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Abstract: The autonomous vehicle technology has recently been developed rapidly in a wide variety
of applications. However, coordinating a team of autonomous vehicles to complete missions in
an unknown and changing environment has been a challenging and complicated task. We modify
the consensus-based auction algorithm (CBAA) so that it can dynamically reallocate tasks among
autonomous vehicles that can flexibly find a path to reach multiple dynamic targets while avoiding
unexpected obstacles and staying close as a group as possible simultaneously. We propose the core
algorithms and simulate with many scenarios empirically to illustrate how the proposed framework
works. Specifically, we show that how autonomous vehicles could reallocate the tasks among each
other in finding dynamically changing paths while certain targets may appear and disappear during
the movement mission. We also discuss some challenging problems as a future work.

Keywords: autonomous vehicles; consensus decision making; task reallocation; team formation;
obstacle avoidance path planning; auction mechanism

1. Introduction

The global market of using autonomous vehicles has grown substantially in recent
years and has become an important tool for commercial, government and consumer applica-
tions. It can support solutions in many fields and is widely used in construction, oil, natural
gas, energy, agriculture, military and other fields. Autonomous Vehicle applications have
expanded from the traditional ground-based collection and delivery problem extends to
air, underwater even to space applications. Potential applications for autonomous vehicle
systems include space-based interferometers, military mission execution [1] (i.e., com-
bat, surveillance and reconnaissance systems), hazardous material handling, distributed
re-configurable sensor networks [2]. The operation of autonomous vehicle has also been ad-
vanced from single vehicle to multi-vehicle systems in the field. The coordination between
autonomous vehicles becomes a challenging issue for multi-vehicle systems during opera-
tion. In the autonomous vehicle operations, there are tasks in controlling the movement
situation such as dynamic path planning, mission planning, multiple obstacle avoidance
and task coordination among vehicles in response to the state and environmental changes.
These tasks become more complex and interesting since the dynamic and unknown envi-
ronment can make the autonomous coordination among vehicles even more demanding
and challenging to achieve.

In this work, we treat the autonomous multi-vehicle team as a Multi-agent System
(MAS) and thus the terms “autonomous vehicle” and “agent” may be used interchangeably
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without special mention in many situations of the paper. An agent could be a vehicle,
a robot or an UAV operating in a 2D situation. A MAS is a system that adopts multiple
interacting intelligent agents to simulate distributed decision making as a coordinated
group to solve a complex problem. MAS becomes popular and important because of the
following advantages but not limited to:

1.  Easy to scale up to deal with complex problems: A single agent can only execute a
limited function and task. In a more complicated situation with multiple tasks, MAS
is more suitable to fulfill the required demands.

2. Increase the efficiency: The required task can be completed faster with MAS than a
single agent system because multiple agents can solve several tasks in parallel rather
than execute the tasks in sequence.

3. Improve the reliability: A malfunction of a single agent system results from the
mission delay or failure. However, a MAS executes tasks cooperatively as a group.
The effective collaboration and synchronization of multiple agents can construct a
more reliable system even when partial agents fail.

4. Save the cost: It is cheaper and easier to implement a batch of simple systems than to
build a complicated multi-functional system. It is in a divide-and-conquer strategy
than implementing a closely coupled complex system. The maintenance cost is also
much less.

However, there are still many challenges in building an applicable and robust MAS
for real applications, particularly in autonomous multi-vehicle problems. The challenges
include task allocation, group formation, cooperative object detection and tracking, path
and trajectory planning, collision avoidance and much more in a complicated dynamic
environment and task requirements [3]. For example, Thibbotuwawa et al. [4] point out
unpredictable weather and energy consumption will post challenges to the routing and
scheduling of UAVs to deliver goods from a pot to customer locations. In the study of
Jones et al. [5], time for robotic planning (path planning, task planning, and mission
planning) during SWAT action is an critical factor for the mission. Based on the structure of
decision-making, an autonomous multi-vehicle system can be categorized from centralized
to distributed [6]. In this paper, we model our system as a distributed MAS which does
not require a central decision maker. Each agent can make a local optimal decision based
on its own environment and goals. It does not rely on complete global information across
the entire domain. However, each agent can make an optimal decision and action based
on local information and communication with neighbors and achieve collective behaviors
that benefit as a whole. It has the advantages of high stability and flexibility. In addition,
when the regional decision-making exchange information is completed based on their
respective local information, a rule that can achieve internal consensus decision-making is
required to obtain the local optimal solution. This is also a topic that needs to be addressed
in decentralized decision-making, i.e., how to achieve the best communication and cost
efficiency with limited resources in a complex and unknown environment.

It is a challenge to avoid collisions among each other, especially when performing
multi-agent cooperative tasks. They must also be able to dodge the obstacles in the external
environment automatically. A complete set of movement path simulation software will
need to integrate with the movement map to include natural landscape terrain, information
of buildings and major objects [7].

The automatic task allocation problem is one of the challenging problems of a multi-
agent system as well. Task allocation is defined as assigning several tasks to several agents
and the agents have to carry out those assigned tasks. It is a general form of assignment
problem, which belongs to fundamental combination optimization in mathematics. Each
agent may have different capabilities and cost to perform different tasks. Each task must be
assigned to at least one agent to be carried out. The cost of the problem depends highly on
the outcome of the agent-task assignment. It cannot easily reach a consensus to an optimal
cost solution within feasible time-bound by a team of fast-moving agents.
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Many novel computer algorithms have developed in recent years to deal with the
above problems. The traditional path planning problem combined with the application
of multi-agent has also been updated in many new algorithms, such as artificial immune
algorithm [8], genetic algorithm [9], random algorithm [10] and other combinations. Deep
learning [11], flock of birds or a school of fish algorithm [12], dynamic windows ap-
proach [13], Consensus-Base Auction Algorithm (CBAA) [14] and Consensus-Based Bundle
Algorithm (CBBA) [15] are dedicated to path optimization multi-agent obstacle avoidance
and collaborative task allocation comprehensive algorithms. The research clusters can
mainly be divided into two types: centralized and decentralized. Each has its own advan-
tages and disadvantages. The former requires a leader (decision-making) and a centralized
system to collect all evidence to complete the final decision. The advantages are faster
decision-making and easier to get the best solution in the whole domain. The disadvantage
is that once the number of groups and external variation are large and the amount of infor-
mation is large, the decision-making speed and efficiency may slow down. Furthermore,
once a problem occurs in the centralized system network or the decision-maker suffers in
the event of an intrusion or attack, the followers or the entire system may break down.

In this research, we proposed a method of using distributed multi-agent systems to
achieve the autonomous path planning, obstacle avoidance and dynamic task allocation
with minimum cost and maximal reward. The proposed method allows the multi-agent
system to bid task (target) and thus divide into subgroups and then plan a trajectory to
avoid obstacles autonomously. This is especially important for military tactical and strategic
applications. Multi-agent systems need the ability to process the collected data, coordinate
via communication, make decision autonomously based on the assigned missions and
changing environmental situations. This requires the agents to reach agreements and make
decisions in real-time [16]. One important factor in increasing efficiency and effectiveness
is to group agents into several compacted subgroups. The compacted group can avoid
detection by the enemy and increase the information security during the movement mission.
Therefore, we add compactness as one of the requirements into the obstacle avoidance
algorithm in terms of cost. In summary, the overall goals of our multi-agent system are [17]:

1.  Dynamically maintaining compact formations and adaptive task allocation by con-
sensus protocols among agents;

2. Planning a dynamic path in a complex unknown environment;

3.  Forming reconfiguration flexibly while mission changes or team members change
their behaviors.

There are two major phases in our algorithm to achieve the above goals. In phase one,
the algorithm is designed to assign each task to multi-agent by Committee and Consensus
Base Auction Algorithm (C-CBAA). The second phase of the algorithm aims to avoid
obstacles and plan trajectory autonomously. We call this Committee-Based Consensus
Dynamic Trajectory Planning Algorithm (C-CDTP).

In Section 2, we brief some related works on task allocation and path planning. We
define the objectives and describe the proposed algorithms in Section 3. We then set up
different scenarios and show the experimental results in Section 4. In Section 5, we conduct
analysis and discussion on the results. In Section 6, we make a conclusion and point out
future work.

2. Related Work
2.1. Task Allocation

In a conventional task allocation problem with a group of i agents and a set of j tasks,
each agent can execute a single task and each task can only be assigned once. The process
costs and rewards depend on the kind of task and agent. The goal is to minimize costs with
the maximum reward and efficiency. Recently, numerous methods have been developed to
resolve the multi-agent task allocation problem with either the centralized or distributed
algorithm. In distributed multi-agent task allocation problem, the task allocation algorithm
can affect the overall performance as one of the leading research topics. The task allocation
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problem is a dynamic decision-making problem because it depends on time and changes
of environment and/or mission requirements [18]. Adding specific requirements will
also increase the complexity of the task allocation problem [19]. Many solutions had
been proposed to use a smart multi-agent system for task allocation. These solutions
focused on two topics. The first is to assign a set of tasks to a group of agents successfully.
Lemaire et al. [20] shows an incremental task allocation algorithm based on the Contract-
Net protocol. They proposed a parameter in order to balance the workload between the
different robots and to control the triggering of the auction process. Second, agents formed
by operators need to reach an optimal and robust consensus for mission requirements.
In 2008, Han-Lim Choi et al. [14] and Brunet et al. [21] proposed the CBAA method with a
market-based decision strategy to solve the distributed multi-assignment problem. In 2011,
Matthew Argyle et al. [15] extended CBAA to a multi-team structure on the distributed
multi-assignment problem and assigned a sequence of multiple tasks by one task to one
UAV at a time. In 2014, Darren Smith et al. [22] proposed another extension method to
reduce the number of communication volume to complete a task allocation process used in
unmanned vehicles. Shuo et al. [23] applied this problem to the military to develop the task
allocation of wandering ammunition group and considered the unique attack constraints
in the bomb combat mission.

Based on Argyle et al. [15], we propose a committee-based dynamic task allocation
algorithm not only to keep CBAA’s advantage of reaching an agreement within the dis-
tributed system but also improve it to allow each task to be assigned to autonomous
multi-vehicle in the committee to reach consensus. In our autonomous vehicle system, we
define the target as the task and a autonomous vehicle as an agent.

2.2. Path Planning

When used in autonomous vehicle systems, preventing inter-vehicle crashing and
obstacle collision is the most critical issue when forming coordination [13]. In the previous
papers, the main approaches can be seen as three categories: behavioral structure, leader—
follower and virtual structure. Each of the methods has advantages and disadvantages.

The behavior-based structure aims to design different robot behaviors such as avoid-
ing static obstacles, avoiding robots, moving to targets and maintaining formation [24,25].
The predetermined formations can also be switched by using graphical theory. The ad-
vantage of the structure is that it requires less communication with other robots due to
decentralization. However, it is unlikely to deal with problems in a more complex environ-
ment and hard to prove whether the weight of each behavior is optimal computationally.
Therefore, more machine learning researches have addressed this issue [26].

Tanner et al. [27], Fredslund and Mataric [28] and Luo et al. [29] proposed leader—
follower approaches to deal with autonomous vehicles that have limited sensing scope.
Each autonomous vehicle, excluding the leader, selects a neighbor to follow by a prede-
termined protocol. The graph of the neighbor relationship can be seen as a spanning tree,
where each autonomous vehicle can maintain a related position to its neighbor. Thus, it is
not required to sense every other autonomous vehicle’s position. However, the formation
shape is limited due to the leader—follower structure among neighbors.

All the autonomous vehicles have a geometric relationship based on a virtual point
or virtual leader formations in the virtual structure [30]. Compare to the leader—follower
approach, a virtual leader structure is proposed to improve its robustness since every
autonomous vehicle will not directly affect others’ direction but one obvious disadvantage
is that reconfigure the formation is more challenging. Rezaee and Abdollahi [31] proposed
a decentralized scheme based on both behavior and virtual leader structure to control the
formation and avoid obstacles, respectively.

To solve the above problems of the three structures, the research about consensus
theory has emerged as a challenging topic in recent years. Ren [32] has proved that
behavior-based, leader—follower and virtual structure can be regarded as special cases of
consensus theory. Therefore, many papers combined different formation control structures
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by designing consensus protocols. Baranzadeh and Nazarzehi [33] used consensus vari-
ables calculated among a autonomous vehicle and its neighbors to stabilize the formation.
Dong et al. [34] proposed a multiple-leaders scheme where all leaders should reach a
consensus before configuring a formation and the followers then converge to the convex
hull formed by those of leaders. However, the two methods are not able to deal with prob-
lems such as formation splitting and merging. Thus, Alonso et al. [35] and Zhu et al. [36]
proposed a decentralized base formation control in a dynamic environment. With different
predetermined formations, the team can reach a consensus when encountering obstacles
or a narrow trail. A consensus protocol also determines formation splitting or merging.
Min et al. [37] proposed a virtual leader approach, which only requires local knowledge
given by a UAV’s neighbors. Each UAV only needs to maintain the relative position to
keep the formation. Amanatiadis et al. [38] discussed the constraints of a multi-tasks
path planning problem for a single robot in an unexplored environment. They proposed
a Cognitive-based Adaptive Optimization (CAO) algorithm to complete operation with
minimum time.

Although many researchers have investigated the formation control problems, few
works focus on reconfiguration issue or a relatively more complex environment of high
uncertainty. Based on Min et al. [37], we propose a virtual center of gravity as a virtual
leader that we can flexibly adjust the positions for every autonomous vehicle. Therefore,
our work allows autonomous vehicle teams to avoid obstacles and inter-collision as the
higher priority and maintain distances among teammates in all situations.

3. Methodology

Different cost and operation considerations in practice can induce different types
of feasible solutions. Consider the multi-agent multi-task assignment problem where a
group of N, agents to approach N; targets (tasks) while trying to maximize the reward
of each agent. The objective of task allocation for a distributed agent system is to find an
optimal solution with enough number of agents in the subgroup using the minimum cost
of path planning. The minimum costs include the distance to the target, maintaining the
team formation without inter-collision and avoiding obstacle collision. In this research, we
propose the C-CBAA and C-CDTP for task allocation and path planning, respectively.

We consider a team of N, agents in an unknown environment, each of which has a
range of sensing areas detected by its sensors. By knowing the positions of obstacles and
their teammates in the sensing area, every agent should move from the starting area to
the target under the constraints of avoiding obstacles and keeping a safe distance among
teammates. Besides, a compact team structure needs to be figured during the whole mission
in various testing environments.

3.1. Model Formulation

Each agent must face with many different scenarios and therefore can have complex
internal states to cope with complicated tasks under different situations. At the high
level of model formulation, we model each agent with three major internal states that are
switching among each other to deal with different complicated situations. Figure 1 shows
the three moving, waiting and maneuvering states and how a state changes to another
under different situations. Most of the time, agents maintain at the moving state. Once the
set of trajectory nodes are calculated and returned from the algorithm, the agent follows the
nodes and simultaneously predicts a new trajectory. The loop is continued until another
state is switched or the target is reached. In any case during the movement, if all of the
predicted trajectories are blocked by the teammates or obstacles, the agent state will be
automatically switched to the waiting state. The waiting state refers to an agent which
stops and remaining at the same position to re-plan another path. It is usually occurs when
avoiding obstacles, formation merging especially when the orientations change frequently.
Thus, a later agent should give up its path priority until the former agent pass.
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Figure 1. State switching under different circumstances.

However, a deadlock may occur especially when most agents are congested in such an
environment as in a blind alley. To solve such a problem, we set a constant cl/ock to prevent
an agent from waiting for overtime. If clock exceeds the waiting time bound, a maneuvering
state will be invoked, as shown in Equation (1).

stop, if clock < tyuir

waiting() = { 1)

switch to maneuvering, otherwise

In maneuvering state, the agent stops and rotates its orientation in search for other
possible trajectories to the target. The maneuvering state is also invoked in other cases
such as facing with multiple or irregular-shaped obstacles. We implement the agent in
maneuvering state to rotate clockwise along the orientation with a predefined angular
velocity wygyp, that is calculated according to Equation (2).

o

0 =

gi(t) = ei(tO) +t - Whav (2)

By changing the orientation of the agent by rotating, it is possible for agent to find
other alternative paths when the leading agents are facing with deadlock situations or
current feasible paths are blocked by all team agents. Furthermore, even waiting cannot
expect to find a feasible path efficiently to resolve the deadlock.

The starting point and the target (the destination point) of each agent are given
initially by

Start; = xi(tstart)r yi(tstart)
Target = Xend, Yend

®)

where x;(tstart), Yi(Estart) is the position of ith agent at the starting time #54r¢. We then use
the linear discrete-time model (tg, t1, ..., t,) for the kinematic equations as in Equations (4).
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xi(tn) = x;(to) + ’ v;(t) - cost;(t)dt

to

Yi(tn) = yi(to) + /ttn v;(t) - sin;(t)dt 4)

0i(t) = i(to) + [ wi(Fa

foralli €{1, 2, ..., N}, where (x;(tn), yi(t,)) is the position of ith agent, v;(t) is the velocity
and 6;(t) is the orientation at time ¢t. §(t) is determined by the angular velocity w at time
t € [to, tn]. In other words, v and w are two inputs which control the motion of agents at
any time. In practice, the agents have the speed and angular velocity constraints as shown
in Equation (5).

0< vi(t) < Umax

— Wmax < wi<t) < Wmax

©)

On a battlefield with high uncertainty, we use the dynamic windows approach for

each agent to predict j trajectories Tl.] in a time window [ty, t7]. Each trajectory consists a
series of node coordinates from time f( to time ¢7 as shown in Equation (6) and we define

the last node of Tij at time t7 as the allocated target point P/.

T = {(*(to), y}(t)), (x[(t), ¥](tr)), .P]}

T j (©)

P = x;(tr), y;(tr)

The above predicted possible trajectories depend on the inputs v and w controlled by
time windows and the range of v and w can be adjusted more tightly from Equation (7)

as follows: . A
max (0,0 —a-t) < v < min(vygy, 0 +a-f) )
max(0,® — Aw - f) < w < min(wyay, @ + Aw - 1)
where constant a is the velocity acceleration and constant Aw is the angular acceleration.
Each agent predicted several possible trajectories then select the best trajectory as the
final trajectory at time o by using the consensus scoring system to be discussed in the
next section.

3.2. Consensus Scoring System

In the distributed architecture, each agent’s behavior depends not only on its own
decision but also on the behaviors of other teammates and the environment. However,
Equation (8) shows that the visual scope of each agent is limited by its sensor, in which we
define a set of neighbors as virtual committee members for each agent. Let A; denote the
sensing area of i-th agent with radius r; € N, where r; should always be greater than its
safety distance d; € N. djeqrest is the distance of agent i and its neighbor k, N; is the set of
the neighbors of i-th agent. We then define the teammates who can be sensed in the area as
the neighbors of k-th agent. Since the sensing area and the safety distance of each agent
may differ, the neighbor relationship between any two agents is essentially asymmetric.

d; < dpearest <1

Anearest = min(\/(xi - xk)z + (yi - yk)z)’Vk € Ni (8)
N; = {N},N?,..N'},¥N; € A;
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We propose a scoring system to find the minimum-cost trajectory among the candidate
trajectories predicted in the time window. The cost function of a candidate trajectory j of
i-th agent can be denoted in Equations (9):

COSt<i'j) = (1 - = ,Bl) ’ COStSpeed(i'j) ta- COStform(i/ ]) +Bi- COStiurgEt(il ])

o dnearest (9)
o, = 1 - —

Ti
where Costspeed(i, j), Cost form (i,) and Costtarget (i, j) are functions of speed cost, formation
cost and path cost to the target of i-th agent’s trajectory j, respectively. a; and B; are
respective the relative weight coefficients of formation and path cost to compromise these
factors and find the best trajectory. During the agent mission, the co-operated agents do
not only move toward the immediate target point but also move closer to the virtual center
of gravity of its team. To evaluate this cost function, Cost o, (i, j) is calculate according
to the steps as shown in Equations (10)—(13), respectively. Firstly, each agent calculates a
virtual center of gravity G;=(xg,, y¢,) based on the position of its team neighbors and itself
along a candidate trajectory j.

1

XG;

(ki D)

n JEN;

-+

(10)

yg, = i+ )
n+1 jeZI\:I,-]

Secondly, we predict the new center of gravity PG; after ¢t time window which is
used to evaluate the best trajectory. PG; is calculated based on G; with the current speed
and orientation.

Xpg;, = Xg; +tr - v; - cos;

(11)
YpG, = Yg; + tr - v; - cosb;

Lastly, the overall formation cost and target cost functions after a time window are
shown in Equations (12) and (13), respectively.

05t form (i, j) = dist(P], PG;) (12)

costtarget (i, ) = dist(Pij, Target) (13)

Furthermore, the scoring system try to achieve a balance between individual target-
path cost and team formation cost. In general, the farther the distances between an agent
with its target and its team, the faster it should move. To accommodate this scenario,
the speed cost function Cost,eq(i, j) is defined as the difference between the maximum
speed and the speed at the predicted target point after the time window along candidate
trajectory j of i-th agent. The equation used is shown as Equation (14):

Costgpeed (i, j) = Vinax — 0 (14)

The definition indicates that if an agent i moves at its maximum velocity along its
trajectory j the Costgpea(i, j) is zero.

3.3. Dynamic Task Allocation

The goal of our dynamic task allocation algorithm C-CBAA is to find a conflict-free
matching of tasks to agents that minimizes the local cost to achieve the global reward.
In our research, an assignment is said to be conflict-free if each agent is assigned to only
one target but each target can be performed by multi-agent at the same time. In order to
meet the needs of the actual goal, we proposed the idea of performing targets together by a
team. This is the most different from the conventional task allocation concept.
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Consider the agents and dynamic task allocation problem where a group of N,, agents
are planning to reach targets N; while they also manage to minimize the overall trajectory
cost of the group as Cost. This can be stated formally as:

Ny Nt .
Cost = min 2 Z Cost(i,j)Tl.] (15)
i=1j=1
subject to
Na
Y a4y > G (16)
i=1

where T/ means the trajectory j of agent i as defined in Equation (6). In Equation (16),
a;; indicates agent i selects target t and G; means the minimum number of agents that is
required by each target ¢. In other word, a target requires a minimum number of agents
to reach the target to be sufficiently carried out the task. If the total number of agents of
the group cannot execute all task requirements of targets, the farthest target away from
the center of gravity of the group will be dropped automatically. This is to ensure some
targets can be carried out by some agents successfully rather than fail all missions due to
the limited number of agents. Figure 2 shows the case of three agents in an operation of five
targets. The horizontal and vertical axes represent the x and y coordinates on the ground
by assuming agents start near the origin. The colored circles are agents in operation and
the dash lines represent the paths to the assigned triangular targets. Black dots are random
obstacles in the scenario. Each target requires one agent to execute the task, the farthest
yellow and green targets are abandoned.

Our proposed automatic task allocation method is implemented in two phases: the
auction phase and the consensus-conflict resolution phase. The former focuses on bidding
a self-target and updating information, the latter is subjected to team communication and
gain consensus to find the actual best agent to win in the auction process. Each iteration
of the task allocation requires completing both phases in sequence to reach the consensus
among agents in the task allocation.

Algorithm 1 shows the auction process of agent i for target ¢ at iteration 7. The re-
auction process starts when there is a change in the number of targets. The conventional
CBAA algorithm adds all agents to participate in the re-auction and award target ¢ to the
agent with the highest price even if an agent has already been assigned to some target.
This can cause redundant and inefficiency of task assignments. In order to improve the
efficiency of CBAA algorithm, our C-CBAA algorithm as shown in Algorithm 1 only
allows partial agents to re-bid the un-allocated targets as shown in Equation (17).

hiy = 1(cjy < Cost &z > 0) (17)

II (-) is a binary operation judgment on whether the condition is true or false, c;; is the
agent i’s minimal trajectory cost for target t using a condition defined in Equations (15), z;;
means agent i stores the least number of agents required for target t. This condition reduces
the number of participants in the bidding process and the number of auctions which
are already awarded. Therefore, only when a target disappears or the number of agents
assigned becomes less than the number of agents required by the changed target, an auction
bidding process is invoked. The performance comparison is presented in Section 4.2.2.

Algorithm 2 is the consensus and conflict resolve phase. Agent i will receive the
information from all its neighbors k in each iteration. The agent i will determine if there is
a conflict between the target T; selected from the previous phase and other agents conduct
the re-bidding process. Finally, if the agent and its neighbor(s) are assigned to the same
target, it will add as the neighbor(s) to its teammate.
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Figure 2. Simulation of scenario when number of targets exceeds the number of agents: (a) Initial state: 5 targets and 3

agents, (b) Midway state: agents search target and (c) Final state: agents arrive at their assigned targets and abandon the

farthest targets away from the center of the global gravity.

Algorithm 1 C-CBAA Phase 1 for agent i at iteration T

I S I N N = e e e e e T
220 XN a2

: Update the previous iteration data of agent i to the current data
: procedure DETECT TARGET
. if Discover new targets then

re-allocate z;;
end if

. if target disappeared then

Remove disappeared target info from agent i
re-allocate z;;

: end if
: procedure AUCTION
: if UAV i does not allocate any target then

hiy =1 (cjy < Cost & z;; >0), Vt € T

if h1;; is True then
Unallocated targets assigned to agent i with the minimize cost.
update z;;

end if

: end if
: if UAV i needs to re-bid a new target then

Compare the quantity difference between agent i’s teammates and z;;
Decide whether the agent i will re-bidding

. end if
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Algorithm 2 C-CBAA Phase 2 for agent i at iteration T

: EXCHANGE info between neighbors
: procedure CONSENSUS and CONFLICT RESOLUTION
: Update information from neighbors
: Calculate c;; with updated information
. if UAV i did not award the target then
UAV i clear all the information, update z;; and re-bidding
end if
: procedure UPDATE COMMITTEE
: agent i exchange information with neighbors.
. if agent i and its neighbor(s) are assigned to the same target then
Add the neighbour(s) to its teammate
. end if

O ® NS U AW N e

[ T
N = O

3.4. Distributed Dynamic Path Planning Algorithm

Our proposed C-CDTP algorithm is illustrated in Algorithm 3. Firstly, each agent
predicts trajectories based on a time window, rejecting the ones which may collide into
obstacles or teammates. After this step, we can assure that obstacles and inter-collision will
not occur at any time (lines 4-20). However, we should identify the difference between the
two circumstances by using a flag interCollision which may affect the agent’s decision to
change its state at the end of the algorithm. Secondly, the agent finds the minimum-cost
trajectory by using the scoring system. Lastly, the agent decides its behavior among the
three states: moving, waiting and maneuvering. In the maneuvering state, the agent starts
rotating in search of feasible moving direction to reach the target.

Algorithm 3 Dynamic trajectory planning

1: costyiy = 00, traj* =[]
2: interCollision = false
3: Calculate dynamic windows
4: for v in time window do
5: for w in time window do
6: predict a possible trajectory traj
7: if traj may collide into obstacles then
8: continue
9: end if
10: if traj may collide into teamates then
11: interCollision = true
12: continue
13: end if
14: calculate cost by using the scoring system
15: if cost,,;, > cost then
16: €08t iy = cost
17: trajx = traj
18: end if
19: end for
20: end for
21: if trajx exists then
22: return trajx
23: if interCollision is true then
24: return state = waiting
25: end if
26: end if
27: return state = maneuvering
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4. Simulation Results
4.1. Scenarios

Supposed we have a mission of using agents to detect the enemy command center
and attack potential ground targets in combat. Agents need to maintain at low altitude
movement to avoid obstacles, search targets and avoid radar detection. We can have the
following three possible scenarios:

1.  Single target scenario: A single task is assigned to a group of agents, for example,
to survey the enemy command center. Agents must plan the path to the target and
conduct comprehensive surveillance.

2. Multiple static targets scenario: The mission is to detect, identify and attack multiple
targets. For example, a missile defense system includes a radar system, command and
control center, communication system and missile launchers [39]. A fleet of agents are
taking off from the same site must be able to use the acquired knowledge to evaluate
and group to smaller squads to execute their mission independently.

3. Multiple dynamic targets scenario: Number of targets may increase or decrease
during the operation before all agents reach their destinations.

*  Decrease target scenario: Targets may be canceled or disappear during operation.
For example, a fleet of agents was launched to survey and attack an anti-missile
defense system which includes the ground radars, interceptors, command and
control centers. Agents take off from the same base and are grouped into four sub-
groups to attack individual targets. During the movement, the enemy command
center may move to a new location away from the mission range. The number
of targets decreased to three. It is also prioritized to destroy the ground radar
system to disable the enemy’s detection capability.

¢ Increase target scenario: New targets may also appear during the operation.
For example, the initial mission is to survey the enemy command center. The en-
emy adds two interceptor launchers within the operation area before agents
reach the target. Thus, the target number increases from one to three (command
center and two interceptor launchers).

4.2. Experiments

We implemented the autonomous agents system with Python tool kit on a PC with
Intel (R) Core(TM) i7-8550 running at 1.8 and 1.99 GHz and used simulation to present
the results of task assignment of agents with our C-CBAA method and Committee-Based
Consensus Dynamic Trajectory Planning algorithm to show their 2D path with different
scenarios. Four cases were simulated to demonstrate how agents can coordinate task
assignment and path planning autonomously. Section 4.2.1 shows the flexibility and effi-
ciency of our trajectory planning compression by passing through a complex environment.
Section 4.2.2 focuses on the case of static target scenario. Section 4.2.3 shows the result of
assignment change during the movement by either increasing or decreasing the number
of targets. Section 4.2.4 compares the differences between the proposed C-CBAA method
with the traditional CBAA algorithm. The parameters used in our simulation are shown
in Table 1.

The followings are the simulation results of multi-agents in different scenarios. The dash
lines are the flight trajectories of agents. Agents are colored dots and different color repre-
sents different subgroup. The triangle symbols are the targets. Greyed areas and black dots
represent the obstacles.
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y(m)

25

Table 1. Simulation parameters.

Parameter Value

UAV radius (r) 04m

safe distance (dg; ) 0.8 m
minimum velocity (v,,i,) 0Om/s
maximum velocity (vyax) 15m/s
maximum acceleration (a,,x) 0.3 m/s?
minimum yaw rate (wy,,) —40 - g5 rad/s
maximum yaw rate (Wiyax) 40 - % rad/s
maximum yaw acceleration (wyax) 40 - % rad/s
predicted time (t7) 2s

time tick 02s

4.2.1. Passing through Complex Environment

To evaluate the capability and flexibility of the configuration formation change in
terms of compactness, we set up a narrow passage for the teams to pass through. In the
simulation, agents are expected to change their formation by switching their moving
states to waiting states or vice versa in order to orderly pass through the narrow passage.
The result is shown in Figure 3 where a team of 8 agents start from the left and the target is
set on the right. We use the color for agents to identify the states while passing through
the passage, Figure 3a is evident that both sides of the agents predict the inter-collision
may occur before entering and therefore they wait for the other teammates to pass first.
In Figure 3b where the green agents represent the ones in a moving state and the black ones
are for the waiting state.

20 4

y(m)
r'y
25
20
151
L Y o
:.-.' A P
¥ 10 1 [ ]
o
5
N >x(m) ° o 5 2 : >x(m)

(@) (b)

Figure 3. Simulation of trajectories in a narrow passage: (a) Waiting state validation, (b) All passing.

More complex obstacles are designed to evaluate the comprehensive functionality
of agents in changing formation and finding a path to get around the obstacles. Due to
the range limitation of sensors, agents cannot predict the obstacles that may block their
moving direction far away in advance. Our algorithm requires neither fixed leader nor
fixed formation so that the team can easily move in any direction even the opposite one
in order to find an alternative path solution in facing with an environment with complex
distribution of obstacles.
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Figure 4a shows that the 6 agents are encountered with a dead-end corner shortly
after they moved for some distance at the beginning. Nevertheless, the leading agents
would invoke a maneuvering state when they found that no path was available. On the
other hand, the following agents behind would switch the moving state to the waiting state
and thus waited for their teammates to move. To prevent the deadlock for the whole team
to wait for each other, we preset a time-out variable clock. The clock is randomly assigned
from 2 to 3 s for dealing with the synchronizing problem. That is, every agent will start to
move and search for new feasible paths after the time-out. Finally, if there is a feasible path,
the team would successfully find the alternative route and then continue to move toward
the target.

Figure 4b shows the analysis of agent’s performance from N =1 to 15, where N =1
represents a single agent which does not require formation coordination. The green line
denotes the agent’s average distance, while the red line denotes the total spent time. Since
we define v,y = 1 m/s in the simulation, the average waiting time when agents are
being stuck can be analyzed from the difference between both lines. It can be seen that
the average distance is not affected much by increasing the number of agents that implies
the stability and efficiency of the formation coordination algorithm. On the other hand,
the total time spent depends on N due to the waiting of agents to get around the obstacle
that blocks the team moving direction. In the situations where agents attempt to find a
way out of the obstacles, each agent will switch between the waiting and the maneuvering
states to prevent a deadlock. In another word, its behavior is somewhat similar to data
retrieval in a stack (i.e., last-in-first-out structure) and the total time spent is a linear growth
depends on N.

—— average distance(m)
—— time(sec)

140
120
100

60

average distance(m)/mission time(sec)

40
0 2 4 6 8 10 12 14 16

=5

T T T " y Number of UAVs

(@) (®)

Figure 4. UAVs in Maze-like environment and Analysis: (a) All trajectories in a maze-like environment, (b) Line chart of the

average distance and the total time spent.
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4.2.2. Static Target

Figure 5 shows the simulation of static single target. We place random obstacles
between the starting and target positions to evaluate the coordination capability between
agents using our algorithm. The number of agents as well as the number and distribution
of the obstacles can be given arbitrarily. Figure 5a shows agents launch around the starting
positions near the lower left corner toward the target position near the upper right corner.
Agents must achieve the goal position by adjusting their paths and maintaining as a
compact group as possible to avoid obstacles. The agents do not know the obstacles prior
to realizing that they get near an obstacle or other agent by a sensor. The obstacle avoidance
path planning is conducted autonomously by agents to minimize the cost. Agents can
adjust their trajectory constantly to avoid collision between agents and environmental
obstacles. Agents can aggregate as a compact group afterwards and fly to the destination
as shown in Figure 5b. We run the simulation many times with random distribution
of obstacles to evaluate the robustness of path planning. Obstacle avoidance and all
results turn out to be able to find a satisfactory trajectory to reach the static single goal.
Each agent only needs to exchange information with its neighbor teammate because we
design the algorithm in a distributed method in computing the path for each agent during
the movement.

y(m) y(m)
30 30
25 7'y 25 4
[ ]
20 20 4

15 15 4

10 101

! ! ! 0+ el . . } ! : x(m
20 25 30 35 X(m) =5 0 5 10 15 20 25 30 35 ( )

(a) (b)

Figure 5. Simulation of static single target. (a) Original toward to the target. (b) Finally stop at the target.

Figure 6 shows the simulation of multiple static targets. The purpose of this simulation
is to evaluate the effectiveness of our algorithm in the case of multiple targets and obstacles.
In the experiments, we adopted nine agents that were randomly placed around the starting
position and took off at the same time to approach four goal targets which are indicated by
triangular symbols with a different color in a 2D space. Obstacles were placed randomly
between the starting positions of agents and the targets with varying sizes, as shown in
Figure 6a,b shows the result of the simulation using the proposed method. Agents were
grouped into four subgroups and planned the trajectories autonomously. The trajectory
and formation are based on minimum costs which include the distance, the compactness
of the group without the inter-collision among agents and the collision with obstacles.
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Figure 6. Simulation of static multi target. (a) Original toward to the target. (b) Finally stop at the target.
4.2.3. Dynamic Target
Since in a dynamic situation, the targets can appear and disappear, in order to evaluate
the difference of the effects on our methods, we separate the experiments into two aspects,
dynamically increasing the targets versus decreasing the targets. Figure 7 shows the
simulation of increasing targets. The original targets are denoted by red, yellow and blue
triangles. Nine agents launch from the starting positions and are demanded to approach
the targets as groups Figure 7a. After 40 iterations of time steps, a new target (indicated as
a purple triangle) was added and it turns out that the two subgroups in blue and yellow
were reconfigured into three subgroups. We assume the newly added target has the same
priority as the original blue and yellow targets. Moreover, the subgroup targets in red did
not change their path Figure 7b.
y(m) y(m)
30 30
254 254
L]
20 A 20
L]
(34 oo
15 4 o0 15 4 oo
[ ] [ ]
101 ' A 10
[ ] [ ]
e 9 oo
5 1 ,lli'.,;ﬂe‘:é/. had 5 4
s w v m B w W e e s w B w m W
(a) (b)

Figure 7. Simulation of increasing target. (a) Original toward to the target. (b) Finally stop at the each target.

Figure 8 target disappeared during the movement after 40 iterations of time steps. It
turned out that the red group was split shows the simulation in decreasing a target. Four
targets in terms of red, yellow, blue and purple colors and denoted with triangle symbols
that appeared initially. A fleet of nine agent launched from the starting position and was
demanded to move toward targets as four subgroups as shown in Figure 8a. We tentatively
set that the red and joint to other groups that were approaching to the blue and yellow
targets, respectively, as shown in Figure 8b.
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Figure 8. Simulation of decreasing target. (a) Original toward to the target. (b) Finally stop at each the target.

4.2.4. Comparison with the Previous Method CBAA

In this section, we compared the performance between the CBAA and the proposed
C-CBAA algorithm when the number of targets varies from one to three. Obstacles are
also randomly distributed in the testing scenarios and the target(s) are randomly appeared
and disappeared during the movement in the scenarios. The efficiency is based on the
average number of iteration steps needed to finish re-allocation task due to the change
of targets. We simulated the same scenarios with different number of agents (3, 6, 9, 12
and 15, respectively) and the results are as shown in Table 2 to compare the efficiency at
situations with different agent complexity. Figure 9a shows the result of increasing targets
while Figure 9b shows the result of decreasing targets. Both results show that the C-CBAA
outperforms the CBAA algorithm against different numbers of agents. When the number
of targets was increased randomly, C-CBAA converges 31% faster than the original CBAA
on average. The advantage of using C-CBAA is more obvious in the case of decreasing
targets. In Figure 9b, the red line shows C-CBAA converges 48.72% faster than CBAA.
The reason is that the target reduction only needs to deal with the reduced target group. It
merely re-allocates a target to each agent in the group again, as shown in Figure 9b. On the
other hand, while the number of targets are increased, the groups responsible for other
adjacent targets must be taken into consideration in order to re-allocate the new targets
among them as shown in Figure 9b. It turns out that the performance of the C-CBAA
algorithm takes less time to reach consensus than the CBAA when the number of targets is
decreased. Furthermore, the difference of the average iterations is increased as the number
of agents is increased. It implies that the C-CBAA is even more effective than the traditional
CBAA algorithm in a highly complex mission scenario.

Table 2. Efficiency comparison between CBAA and C-CBAA algorithms under different target
change scenarios.

Average Iterations Agents
Conditions 3 6 9 12 15
Algorithms
CBAA 255 | 47 | 6.2 6.9 8
increasing C-CBAA 1.5 35 | 425 | 48 55
average improvement(%) 31%
CBAA 2.6 5 7.3 10 | 121
decreasing C-CBAA 1.7 | 26 3.5 4.6 54
average improvement(%) 48.72%
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Figure 9. Compare the performance of two algorithms. (a) Increasing targets. (b) Decreasing targets.

5. Analysis and Discussion

The simulation results show that our algorithm can be applied to the operation

of multi-agent systems for both single and multiple targets at either static or dynamic
scenarios. The proposed C-CBAA algorithm has various advantages on path planning and
task allocation in multi-agent mission operations:

1.

Collision avoidance between agents and obstacles: The C-CBAA use a lead-trail
formation as the preferred configuration formation to avoid collisions among agents.
As we can see from Figure 5, all agents in a group maintains a linear separation to
avoid a collision before arriving at the target positions. Trail formation is also easier
to go around the obstacles without interference by the other agents.

Reach the targets simultaneously with a minimum cost: agents are grouped based on
the initial target requirements such as the number of agents needed and the distance
of each agent to its target. This ensures agents in the same group reach the assigned
target at the same time to execute the mission. The same conditions are applied to the
task re-allocation when the target number changes. Figure 7 shows an example of a
new purple color target added into the operation. It turns out that C-CBAA assigns
the task to the nearest UAVs for the yellow and blue groups. The algorithm selects
enough number of UAVs to minimize the mission time with the minimum distance to
the new target.

Collision avoidance after reaching the targets: The formation changes to a line forma-
tion as agents approaching the target. The followers re-route to the sides of the leader
agent so they can increase the surveillance area and execute the mission at the same
time. The path planning algorithm in C-CABB will consider collision avoidance dur-
ing the change of formation. This can be seen from the simulation result of Figure 6b.
There is a path crossing between the purple and yellow groups. Our C-CBAA can
prevent this possibility of collision and instruct the P3 agent in the purple group to
change its position to the left when its group approaches to the target. The selected
path also avoids the collision within the group by routing from the back of the group.
The same path planning strategy can be found from the case of target decreasing
scenario as shown in Figure 8b. The B1 agent arrives at the center position of the line
formation first. It will circle to the left position to avoid the collision with the next
arriving agent to the center position.

Reach to target simultaneously and avoid obstacles: The C-CBAA considers the
constraints of reaching the target at the same time and avoids obstacles in task
allocation during the flight. Figure 8a shows the trajectories of agents before removing
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the red target during the movement. The R2 agent is closer to the yellow target and
easier to run around the obstacle than the R1 agent. Therefore, it is assigned to
the yellow target after removing the red target. Another example can be seen from
Figure 6b. The R2 agent changes its position from the back to the left to avoid the
possibility of collision to the obstacle. The same can be found in the red group
of Figure 7b.

6. Conclusions

In this research, we tackled scenarios of multi-targets task allocation with random
obstacles in real time movement environment. Two algorithms are proposed under the
distributed MAS architecture to achieve the target autonomously. The Committee and
Consensus Base Auction Algorithm and Committee-Based Consensus Dynamic Trajectory
Planning Algorithm can perform task re-allocation and avoid obstacles while maintain-
ing a compact formation in real time. Simulation results confirmed that the proposed
algorithms C-CBAA were able to converge faster than the baseline CBAA methods under
various scenarios.

The current task allocation is based on a load balancing method by assuming each
agent has the same load during the operation and each agent only assigns one task. In the
future, we are considering allowing agents to take more than one task within the time limits.
In reality, task allocation should also consider the priority of the task, task requirements
and the functional capabilities of each agent. The same for the path planning during the
obstacle avoiding process. There should be a weighting associated with the risk for a path
option in obstacles avoidance. We plan to allow different weightings to targets as well as
obstacles for path planning in the future. We also plan to expand our algorithms to a 3D
application such as the operation of UAVs.
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