wrist fractures, histologic breast cancer metastases,
very small colonic polyps, and congenital cataracts; however, many of the systems that
have been shown to be equivalent or superior to experts in experimental settings have
demonstrated high false positive rates in real-world clinical environments [12].

Other concerns surrounding the use of ML in medicine include bias, privacy, security,
and lack of transparency [12], as well as causality, transferability, informativeness, fair-
ness, and confidence [18]. As decisions made or influenced by such systems ultimately
affect human health there is an urgent need for understanding of how such decisions are
made [18]. This is amplified in some areas in particular. One example is life-changing
outcomes and decisions as a result of disease diagnosis [19]. Another is precision medicine
where experts require far more information from the model than a simple binary prediction
for supporting their diagnosis [18].

Explanations for how and why a model outputs what it does are crucial in overcoming
these challenges [19]. For this reason, explainability and the related concepts of inter-
pretability and transparency have become central issues of concern for ML in medicine
over the last few years [20]. It has been argued that despite the existence of much evi-
dence supporting their usefulness, ML-based systems are unlikely to be adopted in routine
medical practice beyond a limited number of niche applications unless these challenges
are addressed, most likely by having systems provide satisfactory explanations for their
decisions [20,21]. Unfortunately, secondary factors also complicate solutions, for instance,
different applications usually have different interpretability and explainability needs [20]
working against generalizable solutions that span a number of situations.
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Clinical Decision Support Systems (CDSS) are computer systems designed to assist in
the delivery of healthcare, and ML is being exploited for their development. The explain-
ability of such systems is a relatively new area of study and this work aims to present its
application, benefits, gaps, and future opportunities by conducting a systematic literature
review. Our hypothesis is that despite the plethora of ML-based CDSS, there is only a
limited number of systems that have been specifically developed with explainability as
one of their features, and that there are still challenges that need to be addressed. Future
systems should be created according to current reported benefits and gaps. As a result, this
study aims to first identify the state-of-the-art in explainable ML-based CDSS, in terms of
the area of use and current prevalent methodologies, and then discover what benefits have
been reported as a result of this combination and what the areas for improvement are.

The remainder of the paper is structured as follows. Section 2 presents a background of
CDSS, XAI, and the considerations of applying XAI to CDSS including the need for explain-
ability, its application in medicine, types of explanations, the matter of interpretability vs.
performance, and the needs of clinicians in terms of explainability. Section 3 describes our
materials, methodology, and research questions. Section 4 presents findings and answers
to the research questions. Section 5 discusses these findings, along with guidelines for the
future implementation of explainable ML-based CDSS. Section 6 presents our conclusions.

2. Fundamental Concepts and Background
2.1. Clinical Decision Support Systems

Clinical Decision Support Systems are computer systems that “provide clinicians, staff,
patients, or other individuals with knowledge and person-specific information, intelligently
filtered, or presented at appropriate times, to enhance health and health care” [22]. CDSSs
are designed for a variety of purposes such as diagnosis, treatment response prediction,
treatment recommendation (personalization), prognosis, and the prioritization of patient
care according to their level of risk. They can be helpful in clinical practice as a “second set
of eyes” for clinicians, combining their human knowledge with the “knowledge” that is
embedded in the system. CDSS can help to improve patients’ safety, quality of care, and
healthcare efficiency [23–25], as well as reducing the costs of healthcare [26]. They can
improve patient safety not only by reducing medical errors but also through reminders for
medications or other medical events for patients or clinicians [25]. Additionally, CDSS can
be useful in low-resource settings where the number of medical institutions, equipment,
and qualified clinicians is limited.

CDSS can be classified as knowledge-based and non-knowledge-based [27]. CDSS that
are knowledge-based depend on medical guidelines and knowledge while non-knowledge-
based CDSS typically use ML. ML-based CDSS find patterns in historical clinical data and
develop predictive models that are able to predict clinical outcomes based on new inputs.
These outcomes can then be used as recommendations for clinicians to help them in their
practice. ML-based CDSS have great potential in clinical practice. They can help to enhance
the accuracy of clinical decisions and minimize medical errors because they are objective,
depending only on the input data, and the inner decision-making logic. However, they
rely on the quality and quantity of data provided [28]. When the data used to train an ML
model are biased, this bias is captured by the model and consequently can make biased or
incorrect predictions. This can ultimately lead to a biased or incorrect human decision.

Companies such as IBM, Elsevier, Intermedica, and Microsoft have developed or are
currently developing such systems. IBM’s “Watson Health” [29] aims to help in treatment-
related decisions for patients. However, significant challenges still remain as Watson Health
does not perform as well in the clinical world as it did in the game show Jeopardy! [30].
Elsevier’s “Via Pathways”, rebranded “ClinicalPath” [31] provides evidence-based care
maps for the treatment of patients with cancer, and ClinicalKey [32] is a search engine that
provides clinical decision support using research-based recommendations. Infermedica
has developed a mobile application called Symptomate [33] which is a popular symptom
checker, recently updated to perform a COVID-19 checkup. Finally, Microsoft is developing
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the “Hanover Project” [34] which aims to identify the most relevant pieces of information
that experts will need to make the best possible decisions regarding treatment plans for
patients with cancer.

CDSS have been developed and applied across a wide range of pathologies including
rare diseases [35], oncology [36] and specifically, breast cancer [37], chronic obstructive
pulmonary disease [38], the prevention of venous thromboembolism [39], the prediction
of chronic kidney disease [40] and Alzheimer’s disease [41], for diabetes care [42], and risk-
level prediction of heart disease [43].

In constructing CDSS, developers are confronted with “unknown, incomplete, imbal-
anced, heterogeneous, noisy, dirty, erroneous, inaccurate, and missing datasets in arbitrarily
high-dimensional spaces” [3]. Additionally, systems such as CDSS do not work in isola-
tion, but within other systems, institutions, and with human actors whose efforts must
be coordinated for AI in medicine to have the most beneficial impact. There is an over-
all perception that humans are more tolerant towards human error than machine error,
and Prahl and Van Swol [44] found that decision-makers considered human advisers to
be more expert and useful, while they showed more negative emotions when a human
advisor was replaced by a machine. Error tolerance needs to be identified based on current
standards and needs, and discussed with the CDSS vendor. Deviations from this rate will
lead to mistrust against the system. In addition to tolerance rate, it is also important to
analyze the concordance rate between machine learning models and what the physician
recommends as best treatment [30]. Watson for Oncology was found to have 83%, 73%,
and 49% concordance in three studies mentioned in [30]. As a result, incorporating XAI
principles into CDSS is essential if the potential beneficial impact is to be fulfilled.

2.2. Explainable AI (XAI)

The earliest use of the term XAI that we encountered was in Van Lent et al. in 2004 [45].
XAI can simply be described as aiming to make AI systems more understandable to
humans; however, there is no accepted technical definition of XAI at this time, and more
clarity and consistency is required in terms of the terminology in use [18,19,46]. One of
the issues is that the terms transparency, interpretability, and explainability are often used
interchangeably. However, there are differences between these concepts.

Interpretability is related to how much a model can be understood [21] although it is
also used instead of the term “explainability” [46]. Transparency either refers to a holistic
characteristic of “providing stakeholders . . . with relevant information about how the
model works: this includes documentation of the training procedure, analysis of training
data distribution, code releases, and feature-level explanations” [47], or an algorithm-
specific clarity on how the model works, as opposed to opacity [18,46,48]. Explainability
gives insight into the reasons for the decision-making of the system, but is sometimes
connected to understandability which was defined by a consensus as “loosely referring to
tools that empower a stakeholder to understand and, when necessary, contest the reasoning
of model outcomes”[49]. In this work, we focus on explainability.

2.2.1. The Need for XAI: Fair and Ethical Decision-Making

“Black box” AI systems that give prediction without any explanation are problematic
for numerous reasons, not only because of their lack of transparency but also because they
hide potential biases within the system [50]. There are many examples where bias in AI-
based predictive systems has been uncovered. These systems have been shown to reinforce
social and historical human prejudices and people who are traditionally marginalized in
our society are disproportional negatively impacted [8].

Predictive software used in courtrooms to assess the likelihood of recidivism have
proven to be extremely unreliable due to their bias towards race, revealing higher scores
for Black people [51]. For example, the AI-based system COMPAS (Correctional Offender
Management Profiling for Alternative Sanctions) has been widely criticized for being
unreliable and racially biased [52]. Several case studies have demonstrated that “dirty data”
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used in policy-making systems have led to skewed predictions [53]. Another example of
bias in AI concerns search engines that tend to favor certain sites over others revealing
a political bias [54], and hiring algorithms tainted by “societal noise” tend to perpetuate
discriminatory behaviors impacting certain individuals or groups [55]. This algorithmic
discrimination is also observed in systems such as targeted advertisements where gender
discrimination occurred in the display of STEM career ads [56,57]. Moreover, some vision
detection systems have demonstrated a bias toward subject skin tone. This predictive
inequity has been characterized by higher performance for lower Fitzpatrick skin tones [58].
These cases, to mention but a few, illustrate how such systems deployed in a real-world
context can become “Weapons of Math Destruction” reinforcing inequalities [59].

Similarly issues arise when tools built on biased data are used in precision medicines [60]
and there are many examples of medical datasets where the lack of inclusion of minorities
has led to the development of biased models. For example, European populations were
found to be significantly over-represented, while the other races were underrepresented in
genomic studies in US [61]. Another example concerns the Framingham Heart Risk functions
used to assess the risk of coronary heart diseases which suffered from an overestimation of
risk for the German population [62]. This bias was due to the Caucasian sample the initial
study was based on. This reveals the particular attention needed in order to implement
AI-based models developed on medical datasets.

Slack et al. [63] determined that existing XAI techniques cannot provide explanations
that adequately identify discriminatory behavior in some sensitive applications. Although,
giving explanations can increase understanding of and trust in a system [19,46,64], simple
explanations can hide undesirable attributes of the system and may mislead users into
coming to dangerous or unfounded conclusions that could ultimately be unethical [21].
Additionally, an awareness of the dangers of blindly embracing explanations that may
disguise racial or gender discrimination [46] or provide fair-washing, i.e., “promoting the
false perception that a ML model respects some ethical values” [65] is needed in all medical
areas where such systems may be utilized.

In this paper, we focus on XAI as a technician solution that can help to expose systemic
bias in CDSS; however, this does not address underlying deep-rooted discriminatory
assumptions [8]. XAI can be used to help us evaluate if predictions are biased and defend
algorithmic decisions as being fair and ethical [18,19,46,66]. Additionally, XAI can help to
shed some light onto causality [18,46,67] although, there is a recognized need to go beyond
causality/correlation to true “causability” [3].

Furthermore, there are now regulations in the EU which give subjects the right to
obtain an explanation of the decision made using their data which need to be considered in
the development of CDSS. To ensure that the processing of data is conducted in a manner
that respects the rights of the data subjects and leads to the development of fair systems,
different regions have adopted regulations governing the use of data. The General Data
Protection Regulation (GDPR) [6] protects the personal data of all EU residents, irrespective
of the processing location. GDPR gives EU residents the right to access rectification, erasure,
and restriction of processing of their personal data. Specifically, data subjects who will
be affected by a decision have a “right to nondiscrimination” and should be able to be
informed of the reasons for the automated decision. According to the GDPR, data subjects
have “the right not to be subject solely on automated processing” (Article 22). More
specifically, according to Article 22(3) and Recital 71 “such processing should be subject
to suitable safeguards, which should include specific information to the data subject and
the right to obtain human intervention, to express his or her point of view, to obtain an
explanation of the decision reached after such assessment and to challenge the decision”.

2.3. XAI in Medicine

The use of XAI in medicine is rooted in demand for the added value that comes from
medical professionals being able to understand how and why a machine-based decision has
been made. Thus, there is growing demand for AI approaches that not only perform well,
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but are trustworthy, transparent, interpretable, and explainable for a human expert. This
also has important implications for the public, policy, and governance as the explainability
of AI tools will enhance the trust of medical professionals [3]. In many ways, medical
professionals act as translators for patients—translating knowledge that is too complex
for patients themselves to understand and act on. Having CDSS which assist medical
professionals in this task makes sense, provided the CDSS aid, not hinder, that translation.

Translating ML models effectively to clinical practice requires establishing clinicians’
trust in the system. However, there have been a number of high-profile cases that have
undermined trust in the use of AI in medicine. For example, many of the recommendations
for treatment by “Watson for Oncology” (IBM) have been shown to be incorrect and
potentially harmful [30]. In another famous example by Caruana et al. [68], it was found
that a ML-based system that was trained to predict which patients with pneumonia should
be admitted to hospital identified patients with asthma as being at lower risk of dying from
pneumonia. This reflected a true pattern in the training data—patients with asthma were
less likely to die from pneumonia—but this was because they tended to be admitted directly
to the Intensive Care Units (ICU) and received more aggressive treatments. However, if this
model was deployed in a real-world clinical environment without understanding why
this prediction was being made, and without human/expert intervention, it is possible
that patients with asthma would not be admitted to hospital, and would not receive the
aggressive treatment required to prevent death. The use of explainable models could help
to prevent such mistakes being made.

However, there is a lack of consensus upon which usable explanations can be used in
different settings [69]. Monteath and Sheh [70] proposed a novel XAI approach to incremental
decision support for medical diagnosis using decision trees; their approach allows AI systems
to work alongside human experts, each informing the other and coming to a decision together.
Their system is able to guide physicians in determining which test results are most useful
given existing data. The system is also able to explain how a particular decision was made,
tracing right back to the underlying training data. This provides the transparency that
is crucial for patient confidence, regulation compliance, detecting and correcting errors,
and improving patient outcomes. Another example of humans and AI systems working
alongside is the work by Wu et al. [71] who proposed an expert-in-the-loop interpretation
method to label the behavior of internal units in Convolutional Neural Networks. They
demonstrate that several Convolutional Neural Networks models can produce explanatory
descriptions to support the final classification decisions. Their findings are an important first
step towards XAI in classification of diseased tissue.

Developers of ML-based models in medicine are increasingly focusing on explainabil-
ity, and their results are promising. Zheng et al. [72] proposed a novel and explainable
method to classify cardiac pathology by extracting image-derived features to characterize
the shape and motion of the heart. Their proposed model achieves 95% classification
accuracy, a performance comparable to that of the state-of-the-art that enables explanations
and transparency to become more trustworthy. Tosun et al. [73] described an initial XAI
enabled software application, HistoMapr-Breast, for breast core biopsies. HistoMapr-Breast
automatically previews breast core whole slide images and recognizes the regions of inter-
est to rapidly present the key diagnostic areas in an interactive and explainable manner.
HistoMapr-Breast can work for pathologists in a trustworthy fashion using its explanation
interface. They believe that the concept of XAI system must be integrated in pathology
workflows promoting safety, reliability, and accountability in addressing issues with bias,
transparency, safety, and causality. They also highlight that an XAI system augments
pathologists and works with them but does not replace them. Hicks et al. [74] introduced
Mimir, an automated multimedia reporting software dissecting the neural network to learn
the intermediate analysis steps, which directly adds explainability to Deep Neural Network
models in medical problems by producing structured and semantically correct reports,
composed of text and images. Mimir enables investigation, explainability, and understand-
ing of the deep learning algorithms decision processes. Ultimately, better explanations
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will result in patients that understand and trust the reasoning chain, leading to improved
confidence, allowing doctors to provide better diagnoses [75].

2.4. Types of Explanations

Techniques can be grouped by scope into those providing global explanations of the
entire system and those providing local explanations of single predictions. Global explanations
facilitate the understanding of the entire model behavior and reasoning leading to expected
outcomes. For local explanations, the reasons for a single prediction are provided to justify
why the model made a specific decision for that instance [19]. Techniques can be grouped by
whether they are model agnostic (i.e., they can be applied to any ML algorithm), or model
specific (i.e., they can be only applied to a specific ML algorithm) [19].

2.4.1. Ante-Hoc Methods

Additionally, techniques can be split into ante-hoc and post hoc explainability methods.
Ante-hoc methods are explainable by design or inherently explainable methods, and are
also referred to as transparent or white box/glass box approaches. These methods, which
are model specific by definition, include linear and logistic regression, decision trees, k-
nearest neighbors, fuzzy inference systems, rule-based learners, general additive models,
and Bayesian models [3,18]. However, even for these methods, they can only be considered
explainable, transparent, or interpretable up to a point, for example, in high-dimensional
scenarios with complex interaction terms or deep decision trees, these methods can become
difficult to interpret [67].

ML algorithms such as random forests, support vector machines, neural networks
(including Deep Neural Networks) are, within practical limits, inherently non-explainable
and are typically referred to as “black-box” models [3,19,21]. Post-hoc methods, which
are typically model agnostic, might not explain how black-box models work but they may
provide local explanations for a specific decision [3,18,46]. One way to do this is to build
simpler transparent models that provide interpretable approximations of the black-box [63].

2.4.2. Post-Hoc Methods

Post-hoc methods can be divided into global explanations, for example, the model-
agnostic method BETA [76] and neural networks specific method GAM [77] or local explana-
tions including model-agnostic approaches such as LIME [78], SHAP [79] and Anchors [80].
These methods provide feature level explanations by learning an interpretable model that
attempts to approximate the behavior of the original model. Global explanations can also
be provided by these methods by summarizing local explanations, such as with SHAP sum-
mary plots [79] or SP-LIME [78]. CLEAR [81] and CERTIFAI [82] are both model-agnostic
methods that generate local explanations supported by the provision of counterfactual
explanations that show examples of inputs that are generated to be close to the original
input but for which the model provides a different outcome. Other common methods used
for the explanations of DL models include gradient-based attribution methods [83], such
as integrated gradients [84], or DeepLIFT [85]. Deconvolution [86,87], Class Activation
Maps, or CAM [88], and Grad-CAM [89] are techniques to visualize Convolutional Neural
Networks. Variations on all these techniques are being developed and apply to different
scenarios. Visual explanation techniques are also a means to providing model-agnostic
explanations, and a summary of them is presented in the work by [18].

There are two main ways of evaluating post-hoc methods: mathematically quantifiable
metrics and human-centered evaluations [67]. However, there is currently no consensus
on how to evaluate how interpretable a model is, how correct an explanation is, or how
to benchmark methods against each other [18,66,67]. There is some concern around the
reliability of post-hoc explanations [63,90]. There are also concerns that post-hoc methods
could expose the original models to adversarial attacks [18] or could lead to the generation
of classifiers whose post-hoc explanations could be arbitrarily controlled [63]. Adversar-
ial attacks can “trick” the ML algorithm and significantly affect its output with slight
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changes in the input data. As XAI provides insight into the functionality of the CDSS,
it can allow for more effective attacks. Solutions for DL models, SVM models, or even
unsupervised ML models have been proposed [18]. Others have deployed explainable
techniques such as SHAP to discriminate between normal and adversarial inputs in Deep
Neural Networks [91]. Techniques such as a “goodness checklist, explanation satisfaction
scales, elicitation methods for mental models, computational measures for explainer fidelity,
explanation trustworthiness and model reliability” have been suggested as appropriate
methods of evaluation [18].

2.5. Trade-off between Interpretability and Performance

There is often a perceived trade-off between the performance (predictive accuracy) of
a model and explainability [3,18,19]. The algorithms that currently often perform the best
(e.g., deep learning) are the least explainable, creating a demand for explainable models
which can achieve high performance [18]. Simple models are often preferred for their ease
of interpretation despite a general trade-off between model performance and explainability
that is often assumed [68,69]. However, linear models, for example, are not strictly more
interpretable than, for example, neural networks, especially when high-dimensional or
heavily engineered features are used. In these cases, the interpretability or the explainability
of the model can be lost [46]. Likewise, more complex models may not be more accurate.

One could argue that it would not be ethical to apply in clinical practice a model that
does not have the best possible performance, as the ultimate goal is to provide the best
possible assistance to patients [92]. Amann et al. [93] provided an example comparing
advanced laboratory testing and AI-based CDSS, which are similar in terms of the fact
that they support clinical decisions and that accuracy is important. In the case of the first,
there is some general understanding on behalf of clinicians but not for each result. Some
level of understanding for AI-based CDSS is also possible in terms of “the agent view of
AI, i.e., what it takes as input, what it does with the environment, and what it produces as
output, and (2) explaining the training of the mapping which produces the output by letting
it learn from examples, which encompasses unsupervised, supervised, and reinforcement
learning” [93] and might suffice for certain scenarios. The authors also consider the fact that
the first requirement of AI systems in medicine is clinical validation, while explainability is
a second aspect. Medical certification comes after the system is compliant with regulatory
standards and prediction accuracy is usually the main measurement of clinical validation.
However, as perfect performance is not possible, while from a patient perspective there
is more trust towards clinicians and less tolerance for “machine” error, explainability is
required, making this a difficult dilemma for developers. With the availability of larger
datasets there are increasing benefits of using more complex models which allow for
more complex functions to be approximated [18,46,79] and future developments in XAI
may allow for an optimal balance between the explainability and performance of more
complex models.

2.6. What Do Clinicians Want?

The needs of clinicians are critically important for the success of XAI in medicine
and extend far beyond better, more accurate, cheaper, or faster decisions. Clinicians are
the primary users (if not beneficiaries) of XAI-enabled CDSS and their requirements must
be met. Different clinicians will have different views, but all clinicians share a common
ground—that of explainability through the eyes of patients [69]. Bussone et al. [75] found
that clinicians wanted better explanations from the CDSS to help them interpret the system’s
confidence, to verify that the clinical disorder fit the CDSS suggestion, to better understand
the reasoning chain of the system, and to make different diagnoses in order to help them
make an assessment of the reliability of the system’s decisions. Tonekaboni et al. [69]
found that the model’s overall accuracy was not sufficient on its own to allow clinicians
to make an informed decision, clinicians wanted to know the subset of features driving a
prediction to allow them to compare the model decision to their clinical judgment. They
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explored what makes a model explainable for clinicians through exploratory interviews
and found the following:

• Clinicians view explainability as a means of justifying their clinical decision-making
(e.g., to patients and colleagues) in the context of a model’s decision.

• The implemented system/model needs to provide information about the context within
which the model operates and promote awareness of situations where the model may
fall short (e.g., model did not use specific history or did not have information around
certain aspects of a patient’s context). Models that fall short in accuracy were deemed
acceptable provided there is clarity around why the model under-performs.

• Familiar metrics such as reliability, specificity, and sensitivity were important for the
initial uptake of an AI tool. However, a critical factor for continuing use was whether
the tool was repeatedly successful in prognosticating their patient’s condition in their
personal experience. Real-world application was crucial to developing “a sense of
when it’s working and when it’s limited” which meant “alignment with expectations
and clinical presentation”.

• Clinical thought processes for acting on predictions of any assistive tool appear to consist
of two primary steps following presentation of the model’s prediction: (i) understanding
and (ii) rationalizing the predictions. Thus, classes of explanations for clinical ML
models should be designed with the purpose of facilitating the understanding and
rationalization process. Clinicians believe that carefully designed visualization and
presentation can facilitate further understanding of the model.

• A well designed explanation should augment or supplement clinical ML systems to
(a) recalibrate clinician (stakeholder) trust of model predictions, (b) provide a level of
transparency that allows users to validate model outputs with domain knowledge, (c)
reliably disseminate model prediction using task specific representations (e.g., confidence
scores), and (d) provide parsimonious and actionable steps clinicians can undertake.

3. Materials and Methods

This review aims to explore the literature surrounding the use of XAI in CDSS by
identifying publications that are of interest to the ML/AI and medical communities, the con-
tributions of these publications, and the evidence for findings reported. We conducted
a systematic literature review by adapting the guidelines proposed by Kitchenham [94].
In this review, we followed a structured process that involved the following:

1. Specifying research questions
2. Conducting searches of specified databases
3. Selecting studies by criterion
4. Filtering studies by evaluating their pertinence
5. Extracting data
6. Synthesizing results.

3.1. Research Questions

The research questions that we aim to address are as follows:

• RQ1: What AI-based CDSS have been developed that incorporate XAI?
• RQ2: What aspects/methods of the use of XAI in CDSS have been the focus of the literature?
• RQ3: What benefits have been reported when addressing different aspects of the use

of XAI in CDSS?
• RQ4: What open problems, challenges, and needs of explainable CDSS are expressed

in literature?

3.2. Conducting Searches

Selecting search terms for a broad and inclusive review of XAI in CDSS proved chal-
lenging. Terms that were too general resulted in an unwieldy set of many irrelevant papers,
while terms that were too specific were likely to miss relevant studies. After some trial and
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error with a range of terms, we performed the following six searches (S1–S6). The search
terms were used to search Google Scholar (currently the most comprehensive academic search
engine according to recent studies [95,96]) on 24 July 2020 and the number of papers returned
by each search are shown in brackets after the search terms.

• S1 “clinical decision support system” XAI (35)
• S2 “clinical decision support system” explainable AI (165)
• S3 “clinical decision support system” explainable ML (181)
• S4 CDSS XAI (41)
• S5 CDSS explainable AI (122)
• S6 CDSS explainable ML (124)

The combined output of the six individual searches returned 261 unique publications.
The six searches had a minimum of 35 and a maximum of 181 results each, with a total of
668. A ratio of nunique/ntotal = 0.39 is indicative of a cohesive set of searches that together
have a desired degree of internal consistency.

3.3. Paper Selection and Filtering

The next stage was selecting papers that formed the basis of the review. We eliminated
papers that were not peer-reviewed conference or journal papers (e.g., theses, dissertations,
books, book chapters, pre-prints, or other archived articles and posters) and 10 papers that
were not written in English, leaving 132 papers. The search results were then examined
by title, abstract, and full-text if deemed necessary to remove papers that were clearly
out of scope. For instance, we removed non-medical, legal, or human-factor studies
e.g., “Experimental Strategies for Regulating Fintech” and “Human–Agent Interaction
for Human Space Exploration”. This reduced our set to 121 papers (39 conference and
82 journal).

We then performed a quality check of the remaining papers. We only retained
conference papers published by ACM or IEEE, or those listed in the CORE 2020 rank-
ings (http://portal.core.edu.au/conf-ranks, accessed on 24 July 2020), and journal publi-
cations that were listed in the JCR 2018 Impact Factors
(https://clarivate.com/webofsciencegroup/tag/jcr-2018/, accessed on 24 July 2020). Ad-
ditionally, npj Digital Medicine and two ACM journals that were not listed in JCR Impact
Factors 2018 were also included. After this filtering step, 76 conference and journal publica-
tions remained. Three of these were not available on any platform at our disposal, and one
additional paper was removed when we discovered that it was a pre-print using an ACM
TOIIS template but was not published in the ACM Digital Library.

The remaining 72 papers were divided randomly into three groups and shared be-
tween three pairs of authors. Each pair took one group of papers and classified them as
either include or exclude based on inclusion criteria. The inclusion criteria was XAI or
explainability discussed in relation to CDSS. If CDSS and/or XAI was only mentioned
in the introduction or related work section of the paper, the paper was excluded and
marked as “related work only”. After both authors had independently classified each
paper, 16 papers were removed by agreement. At this point, each pair met to reconcile
differences. The author pairs disagreed on 23 papers giving a 68% agreement rate on paper
inclusion/exclusion. Reconciliation resulted in seven disputed papers being excluded and
16 retained, leaving 33 papers. These papers were published between 2008 and 24 July
2020: one paper was published in 2008, three papers were published in 2018, 13 papers
were published in 2019, and 16 papers were published in 2020 (until the 24 July). We see an
upward trend in the number of relevant studies published over time which indicated the
increased interest in XAI-enabled CDSS.

Finally, we separated the 33 papers into eight literature reviews (24.2%) [97–104], nine
papers discussing aspects of the use of XAI in CDSS (27.3%) [48,105–112], four papers that
discussed the implementation of a CDSS without XAI (12.1%) [113–116], and 12 papers
describing the implementation of a CDSS with (36.4%) XAI [117–128] (see Table 1 for a

http://portal.core.edu.au/conf-ranks
https://clarivate.com/webofsciencegroup/tag/jcr-2018/
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high-level overview of these papers, as well as the type of data the described CDSS can
process to provide suggestions).

Table 1. Twelve publications reporting on CDSS that have implemented XAI.

Paper Subject Area Main Contribution Data Processed

Sadeghi et al. [117]
Sleep quality prediction Use of time domain features for transparency and explainability Tabular

Wang et al. [118]
Intensive care phenotyping

Used SHAP [79] for attribution, LORE [129] for counterfactual rules and
multiobjective evolutionary algorithm based on decomposition (MOEA/D) for
sensitivity analysis [130]

Tabular

Lee et al. [119]
Alzheimer’s Disease (AD)

Regional abnormalities in the brain space are visualized to create a “regional
abnormality map” which is used to interpret regional statuses based on the
probability that a region represents later stages of AD progression for a target task,
and to draw potential relationships between symptomatic observations

Image

Hu et al. [120]
Critically ill influenza

SHAP [79] is used to illustrate the individual feature-level impacts on the
30-day mortality Tabular

Militello et al. [121]
Epicardial fat volume

A user-centred Graphical User Interface (GUI) design is used to allow for safe
interaction of the physician as well as for an effective integration into the existing
clinical workflow

Image

Blanco et al. [122]
Cause of death

A bidirectional Gated Recurrent Units (GRU) with attention mechanism allows for
exploration of how much each fragment of the text contributed in the prediction Text

Lamy et al. [123]
Antibiotic treatment

The CDSS uses rainbow boxes [131] a visualization technique that displays all the
antibiotics present in the ontology in columns and their properties in colored boxes,
using labels and icons

Tabular

Tan et al. [124]
Breast cancer

Implemented a novel method: Complementary Learning Fuzzy Neural
Network (CLFNN) Tabular

El-Sappagh et al. [125]
Diabetes Implemented a novel Fuzzy Rule-Based Systems (FRBS) for diagnosis Tabular

Lamy et al. [126]
Breast cancer

Implemented a visual case-based reasoning approach for breast
cancer management Tabular

Cai et al. [127]
Prostate cancer

Algorithmic predictions (benign, grade 3, 4, and 5) were displayed as visual
overlays on the image Image

Kunapuli et al. [128]
Renal mass classification

XAI based on the Relational Functional Gradient Boosting (RFGB), a statistical
relational learning method which provides explanations in terms of tumor shape,
size, and texture metrics as well as clinical, demographic, and other factors when
they are available

Image

4. Results
4.1. RQ1: What AI-Based CDSS Have Been Developed that Incorporates XAI?

Although AI has achieved notable momentum in medicine since the early 1970s,
the use of XAI has only risen notably over the last few years. In AI-based CDSS particu-
larly, XAI did not appear until nearly a decade into the 2000s [124]. However, given the
undeniable need for transparency and explainability in medical practice and the growing
use of CDSS leveraging AI, XAI has started to be incorporated in recent AI-based CDSS.

Previous works have evaluated XAI in AI-based CDSS, but only as a secondary
aspect [99,101,103]. However, there is a number of CDSS in literature that have incor-
porated XAI (Table 1). Image-based CDSS using XAI are common [119,121,126–128].
Lamy et al. [126] present a CDSS for diagnosing breast cancer using visualization methods
for XAI. Additionally, a graphical user interface was presented to medical experts for
usability and acceptability validation. Kunapuli et al. [128] proposed a CDSS for renal
mass classification. Their XAI is based on tumor shape, size, and texture metrics as well
as clinical, demographic, and other factors when they are available. Militello et al. [121]
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proposed a CDSS for epicardial fat volume quantification. This CDSS used visualization
representations to provide explanations. They developed a user-centered graphical user
interface design, allowing them to optimize the interface for safe interaction with the physi-
cian (user experience) as well as for effective integration into the existing clinical workflow.
Lee et al. [119] proposed a CDSS for magnetic resonance imaging based Alzheimer’s dis-
ease or mild cognitive impairment diagnosis which presents a “regional abnormality map”
to visualize regional abnormalities in the brain space. Cai et al. [127] developed a Deep
Neural Network based CDSS for prostate cancer that presents its predictions on the image
as visual overlays.

Linguistic reasoners [118,122,124] and ontology-based CDSS [123,125] are the second
most common class of CDSS using XAI. Blanco et al. [122] present a CDSS to rank the cause
of death from verbal autopsy. This CDSS provides interpretable outputs by evaluating
the most important words. Tan et al. [124] proposed a CDSS based on the Wisconsion
diagnostic breast cancer dataset. The authors developed a method to improve the CDSS
tractability using human-like reasoning, step-by-step inference, clinical differential diag-
nosis methodology procedure, explanation capacity, and user-familiar terms to gain user
acceptance. Wang et al. [118] presented a framework for human-centered, decision-theory-
driven XAI building. Visualization methods, data structures, and atomic elements were
used to represent explanations in this CDSS. El-Sappagh et al. [125] present a CDSS to
diagnose diabetes which mimics the medical expert in both knowledge representation and
reasoning process. Lamy et al. [123] developed a CDSS for antibiotic treatment. They used
a graphical user interface (GUI) to identify the recommended antibiotic, and also to explain
why it is recommended and preferred over alternatives. This CDSS used a set visualization
technique called rainbow boxes for XAI.

We also found a CDSS using physiological signals [117] and a feature-based CDSS
that incorporated XAI [120]. Sadeghi et al. [117] describe the implementation of a CDSS to
predict sleep quality based on physiological signal trends in deep sleep state. Time-domain
features were used to make their system transparent and explainable. Hu et al. [120]
developed a CDSS for predicting mortality in critically ill influenza patients using feature
importance to quantify the importance of each variable based on SHAP.

4.2. RQ2: What Aspects/Methods of the Use of XAI in CDSS Have Been the Focus of
the Literature?

We classified the CDSS according to three main categories of XAI: algorithmic trans-
parency, explainer generalizability, and explanation granularity. More specifically, we
examined whether they implemented a post-hoc or ante-hoc explainability method, a model-
specific or model-agnostic technique, and whether they provided global or local explana-
tions. The classifications of the CDSS in these categories are presented in Table 2.

Almost all studies aimed for the provision of local explanations, for a specific predic-
tion. The work by Hu et al. [120] was the only one that focused on global explanations,
using a model-agnostic post-hoc technique. Most studies implemented a model-specific
ante-hoc technique that provided local explanations [122,124–126,128]. One of the studies
used a variety of model-agnostic post-hoc methods to provide local explanations in the form
of feature attribution, counterfactual rules, and sensitivity analysis [118]. The remaining
CDSS implemented model-agnostic post-hoc methods for local explanations [119,123].

In terms of post-hoc explainability, perturbation-based models that use model-agnostic
explanations are common in the literature [98,99,118,120,127] and have been used in two of
the proposed CDSS [118,120]. An additional system that incorporated post-hoc explainability
was designed by Lamy et al. [123] and provided local explanations of the preference model
using rainbow boxes [56]. Deep Neural Networks, generally a black-box technique, were
explained visually with regional abnormality maps in the system proposed by Lee et al. [119].

The remaining CDSS were created in an ante-hoc explainable manner. Rule-based sys-
tems were developed in two studies to provide local explanations, as they were considered
closer to human reasoning, and thus more preferable by clinicians [124,125]. Case-Based
Reasoning is an intrinsically explainable method that was used by Lamy et al. [126] for
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their CDSS for breast cancer, which was also supported by visual explanations in the
form of rainbow boxes and a polar multidimensional scaling scatter plot. In the study
by Blanco et al. [122], the CDSS was developed using a bidirectional gated recurrent unit
(BiGRU) with attention mechanism, which allowed for the exploration of how much each
fragment of the text contributed to a prediction, thus providing local explanations. Ku-
napuli et al. [128] built a CDSS using Relational Functional Gradient Boosting (RFGB),
a statistical relational learning method which attributes its explainability to the usage of
tree models and the provision of explanations in terms of features of interest.

Most studies used visualization as a key aspect to enhance explainability, either with
SHAP plots [118,120], regional abnormality maps [119], rainbow boxes [123,126], or the
attention mechanism that highlighted the important words that lead to a prediction [122].

Militello et al. [121] focused on the use of a user-centered GUI that functions with a
semi-automatic strategy, requiring input from the clinicians, and allows for safe interaction.
Considering that the focus of this work was on the interface, we did not include this study
in Table 2. Sadeghi et al. [117] proposed a CDSS that used a Random Forest to predict the
outcome. The authors stated that the use of time-domain features leads to a transparent
and explainable CDSS, but there is not sufficient information towards this claim. For this
reason, this study is not included in Table 2.

Table 2. CDSS classified by XAI method.

Paper XAI Method Model-Agnostic/Specific Ante-Hoc/Post-Hoc Local/Global

Wang et al. [118]
SHAP [79] for attribution, LORE [129] for
counterfactual rules, MOEA/D [130] for
sensitivity analysis

agnostic post-hoc local

Lee et al. [119]

Pre-processing to obtain regions, application of
randomised Deep Neural Networks on each
region and extraction of regional abnormality
representations in the form of a map

specific post-hoc local

Hu et al. [120] SHAP [79] for summary plot and partial
dependence plot agnostic post-hoc global

Blanco et al. [122]
BiGRU with attention mechanism to show the
contribution of each fragment of text to
the prediction

specific ante-hoc local

Lamy et al. [123] Visualised the created preference model using
rainbow boxes [131] agnostic post-hoc local

Tan et al. [124] CLFNN, which autonomously generates fuzzy
rules to provide human-like reasoning specific ante-hoc local

El-Sappagh et al. [125] Semantically interpretable FRBS with the
integration of semantic ontology-based reasoning specific ante-hoc local

Lamy et al. [126]
Visual (using rainbow-boxes [131] and a polar
multidimensional scaling scatter plot) case-based
reasoning approach

specific ante-hoc local

Kunapuli et al. [128]
RFGB, a statistical relational learning method
which uses tree models and provides
explanations in terms of features of interest

specific ante-hoc local

4.3. RQ3: What Benefits Have Been Reported When Addressing Different Aspects of the Use of
XAI in CDSS?

Several benefits of XAI used in CDSS have been reported. Some researchers presented
their XAI-based approaches to doctors or clinicians and collected feedback for usability and
acceptability validation. Vorm [106] created vignettes of intelligent systems including a
hypothetical CDSS and asked participants (graduate human–computer interaction students)
to write down any questions that they would want to ask the system to help them determine
whether or not to accept or reject the system recommendation. They reported that XAI
could provide different information types to make intelligent systems explainable and
more acceptable and trustworthy to users. Liao et al. [111] developed an XAI question bank
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to bridge the spaces of user needs for AI explainability and technical capabilities provided
by XAI work. They interviewed 20 participants to identify gaps between the current XAI
algorithmic work and practices to create explainable AI products. The results showed
that XAI could gain further insights or evidence, and thus enhance decision confidence
or generate the hypothesis about causality. In some cases, users also believed that the
interpretation of AI decisions might alleviate their own decision-making biases. XAI can
also adapt usage or interaction behaviors to utilize the AI better [111].

Xie et al. [116] developed CheXplain that enables physicians to explore and understand
AI-enabled chest X-ray analysis. They asked 39 referring physicians and 38 radiologists
to summarize how CheXplain changed their understanding of the underlying AI and
how such systems can be integrated into their existing workflow. They showed that XAI
provides implications for how physicians can explore and understand data-driven, AI-
enabled medical imaging analysis to assist physicians in the medical decision-making
process. Cai et al. [127] introduced the critical type of information needs of medical experts
to an AI Assistant. They interviewed 21 pathologists to learn about the type of information
they desired from the AI assistant. Their findings revealed that users seeking a second
opinion compare their information needs to the collaborative mental models they have
developed and their compatibility with their diagnostic models. This suggests that AI
transparency in collaborative decision making could allow experts to integrate AI assistants
into daily practice and gain a richer understanding of the key issues they find.

Lamy et al. [126] presented a visual and interpretable case-based reasoning system.
The system displays the dimension names and their associated values to explain why similar
cases are similar to the query case and on which dimensions and values the similarities are
contained. Such a visual interface can explain the reasoning process to the user, the user
can consider their own personal knowledge to enrich the reasoning process, and automatic
algorithms can better formalize the visual reasoning process. Lamy et al. [126] reporting that
a visual approach could explain why cases are similar via the visualization of shared patient
characteristics. This was useful to medical experts, as the physician needs to be aware of
the recommendations and confident in their application and use. They presented their
interface to 11 medical experts for usability and acceptability validation, demonstrating
that XAI could provide the user with a good indication of the confidence level of their
choice [126].

Even though some other XAI-based approaches have not yet been tested on users,
the benefits of the XAI presented in these works still seem likely to be useful in practice.
Kunapuli et al. [128] indicated that XAI could support specific rational reasoning processes,
enabling CDSS to support their decisions with understandable interpretations to users
with/without ML expertise. Wang et al. [118] identified that XAI could support different
explanation types by articulating how people understand events or observations through ex-
planations and can be leveraged to mitigate decision biases and cognitive biases [98,103,112].
Moreover, XAI facilities do support specific rational reasoning processes and can be de-
signed to target decision errors. They could help organize explanations, identify gaps to
develop new explanations given an unmet reasoning need, and identify appropriate mitiga-
tion strategies to select specific XAI facilities [118]. As discussed in Section 2.2.1, in 2016
the European Union passed the GDPR which has been interpreted as a requirement for any
decision made based on an algorithm to be explainable to the user [106]. XAI could help the
user understand when to trust a model and why an error may occur [97,116]. Therefore,
XAI can support compliance with the GDPR [98,103,106].

Moreover, Hu et al. [120] supported that XAI could provide a description of the
cumulative importance of domain-specific features, and a visual explanation of their
importance would enable the physicians to understand the critical features in the model
intuitively. Therefore, explainability of the support system can improve the acceptability
of CDSS by clinicians [48] increase the chances of the complex AI systems’ adoption and
clinical feasibility of a novel CDSS [105,121]. XAI therefore could greatly enhance the
effectiveness of decision-support and clinician confidence [128] especially when high-



Appl. Sci. 2021, 11, 5088 15 of 23

stakes decisions are being made [127], which is the key factor for the success of the model
in the practical use stage [122,124].

4.4. RQ4: What Open Problems, Challenges, and Needs of Explainable CDSS Are Expressed
in Literature?

The development of XAI-based CDSS still faces a series of challenges. There is no
universal definition of explainability [48,98] nor a well-recognized equivalence or dis-
tinction between “interpretable” and “explainable” ML [98]. Furthermore, the concept
of interpretability is often highly subjective [115]. Richard et al. [48] proposed a defini-
tion stating that a transparent classification system should be understandable, use an
interpretable type of classifier and learning system, produce traceable results, and use
a revisable classifier. Moreover, Wang et al. [118] believe that what constitutes a good
explanation should draw from social science instead of depending on researchers’ intuition,
and justification is required for choosing different explanation types or representations.
Furthermore, Luz et al. [97] argue that a thorough reasoning is required for choosing be-
tween transparent and black-box ML algorithms, because post-hoc interpretation methods
that develop a mirror model of the original one to add explainability could provide an
inaccurate representation of the original model.

In addition, there are some challenges associated with the clinical implementation of
XAI-based CDSS. Cai et al. [127] interviewed pathologists and found that beyond local
interpretations, clinicians also require insights of models’ overall properties, for instance,
their capacities, limitations, functionality, medical perspectives, characteristics, and design
objectives. This information enriches the explainability of CDSS and is desired prior to the
adoption of these systems in routine practice. Liao et al. [111] interviewed user experience
and design practitioners of AI products, finding that users recognized the importance of
a comprehensive transparency of the training data, in particular: their limitations; expla-
nations of how to best utilize the output; global interpretation with an appropriate level
of detail; and local interpretations; understanding of the changes and adaptation of AI
and social explanations. However, it was uncovered that users give low rankings to the
explainability needs of the performance and counterfactual explanations. The authors agree
with the human–computer interaction community that interdisciplinary cooperation and
user-centered approaches to explainability are required to close the gaps between XAI and
practices. They also discovered that identifying the motivation of explainability helps to
select XAI techniques, foresee their limitations, and fill in the gaps occurring while de-
signing user experiences. XAI needs to be interactive and human-like with customized
explanations for different users. User experience of XAI design is challenged by the current
availability of XAI techniques and other goals. Additionally, guidance for explainability
needs specification and creating explainability solutions are desired. Tan et al. [124] argue
that a CDSS should have high tractability, which requires human like reasoning, step by step
inference, explanation capacity, and user-familiar terms, to gain user acceptance. Moreover,
Jin et al. [99] reported that there is a lack of evaluation of XAI techniques on glioma imaging
due to lack of focus on practical challenges relating to clinical implementation of XAI. As to
testing the systems, Lamy et al. [126] raised the need to confirm their results on a larger user
study, in addition to the lack of user studies for some XAI-based approaches as discussed in
Section 4.3 (RQ3).

5. Discussion

The massive amounts of data generated and increasing availability of computational
resources in healthcare systems make many clinical problems ripe for the development of
AI applications. These systems will make diagnosis, treatment, prognostic efforts, follow-
up, and decision-making more straightforward, precise, and efficient. This is aided by the
fact that physicians worldwide are becoming more receptive towards, and accepting of, AI
solutions [12]. However, medical experts struggle with the gap between what is output by
an ML-based solution and human explanations. To close the gap requires interdisciplinary
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work that studies how humans explain, formalizes the patterns in algorithmic forms,
and explains outputs in a transparent, easy to interpret manner [67].

A rapid advancement of XAI is evident, and the recent study by Linardatos et al. [132]
has identified four main areas of focus: methods for explaining complex black-box models,
methods for creating white-box models, methods that promote fairness and restrict the
existence of discrimination, and methods for analyzing sensitivity of model predictions.
The authors noticed a significant amount of work on explaining complex black-box models,
especially on neural networks [132], probably due to the fact that there is great potential
in terms of complex analyses and performance. On the other hand, white-box models
are described as more challenging to create and, as a result, they seem to have lost their
popularity among developers, while despite the progress in methods to promote fairness,
the studies that have addressed this issue are also limited.

However, there is an open debate on whether or not XAI in these contexts is necessary
and/or worth the substantial overall cost [19]. Nevertheless, XAI may lead to greater
uptake and use of CDSS, and may become a requirement in the future due to societal,
regulatory, and ethical pressures [18], which could make the difference between success
and failure of the system [19]. In some scenarios, explainability of AI output will be a
requirement for the output to be used at all, in particular in high-stakes or high-pressure
scenarios [3]. Currently, most of the decisions made by AI-based CDSS cannot be interpreted
in a transparent way potentially limiting the uptake, trust, and usability of these systems in
practice [20,133]. On the other hand, there are some studies supporting that XAI is not always
necessary [46,134,135]. London [134] defends the ability to produce results and empirically
verify their accuracy as more important than the ability to explain how such results are
produced. Baldi [135] explains this argument using examples of the lack of explainability of
many processes in our daily lives, for example, how cars, computers, cell phones, or even our
brains work. Lipton [46] argues that the short-term goal of building trust with doctors by
developing transparent models might clash with the longer-term goal of improving health
care. Note that Sullivan [136] states that the opaqueness of models such as deep neural
networks is not what is limiting our understanding, but rather the “link uncertainty”,
meaning the empirical link between the model’s features and the phenomenon studied.

Additionally, Bruckert et al. [137] shed light on the difficulties that are presented when
rendering ML models explainable for healthcare purposes, highlighting that the imple-
mentation of such systems requires overlap between different disciplines and professions.
The “right” level of explainability required depends on many factors and is context and
resource specific [138]. However, explanations should be at least potentially actionable,
parsimonious, and timely [69], warranting further research [19]. Ultimately, it is presumed
that explainable CDSS will build trust with clinicians leading to increased adoption of
ML-based systems in clinical practice [12,21,69,139].

Guidelines for Implementing Explainable Models in CDSS: Opportunities, Challenges, and Future
Research Needs

Developing ML-based CDSS is a multidisciplinary process that should include the
needs of all stakeholders. This is especially true when incorporating XAI into these systems.
Consideration should be given to the designers of the system, the decision-makers using
the systems, and those ultimately impacted by the consequences of those decisions [18,20].
Models should be built in collaboration with input from those with expertise from the fields
of social and behavioral science, philosophy, psychology, and cognitive science [19,20,64].
Although XAI can assist with identifying issues with the data, the problem with unstruc-
tured medical data remains a challenge for the development of usable AI-based systems.
Angehrn et al. [103] discuss the problem and propose solutions that include (a) data ex-
change between different sources, provided that appropriate safeguards for data privacy
are in place; (b) considering the use of data mining techniques to extract crucial clinical
information which might have been captured in free text; and (c) a controlled design
process that uses AI to develop and collect data during clinical use. Additionally, we might
surpass the problem of data availability and heterogeneity by using the least amount of
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data available and the easiest-to-collect information to initiate the development of the
system [140].

Domain-specific needs must be taken into account including a thorough understanding
of the purpose of the system, the performance and interpretability of existing systems, and the
level and nature of the explanations that are required [18]. Additionally, Arrieta et al. [18]
recommend that those black-box models should be selected only when necessary and,
when possible, the use of interpretable or transparent by design algorithms should be
prioritized over complex algorithms that require the application of post-hoc XAI techniques.
Additionally, ethics, fairness, and safety-related implications, as well as the cognitive
skills and limitations of the audience must be considered when deciding what type of
explanations should be provided [18].

Metrics to evaluate the performance of XAI techniques require further study [18].
According to Arrieta et al. [18], the majority of studies are focused on subjective mea-
surements, for example, user satisfaction, the goodness of an explanation, acceptance,
and trust in the system [18]. Subjective measurements can provide valuable insight into
the user’s experience, however, there is an overall lack of validated and reliable evaluation
metrics. A summary of many quantitative metrics for the evaluation of explainability
properties (i.e., clarity, broadness, parsimony, completeness, and soundness) for different
explanation types, is presented in the work of Zhou et al. [141]. They found that some
properties (clarity, broadness, and completeness) are still in shortage of appropriate metrics,
and so is the class of explanations that are example-based. The authors have also discussed
human-grounded experiments for the evaluation of ML-explanations. They conclude their
survey by stating that “the evaluation of ML explanations is a multidisciplinary research
topic. It is also not possible to define an implementation of evaluation metrics, which can
be applied to all explanation methods.” Holzinger et al. [142] introduced the “System
Causability Scale” as means to measure explanation quality. This metric is based on “how
useful an explanation is”.

Finally, there is a need for more robust user studies [66,143]. Bussone et al. [75] found
that giving clinicians a fuller explanation of the facts that led to the system’s proposed
diagnosis had a positive effect on trust but caused over-reliance issues. On the other hand,
less detailed explanations had the opposite effect, as this made participants question the sys-
tem’s reliability and caused self-reliance issues [75]. Through a case study, Jacobs et al. [144]
found that incorrect ML recommendations may affect clinicians and lower the accuracy
of decisions, while explanations were found insufficient for addressing over-reliance on a
model that suggests erroneous decisions. They found that explanation strategies ought to
be selected according to the clinicians’ prior experience with ML and that those with prior
experience perceived a higher utility from the ML recommendations. However, there are
very few studies like this that give insight into what clinicians want or need. Similarly, there
is little discussion on the impact of XAI on patients from the patients perspective. These are
areas that will benefit from future research.

6. Conclusions

In order for Clinical Decision Support Systems (CDSS) to be used effectively in practice,
they need to be trustworthy, easy to understand, and, most of all, positively augment the
human decision-making process. Explainability is a critical component in achieving these
goals. Explainability allows developers to identify shortcomings in a system and allows
clinicians to be confident in the decisions they make with CDSS assistance. While there are
many studies on XAI in medicine, there is a limited number that focus on the context of CDSS.
In this review of XAI in CDSS, we focused on the “where” and “how” of XAI use in CDSS,
and were able to gauge some realized benefits as well as identify future needs in this area.
However, despite some user studies reporting positive views on CDSS, especially in light
of explainability, there is still skepticism around their use in practice. A lack of research in
general is likely both a symptom and cause of this. A main challenge remains the selection of
methods used to present explanations in an informative and efficient—and therefore clinically
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useful—manner. Significant work lies ahead in order to integrate useful explainablity into
CDSS. Studies focusing on all stages of CDSS development are required to establish more
firmly how explainability can be put into useful practice in this important context.
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