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Abstract: In this review, we present an analysis of the most used multi-agent reinforcement learn-
ing algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the
most critical issues that must be taken into account in their extension to multi-agent scenarios. The
analyzed algorithms were grouped according to their features. We present a detailed taxonomy of
the main multi-agent approaches proposed in the literature, focusing on their related mathematical
models. For each algorithm, we describe the possible application fields, while pointing out its pros
and cons. The described multi-agent algorithms are compared in terms of the most important char-
acteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability,
and observability. We also describe the most common benchmark environments used to evaluate the
performances of the considered methods.

Keywords: machine learning; reinforcement learning; multi-agent; swarm

1. Introduction

In the field of machine learning (ML), reinforcement learning (RL) has attracted the
attention of the scientific community owing to its ability to solve a wide range of tasks by
using a simple architecture and without the need for prior knowledge of the dynamics
of the problem to solve. RL has found uses in many applications, from finance [1] and
robotics [2–4], to natural language processing [5] and telecommunications [6]. The core
of a RL system is the agent that operates in an environment that models the task that it
has to fulfill. In all of the above applications, the RL agents interact with the environment
via a trial and error approach, within which they receive rewards (reinforcement) for their
actions. This mechanism, similar to human learning, guides the agent to the improvement
of its future decisions in order to maximize the upcoming rewards. Despite the success of
this approach, a large number of real-world problems cannot be fully solved by a single
active agent that interacts with the environment; the solution to that problem is the multi-
agent system (MAS), in which several agents learn concurrently how to solve a task by
interacting with the same environment [7]. In Figure 1, we show the representation of the
RL structure for a single agent and for an MAS.

MASs can be used in several fields, for example, traffic control, network packet
routing, energy distribution, systems of robots, economic modeling, and the analysis of
social dilemmas. For these reasons, in the last few years, researchers have attempted
to extend the existing single-agent RL algorithms to multi-agent approaches. Empirical
evaluations, however, have shown that a direct implementation of single-agent RL to
several agents cannot converge to optimal solutions, because the environment is no longer
stationary from each agent’s perspective. In fact, an action performed by a certain agent can
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yield different rewards depending on the actions taken by the other agents. This challenge
is called the non-stationarity of the environment and is the main problem to address in order
to develop an efficient multi-agent RL (MARL) algorithm.

Figure 1. (a) In the single-agent RL paradigm, an agent interacts with an environment by performing
an action for which it receives a reward. (b) In the MARL paradigm, from the agent’s point of view,
the other agents may be considered to be part of the environment, which of course changes due to
the actions of all the agents.

Even when convergence is obtained, typically, this kind of algorithm can maintain
acceptable performance in terms of the quality of the policies derived and speed of conver-
gence only if a restricted number of agents is involved. The scalability to a high number of
agents is an essential feature that must be taken into account when developing algorithms
that can be applied to real-world problems [8].

In this survey, we present an introduction to multi-agent reinforcement learning. We
focus on the models used to the describe the framework environment and how to adapt
the most relevant single-agent reinforcement learning techniques for multi-agent settings.

Below, we present an assortment of MARL algorithms that address the above-mentioned
challenges of non-stationarity and scalability. We then address partially observable envi-
ronments. For MAS, partial observability is far more common than in the single-agent
setting; thus, it is crucial for the development of algorithms that can be applied to real-
world problems. Finally, we introduce an overview of the most common benchmarking
environments used to evaluate the performances of RL algorithms. This work is intended
to be an introduction to multi-agent reinforcement learning, introducing the main chal-
lenges of the field and the main solutions adopted in the literature. Finally, we describe
typical applications of MARL. While the research into MARL is still at an early stage and is
often not supported by theoretical proof, it has shown promising progress in terms of its
application. It could be considered a novel approach to achieve systems that are capable of
helping humans perform complex tasks, such as working in hazardous environments, and
exhibit general artificial intelligence.
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2. Background

In the field of machine learning, reinforcement learning stands apart from the classic
paradigm based on learning from examples. It adopts a trial and error procedure using
a reward provided by an interpreter that observes the interaction of the agent with the
environment. It takes inspiration from research into animal learning [9] combined with
theoretical concepts of optimal control theory.

The interaction between the agent and the environment can be described by three
fundamental elements: state, actions, and reward. The state represents a particular configu-
ration of the environment, the actions are the options that the agents have to interact with
to modify the environment, and the reward is a signal used to define the task of the agent
and is what motivates the agent to pick one action with respect to the others.

The learning process is iterative. The agent senses the environment while collecting
its current state. The agent performs an action, thereby reaching the next state, and it
receives a reward based on the combination of the state and selected action. This process is
then repeated. The agents adopt a policy to determine the best action to select, which is a
mapping from all the possible states of the environment to the action that can be selected.

The reward, however, is not sufficient to determine the optimal policy because an
instantaneous reward does not give information about the future rewards that a specific
action can lead to—that is, the long-term profit. For this reason, it is useful to introduce a
new kind of reward: the return value Rt. If we write as rt the reward received by the agent
at the time-step t, the return value over a finite length time horizon T is defined as

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . + γT−t−1rT =
T−t−1

∑
i=0

γirt+i+1 (1)

Sometimes, the return value is also considered for non-finite time horizons.

Ri =
∞

∑
i=0

γiri+1 (2)

where γ is a discounted factor such that 0 ≤ γ < 1. To evaluate the quality of a particular
state or state–action pair, it is possible to define two value functions. In particular, under a
policy π, the value function of the state is calculated as

Vπ(s) = E[Rt|st = s, π] (3)

and the value faction of the state–action pair is calculated as

Qπ(s, a) = E[Rt|st = s, at = a, π] (4)

A value function can be expressed as the relation of two consecutive states st and
st + 1 defining the so called Bellman Equations (5) and (6).

Vπ(s) = ∑
a

π(st, a) ∑
st+1

p(st+1|st, a)(Wst→st+1|a + γVπ(st+1)) (5)

and

Qπ(s, a) = ∑
st+1

p(st+1|st, a)

(
Wst→st+1|a + γ ∑

a′
π(st+1, a′)Qπ(st+1, a′)

)
(6)

A way to approximate the solutions to these equations is by using dynamic program-
ming. However, this approach requires complete information about the dynamics of the
problem. Model-free RL algorithms can be considered as an efficient alternative.
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2.1. Multi-Agent Framework

Before introducing the algorithms used in RL, we present the most used frameworks
for modeling the environment of such applications. We begin with the single-agent formu-
lation and then extend the concept to multiple agents.

2.1.1. Markov Decision Process

In the single-agent RL, the environment is usually modeled as a Markov decision
process (MDP).

Formally, a Markov decision process is defined by a tuple (S, A, P, R, γ), where

• S is the state space;
• A is the action space;
• P : S× A → δ(S) is the transition probability from state s ∈ S to s′ ∈ S given the

action a ∈ A;
• R : S× A× S→ R is the reward function, whose value is the reward received by the

agent for a transition from the state–action pair (s, a) to the state s′;
• γ ∈ [0, 1] is the discount factor and is a parameter used to compensate for the effect of

instantaneous and future rewards.

2.1.2. Markov Game

When more than one agent is involved, an MDP is no longer suitable for describing the
environment, given that actions from other agents are strongly tied to the state dynamics.
A generalization of MDP is given by Markov games (MGs), also called stochastic games.
A Markov game is defined by the tuple (N, S, {Ai}i∈N , P, {Ri}i∈N , γ), where

• N = 1, 2, 3, . . . , N is the set of N > 1 agents;
• S is the space observed by all agents;
• Ai is the action space of the i-th agent and A := A1 × A2 × · · · × AN is called the joint

action space;
• P : S× A→ δ(S) is the transition probability to each state s‘ ∈ S given a starting state

s ∈ S and a joint action a ∈ A;
• Ri : S× A× S→ R is the reward function of the i-th agent representing the instanta-

neous reward received, transitioning from (s, a) to s′;
• γ ∈ [0, 1] is the discount factor.

2.1.3. A Partially-Observable Markov Decision Process

A partially-observable Markov decision process (POMDP) is a generalization of an
MDP that considers the uncertainty regarding the state of a Markov process, allowing a
state information acquisition [10]. We can define a POMDP using two stochastic processes:
the first is a non observable core process Xt that represents the evolution of the state and
is assumed to be a finite state Markov chain; the second is an observation process Yt that
represents the observations received by an agent. There is a probabilistic relationship
Q = [qxy] between Xt and Yt that links the probability of observing a particular value of
Yt = y if the agent is in the state Xt = x.

qxy ≡ Pr{Yt = y |Xt = x} (7)

A POMDP is well suited to modeling a large variety of RL problems even though it is
an intrinsically more complex method than using an MDP.

2.1.4. Dec-POMDP

A decentralized partial-observable Markov decision process (Dec-POMDP) is defined
by the tuple 〈I, S, A, T, R, Ω, O, γ〉, where

• I is the set of n agents;
• S is the state space;
• A = ×i A(i) is the joint action space;
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• Ω = ×iΩ(i) is the observation space with Ω(i).

The state S evolution is based on the transition probability T(s, a, s′) : S×A→ δ(S).
It indicates the probability that, given the joint action a and the current state s, the next
state will be s′. At every time step, all agents receive an observation o(i) ∈ Ω(i) given by
the joint observation probability O(o, s′, a) = P(o|s′, a). For each agent i, we can define

its local observation history at iteration t as ~ot
(i) = (o(i)1 , . . . , o(i)t ), where ~ot

(i) ∈ ~Ot
(i)

.
At every iteration, the team receives a joint reward rt = R(st, at) conditioned by the
joint action and the current state. This is used to maximize the expected return over the
horizon T V = E[∑T

t=0 γtrt] where γ is the discount factor [11]. As in the Markov games
framework, the objective is to maximize the expected return by selecting an optimal joint
policy. However, in this case, the policy performs a mapping from local observations to

actions; thus, we can write the local policy of agent i as π(i) : ~Ot
(i) → A(i).

2.2. Single-Agent RL Algorithms

The field of RL is extremely broad, and over the last few years, a multitude of algo-
rithms have been presented. To categorize them, the first division can be made between
model-free and model-based algorithms. Model-based algorithms require users to have
access to a model of the environment, including the transition probability and the asso-
ciated reward, or to learn the model directly during training. They then use the model
to plan the best action to take. An example of this approach is the DYNA algorithm [12].
This approach leads to an optimal solution; however, in most applications, a model of the
environment cannot be obtained or would be too complex to implement. Moreover, the
quality of the solutions is sensitive to error in the model estimation. Another downside is
a loss of computational efficiency in cases in which the model is highly complex but the
optimal policy is very simple. An example could be a complex robotic system that has to
learn only how to move forward. In recent research, the efficiency of the learned model has
been addressed, obtaining state-of-the-art performances with approaches such as MuZero
and AlphaZero [13,14].

Model-free algorithms do not require any knowledge about the model, and they
operate by directly optimizing the policy or other value parameters. This type of approach
is goal-oriented and can perform in a variety of environments and adapt to their changes.
In this work, we focus exclusively on model-free algorithms. Model-free algorithms can be
further divided in two fields: value-based approaches and policy-based approaches.

The objective of value-based methods is to find good estimates of the state and/or
state–action pair value functions V(s) and Q(s, a). The optimal policy is selected using a
fixed rule to map from the value functions to the actions; for an example, take the ε− greedy
policy, which selects the action associated with the higher Q-value with probability 1− ε
and a random action with probability ε. An example of this approach is the famous
Q-learning algorithm [15]. Policy-based methods do not require the value function to
be estimated but use a parameterized policy that represents a probability distribution of
actions over states πθ = Pr[a|s] as a neural network. The policy is directly optimized by
defining an objective function and using gradient ascent to reach an optimal point. If we
consider, for example, the reward as the objective function, we can derive the expression

∇θE[R(S, A)] = E[∇θ log πθ(A|S)R(S, A)] (8)

which is known as the policy gradient theorem. While the expected value of the reward
cannot be differentiated, the policy can, making gradient ascent possible. A last category
of RL algorithms that originates from the combination of policy-based and value-based
methods is the actor–critic approach. As shown in Figure 2, in an actor–critic algorithm,
two different learning agents are defined:
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• The critic, which has the task of estimating the value function, typically using TD
methods;

• The actor, which represents the parameterized policy and updates its action distribu-
tion in the direction "suggested" by the critic using a policy gradient.

The critic outputs a signal that changes the action selection preferences in order to
chose actions related to higher value functions more frequently. This kind of algorithm
presents a reduced variance in the gradient estimates due to the use of the value function
information to guide the policy evolution. In addition, minimal computation is required
to select an action as there is no need to compare different state–action values, and it is
possible to learn an explicitly stochastic policy [16].

All of these methods, as summarized in Figure 3, have been used with success in the
solution of RL problems, and their effectiveness is dependent on the type of problem.

Figure 2. The structure of an actor–critic algorithm.

Figure 3. The taxonomy of reinforcement learning algorithms.

2.2.1. Q-Learning

Q-learning [15] is a form of model-free, value-based reinforcement learning. It takes
inspiration from dynamic programming and methods of temporal differences such as
TD(0) [17]. The Q-learning agent faces the task of determining an optimal policy that
maximizes the total discounted reward; this policy π∗ is such that

V∗(s) ≡ Vπ∗(s) = max
a

{
Rs(a) + γ ∑

s′
Pss′ [a]V

π∗(s′)

}
(9)
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where Rs(a) is the average reward received by an agent in the state s if it selects the action
a, and Pss′ [a] is the transition probability from the state s to s′, given the action a. The object
is to estimate the state–action pair value function (Q-values); this is done by creating a
matrix Qn(s, a) of dimensions S× A containing the estimates of all the value functions at
the time-step n. At each iteration n of the learning process, the Q-values are updated using
the equation

Qn(s, a) =

{
(1− αn)Qn−1(s, a) + αn[rn ∗ γVn−1(sn+1)] if s = sn and a = an

Qn−a(s, a) otherwise
(10)

where αn is the learning rate, rn is the instant reward received, and

Vn−1(sn+1) = max
a′

Qn−1(sn+1, a′)

It was shown in [18] that, under the assumption of bounded rewards |rn| ≤ R and
learning rates 0 ≤ αn < 1 such that

∞

∑
i=1

αni(s,a) = ∞,
∞

∑
i=1

[αni(s,a)]
2 < ∞ ∀s, a, (11)

the estimates Qn(s, a) will converge to the optimal Q-value Q∗(s, a) with probability 1.

2.2.2. REINFORCE

REINFORCE is a class of episodic reinforcement learning algorithms that have the
most simple implementations of the policy gradient methods; for this reason, the name
vanilla policy gradient exists [19]. The policy is directly optimized without the need to
estimate the value functions. The policy π is parameterized with a set of weights θ such that
π(s; θ) ≡ πθ(s), and it is the probability distribution of actions over the state. Regardless
of the architecture of the parameterized policy, all REINFORCE algorithms use the same
weight update procedure:

θ ← θ + α(Rt − b)∇θ ln πθ (12)

where α is a non-negative learning parameter, Rt is the discounted return value, and b is
the baseline, which is used to reduce the variance of the gradient estimation. b is a function
of the state (a constant without loss of generality). The steps to implement a REINFORCE
algorithm are the following:

1. Initialize the policy parameters θ at random;
2. Use πθ to generate a trajectory, which is a sequence of states, actions and rewards,

πθ : s1, a1, r2, s2, . . . , rT ;
3. For each time-step t = 1, 2, . . . , T,

1. Estimate the return Rt;
2. Update policy parameters using Equation (12);

4. Iterate the process.

2.2.3. A3C

Recalling the policy update rule of REINFORCE θ ← θ + α(Rt − b)∇θ ln πθ , a fre-
quently used baseline b is a learned estimate of the state value function b(s) = Vπ(s; θv). If
this kind of baseline is selected, we can express the term Rt − b as an advantage function
A(at, st) = Q(st, at)− V(st) because Rt is an estimate of the state-action value function.
This approach can be viewed as an actor–critic method in which the actor is the policy
network πθ and the critic is represented by the baseline. In [20], A3C (asynchronous advan-
tage actor critic) and its synchronous variant A2C are presented; the algorithm maintains
a policy function π(at|st; θ) parameterized by θ and an estimate of the value function
V(st; θv) parameterized by θv. In the formulation, the weights are considered separately; in
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the implementation, the same deep convolutional neural network is used to approximate
the policy and the state value, with the only difference being in the separated output
layers (a soft-max layer for the policy and linear layer for the state value). The algorithm
continues for a number of steps tmax or until it reaches a terminal state; the return value is
then calculated, and the updating of the parameters is performed following the gradient.
In Algorithm 1 the psuedocode of the A3C algorithm can be found.

∇θ′ log π(at|st; θ′)A(st, at; θ, θv)

with A given by

A(st, at; θ, θv) =
k−1

∑
i=0

γirt+i + γkV(st+k; θv)−V(st; θv)

(13)

The algorithm was trained and tested in a variety of domains, such as the Atari 2600
platform, improving upon the results of state-of-the-art RL algorithms such as the Deep
Q-network [21].

Algorithm 1 A3C Pseudocode [20].

//Assume global shared parameter vectors θ and θv and global shared counter T = 0
//Assume thread-specific parameter vectors θ′ and θ′v
Initialize thread step counter t← 1
repeat

Reset gradients dθ ← 0 and dθv ← 0.
Syncronize thread-specific parameters θ′ = θ and θ′v = θv
tstart = t
Get sate st
repeat

Perform at according to policy π(at|st; θ′)
Recieve reward rt and new state st+1
t← t + 1
T ← T + 1

until terminal st or t− tstart == tmax

R =

{
0 for terminal st

V(st, θ′v)for non-terminal st // Bootstrap from last state
for i ∈ t− 1, . . . , tstart do

R← ri + γR
Accumulate gradients wrt θ′ : dθ ← dθ +∇θ′ log π(ai|si; θ′)(R−V(si; θ′v))
Accumulate gradients wrt θ′v : dθv ← dθv + ∂(R−V(si; θ′v))

2/∂θ′v
end for
Perform asynchronous update of θ using dθ and of θv using dθv

until T > Tmax

3. The Limits of Multi-Agent Reinforcement Learning

MARL algorithms can be coarsely divided into three groups depending on the kind
of reward given by the environment: fully cooperative, fully competitive, and mixed
cooperative–competitive. In the cooperative setting, all the agents collaborate to maximize
a common long-term return. An example of this setting is a smart energy grid, in which
multiple buildings (agents) with different energy production capabilities have to share
energy in order to minimize the outside-grid energy demands. Another is an autonomous
driving setting in which the vehicles have to collaborate in order to avoid collisions while
trying to maximize traffic flow and possibly fuel efficiency. In competitive settings, the
return of all the agents sums to zero. A variety of board and card games, including chess,
Go, and poker, belong to this setting, and are of great interest in the reinforcement learning
community as benchmarks for algorithms. Mixed settings combine the aforementioned
characteristics and present a general-sum reward; a typical example of this is constituted by
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team games in which the agents have to cooperate with their own team-mates while com-
peting with the opposing teams. The transition from single-agent to multi-agent settings
introduces new challenges that require a different design approach for the algorithms.

3.1. Nonstationarity

The environment in a multi-agent setting can be modified by the actions of all agents;
thus, from the single-agent perspective, the environment becomes non-stationary. The ef-
fectiveness of most reinforcement learning algorithms is tied to the Markov property, which
does not hold in non-stationary environments [16]. Policies created in a non-stationary
environment are deemed to have become outdated. Despite the loss of theoretical support,
algorithms designed for the single-agent setting have been applied in multi-agent settings,
such as independent learners (IL), occasionally achieving desirable results [22] . A naive
approach to tackle the non-stationarity is the use of joint action learners (JAL). This uses
a single-agent RL but with the joint action instead of the local action used to compute
its value functions. This approach eliminates the problem of non-stationarity entirely;
however, it is computationally ineffective, and the action space dimension becomes |A|N ,
where N is the number of agents, making it difficult to scale this type of approach to more
than a few agents. In addition, to ensure that every agent knows the actions of others,
some type of centralized controller or communication network is required [23]. In [24],
a variation of Q-learning for swarm systems is presented, called Q-RTS. The key idea is
to use a centralized aggregation center to combine all the Q-value tables of the agents to
form a global swarm matrix Qsw(s, a) containing the highest and lowest Q-values repre-
senting the most interesting iterations by the agents. The swarm matrix is then linearly
combined into the local Q-value matrix of each agent Qi(s, a) using an independence factor
β ∈ [0, 1), controlling the tradeoff of local and global knowledge. The Q-learning update
then proceeds independently on Q′i for each agent.

Q′i(st, at) = βQi(st, at) + (1− β)Qsw(st, at) (14)

An FPGA implementation was also proposed [25].

Varying Learning Speed

The effect of environmental non-stationarity is to make the reward information of
state–action pairs related to past iterations obsolete, and this effect grows as time progresses.
Several approaches tackle this challenge by adopting varying learning rates with the aim of
guiding the training to the most efficient joint policy. In the context of cooperative games,
hysteretic Q-learning [26] is an algorithm that improves the performance of standard
independent learners approaches. The reward is shared between agents and conditioned
by the joint action; thus, an agent can be punished even if it select the optimal option due
to the bad actions of other teammates, who might be exploring. The algorithm applies a
different learning rate if the update would cause a decrease of the Q-value using the update
Equation (15) under the condition that β < α.

δ← r−Qi(ai, si)

Qi(ai, si)←
{

Qi(ai, si) + αδ if δ ≥ 0
Qi(ai, si) + βδ else

(15)

This heuristic has the positive effect of implementing "optimistic" agents that are able
to ignore the bad rewards caused by the actions of others, improving the performance
compared to traditional IL approaches in cooperative MGs. In [27], the authors argue
that in order to obtain robustness against incorrect future reward estimation, in the early
iterations of the reinforcement learning algorithms, the agents need to show some sort of
leniency towards others. In particular, the future reward for a performed action can be
assessed as the maximum reward received over a number of different actions chosen by the
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other agents. The proposed algorithm is called lenient multi-agent reinforcement learning
(LMRL) and implements varying leniency, lowering the amount that each agent exhibits in
the later stages of learning. Agents decide the amount of leniency to apply by associating a
temperature with each state–action pair. The level of leniency is inversely proportional to
the temperature and decreases as those state–action pairs are selected.

3.2. Scalability

As the number of agents increases, there is a growth in the joint action space. For this
reason, centralized approaches, in which an observer selects the actions after receiving the
action–state information of every agent, require large amounts of computational resources
and memory to work with more than a couple of agents. A possible solution to the curse of
dimensionality in MARL is to use independent learners, but as we have seen, this approach
is unable to obtain consistent results in a non-stationary environment. A third model of
agent connection is the decentralized setting with networked agents. In this setting, every
agent is able to interact with the environment and to exchange information with few other
agents (typically, those in its vicinity), creating a time-varying communication network
between all the agents. Algorithms developed for this setting are scalable to a massive
number of agents and more real-world-oriented applications, as the absence of a central
controller and uncertainty in communication links are typical requirements in a large
number of applications. In [28], a distributed version of Q-learning, namely, QD-learning,
is proposed under the assumption that each agent is only aware of its local action and
reward and the inter-agent communication network is weakly connected. The optimal
policy is achieved by agents sending their Q-values to their neighbors. The update of the
Q-value is then computed locally for each agent using the following equation:

Qn
i,u(t + 1) = Qn

i,u(t)− βi,u(t) ∑
l∈Ωn(t)

(
Qn

i,u(t)−Qn
l,u(t)

)
+

+ αi,u(t)
(

rn(xt, ut) + γ min
v∈U

Qn
xt+1,v

(t)−Qn
i,u(t)

) (16)

In can be seen from Equation (16) that the update is defined by two processes, consen-
sus and innovation, where the former is the sum of the differences of the Q-value of the
agent and the Q-values of its neighbors, controlled by the weight sequence βi,u(t), and the
latter is the traditional Q-learning update rule weighted by the sequence αi,u(t). In [29], the
same setting of decentralized reinforcement learning with networked agents is addressed
using an actor–critic algorithm. The policy is parametrized by a set θ ∈ Θ, and the gradient
of the globally averaged return J(θ) with respect to θ is given by

∇θi J(θ) = Es∼dθ ,a∼πθ
[∇θi log πi

θi (s, ai) · Aθ(s, a)]

= Es∼dθ ,a∼πθ
[∇θi log πi

θi (s, ai) · Ai
θ(s, a)]

(17)

The local advantage function Ai
θ(s, a) : S× A→ R is defined as

Ai
θ(s, a) = Qθ(s, a)− Ṽi

θ(s, a−i) (18)

where Ṽi
θ(s, a−i) = ∑ai∈Ai πi

θi (s, ai) · Qθ(s, ai, a−i) and a−i is the action chosen by every
agent except for agent i. The advantage function is not available considering only local
information, so Aθ is estimated with the state–value TD-error, which is an unbiased
estimator of the advantage function.

Deep Reinforcement Learning

Function approximation is a common technique for reducing the number of pa-
rameters in high-dimension state–action spaces. The use of a deep neural network to
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approximate the state–action value function, called deep reinforcement learning (DRL),
was first presented in [21] in the single-agent setting and achieved promising results in
the training of an agent capable of playing a large set of Atari 2600 games using the raw
pixel data from the screen as the input for training. The success of the proposed approach
is based on two features. The first is the introduction of an experience replay mechanism
in which every experience tuple et, composed of the state transition, action selected, and
reward received, is stored in a dataset and then randomly batched to train the action–value
approximation network. This method eliminates the correlation between consecutive
iterations, which is inevitable for sequentially generated data points. The experience replay
also has the additional effect of increasing the sample efficiency by reusing experience
tuples. The second feature is the use of two networks to approximate Q, the Q-network,
and the target network; the parameters of the latter are updated every C steps with the
Q-network parameters and used as the target of the training loss function, defined as

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γ max

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2
]

(19)

in which γ is the discount factor; θ−i and θi are the parameters of the target network and
of the Q-network at iteration i, respectively. Policy gradient methods have been extended
to make use of deep neural networks, keeping the advantage of allowing for policies
in the continuous action space. In [30], a deep Q-network was combined with an actor–
critic approach. The parameterized actor µ(s|θµ) that represented the policy and the critic
Q(s, a|θ) that estimated the value using the state–action pair were represented by DQNs.
The networks were trained using a deterministic policy gradient algorithm with a batch
normalization technique [31]. The performances obtained have motivated the research
community to adopt deep networks in the multi-agent environment. In [32], the lenient
reinforcement learning algorithm was adapted to DRL, and the authors thus proposed the
lenient deep Q-network (LDQN) algorithm. In [33], the authors proposed two techniques
to stabilize the effect of the experience replay in the multi-agent setting: low-dimensional
fingerprints, made by a Boolean vector, were added to the experience tuple to disambiguate
training samples; and importance sampling, which consists of recording the other agent
policies µ−a(u−a|s) = ∏i∈−a πi(ui|s) in the experience replay, forming an augmented
transition tuple 〈s, ua, r, π(u−a|s), s′〉tc . The DQN parameters θ are trained by minimizing
the importance-weighted loss function analogous to Equation (19).

L(θ) =
b

∑
i=1

πtr
−a(u−a|s)

π
ti
−a(u−a|s)

[(yDQN
i −Q(s, u; θ))2] (20)

where b is the size of the batch used in the learning and yDQN
i is the output of the

target network.

3.3. Partial Observability

Most of the algorithms presented are based on the assumption of the full observability
of the state by all agents. In most real-world applications, this condition is rarely present,
as agents observe different instances of the state; for example, an agent may have vision of
only its surroundings, making the observations correlated with its geographical position,
or the agents might be provided with different sets of sensors. In the setting of DRL,
the algorithms developed for the full state can only achieve desired performance if the
observations are reflective of the hidden system state. In [34], an algorithm called the deep
recurrent Q-network (DRQN) was proposed. The first layer of the DQN was replaced
with recurrent long short-term memory (LSTM). This architecture was tested on flickering
versions of Atari games in which the state (the pixels of the game screen) was sometimes
presented to the agent and sometimes obscured. In this benchmark, DRQN achieved
better performance than the traditional DQN. This idea was transferred to the multi-agent
setting in [35], which integrated hysteretic learning [26] to deal with the non-stationarity
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of the environment and the capabilities of representing the hidden state space of deep
recurrent Q-networks, proposing an algorithm called the decentralized hysteretic deep
recurrent Q-network (Dec-HDRQN). In the work, a variation of the experience replay
mechanism called concurrent experience replay trajectories (CERTs) was used. In CERT,
each experience tuple (o(i)t , a(i)t , rt, o(i)t+1) containing the current observation, action, and
reward, and the subsequent observation, is indexed by the agent number, the time-step
of acquisition, and the episode. The samples given to the Q-network for training are then
taken from this structure in a synchronized way.

3.3.1. Centralized Learning of Decentralized Policies

Scalability and partial observability are connected problems, especially when consid-
ering the applications of algorithms to real-world problems. In a setting with an extremely
high number of agents, as in the case of the number of autonomous driving cars in a city, it
is impossible for every car to have full information about the state, as cars cannot exchange
information with each other without a prohibitive communication overhead. The full
information about the state could therefore not be useful for executing an optimal policy,
but it could be useful during the learning phase to correctly estimate the value-functions or
the policy gradients. To exploit this dichotomy, the paradigm of centralized learning of
decentralized policies was introduced. The idea behind this is that, during learning, it is
often possible to have access to a simulator of the environment or a central controller, or
have additional information about the state. We can imagine a setting in which the agents
are, for example, a swarm of drones trained in a closed building, such as a hangar, with
limited visibility, and the extra information about the state of the environment is given by
a fixed camera looking down on all of the drones. In [36], a comparison between various
training schemes—centralized, independent learning, and centralized training—for decen-
tralized policies using parameter sharing is presented. A parameter sharing variant of the
single agent algorithm trust region policy optimization (TRPO) [37], namely, PS-TRPO, is
presented. The decentralized paradigm obtained the best performance of all the training
schemes in the evaluation phase. In addition, the scalability of the PS-TRPO algorithm
was addressed using curriculum learning [38], in which the agents had to solve a number
of sub-tasks that increased in difficulty in order to coordinate with an increasing number
of agents. To exploit the utility of having a centralized learning phase in [39], a novel
actor–critic architecture, called the conterfactual multi-agent policy gradient (COMA),
was presented. In the training, a single centralized critic is used, which estimates the
Q-function using the joint action and the full information on the state, or in the absence
of a well-defined state, the concatenation of all the local observations made by the agents,
and several decentralized actors that deploy a policy which maps from local observations
to an action. Additionally, COMA tackles the challenge of multi-agent credit assignment
in a cooperative setting where there is a unique reward shared to all the agents. Training
is more efficient if each agent is able to determine how an action reflects on the success
of the task. This is done through the use of a counterfactual baseline; each agent receives
a shaped reward, which is the difference between the reward obtained at the time-step t
and the reward that would be obtained if the agent actions were to change to the default
Da = r(s, u)− r(s, (u−a, ca)). It can be shown that any action by the agent a that improves
Da also improves the true global reward. The main downsides of this approach are the
necessity for a simulator of the environment to calculate r(s, (u−a, ca)) and the choice of the
default action ca, which is not always trivial. Both of these problems were addressed by the
architecture of the critic which computed for each agent an advantage function as follows:

Aa(s, ua) = Q(s, u)−∑
ua

πa(ua|oa)Q(s, (u−a, ua)) (21)

In particular, the actions u−a are given as an input to a network that determines the
state–action value for each action of the agent a in a single forward pass.
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This algorithm (full pseudocode can be found in Algorithm 2) was tested in Starcraft,
a combat-based video-game environment. Several homogeneous and heterogeneous unit
combinations, with each one represented by an agent, were considered. It was shown
that, in that setting, COMA reached competitive performance in regard to fully centralized
methods with better training speed. While the paradigm of the centralized learning of
decentralized policies is easily implementable for actor–critic and policy gradient methods,
it is not as straightforward when considering value-based methods. A possible approach
was presented in [40] that consists of decomposing the team value function into agent-wise
value functions. The assumption on which this approach is based is that the joint action–
value function can be factorized according to each agent’s Q-function based only on each
agent’s local observation:

Q((o1, o2, . . . , oN), (a1, a2, . . . , aN)) ≈
N

∑
i=1

Qi(oi, ai) (22)

Algorithm 2 COMA pseudocode [39].

Initialise θc
1, θ̂c

1, θπ

for each training episode e do
Empty buffer

for ec = 1 to
BatchSize

n
do

s1 =initial state, t = 0, ha
0 = 0 for each agent a

while st 6= terminal and t < T do
t = t + 1
for each agent a do

ha
t = Actor (oa

t , ha
t−1, ua

t−1, a, u; θi)
Sample ua

t from π(ha
t , ε(e))

end for
Get reward rt and next state st+1

end while
Add episode to buffer

end for
Collate episodes in buffer into single batch
for t = 1 to T do //from now processing all agents in parallel via single batch

Batch unroll RNN using states, actions and rewards
Calculate TD(λ) targets ya

t using θ̂c
t

end for
for t = T down to 1 do

∆Qa
i = ya

t −Q(sa
j , u)

∇θc = ∇θc +
∂

∂θc (∆Qa
t )

2 //calculate critic gradient
θc

t+1 = θc
t + α∇θc // update critic weights

Every C steps reset θ̂c
t = θc

t
end for
for t = T down to 1 do

Aa(sa
t , u) = Q(sa

t , u)−∑u Q(sa
t , u, u−a)π(u|ha

t ) //calculate COMA

∇θπ = ∇θπ +
∂

∂θπ
log π(u|ha

t )Aa(sa
t , u) // accumulate actor gradients

end for θπ
t+1 = θπ

t + α∇θπ //update actor weights

Each agent taking a greedy action to maximize their returns is equivalent to a central
controller maximizing the joint action–value functions. The value decomposition network
(VDN) used DQN or DRQN, with the possibility of communication between agents at a
low level (sharing observations) or high level (sharing network weights). It was tested in a
two-dimensional grid environment, obtaining better performances than the centralized
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and independent learners methods. The limit of this approach is that not every multi-
agent problem can be approximated and solved as a summation of Q-functions. In [41],
the VDN method was extended with the QMIX algorithm. The authors argued that a
full factorization of the value function is not required to extract effective policies. It is
sufficient that the result of an argmax on the joint action–value functions produces the
same result to apply an argmax to all the individual action–value functions. This is possible
if a monotonicity constraint is enforced between the total Q-value Qtot and local agent
Q-value Qa.

∂Qtot

∂Qa
> 0, ∀a (23)

Each agent value function Qa(oa
t , ua

t−1) is represented by a DRQN that takes, as its
input, the local observation and the last action at each time step. Then, the singular value
functions are combined using a mixing network, which is a feed-forward neural network.
The weights of the mixing network are bounded to be non-negative to enforce the condition
presented in Equation (23). These weights are determined by a separate hyper-network
which takes the augmented state as its input. The networks are trained to minimize the
loss function in a way analogous to DQN:

L(θ) =
b

∑
i=1

[
(ytot

i −Qtot(τ, u, s; θ))2
]

(24)

with transitions sampled by the replay buffer. In the evaluation carried out in the StarCraft
II Learning Environment, QMIX obtained better results than VDQ at the cost of the added
architectural complexity. VDQ combines the local Q-functions using a simple summation,
whereas QMIX uses a neural network.

3.3.2. Communications between Agents

In the case of the partial visibility of the environment, the use of communication
between agents is often a necessity, as collaborating agents can then better infer the under-
lying state of the environment. Communication protocols are often hand-designed and
optimized for the execution of particular tasks. In contrast with this approach, in [42], a
simple neural communication model called CommNet was proposed, which learned a task-
specific communication protocol that aided the performance of the agents. Considering a
setting with J fully cooperative agents, a model was proposed with a = Φ(o), where a is
the concatenation of discrete actions for each agent j and o is the concatenation of all agents
observations. Φ is built from modules f i consisting of a multi-layer neural network with
i ∈ 0, . . . , K, where K is the number of communication steps of the network. Each agent j
sends two input vectors to the module—the agent’s hidden state hi

j and the communication

ci
j, and f i outputs the next hidden state hi+1

j . The evolution of the hidden space and the
communication message is regulated by the following equations:

hi+1
j = f i(hi

j, ci
j) (25)

ci+1
j =

1
J − 1 ∑

j′ 6=j
hi+1

j′ (26)

The first hidden state is obtained through an encoder function h0
j = r(sj), which takes

the state observation of agent and outputs its hidden state. h0
j is made of a single layer

neural network. After the last round of communication, a decoder function, made of a
single layer neural network followed by a softmax, is used to convert the hidden state hK

j to

a probability distribution over the space of action q(hK
j ). The action is chosen by sampling
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this distribution. A variance of the broadcast transmission represented by Equation (26) is
a local connectivity scheme:

ci+1
j =

1
|N(j)| ∑

j∈N(j)
hi+1

j′ (27)

where N(j) is the neighborhood of agent j.
This model was tested with various difficult tasks, including a traffic simulation with

four connected crossroads, with the objective being to avoid collisions while trying to
maximize the vehicle flow. Promising results were obtained even with a very limited—if
not absent—observability of the state. Another similar work addressing the communication
problem in a multi-agent partially-observable setting was presented in [43] using a deep
distributed recurrent Q-network (DDRQN) architecture. This approach takes inspiration
from the single-agent DRQN algorithm [34] and generalizes it to a MA setting by making
three fundamental modifications: Last-action inputs—giving each agent access to its
previous action as an input for the next time-step; inter-agent weight sharing—a single
network is learned causing a quicker learning process. Weight sharing allows diverse
behavior between agents, as the agents receive different observations and thus evolve in
different hidden states; disabling experience replay—this modification is made as the non-
stationarity of the environment renders old experiences obsolete or misleading. As a proof
of concept, this architecture was used for the solution of two multi-agent reinforcement
learning problems based on the well known riddles of the hat riddle and the switch riddle.
In these problems, the optimal solution can only be achieved if the agents reach a consensus
on a communication protocol to use to solve the task. In Table 1, a summary of all the
presented algorithm can be found with a brief explanation of its principal features and their
scientific spreading. The latter was evaluated according to the number of search results
from the Google Scholar indexing service. In Figure 4, a summary of all the algorithms
with regard to the challenges they address is presented.

Figure 4. Challenges encountered by each algorithm.
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Table 1. Summary of MARL algorithms.

Algorithm Type of Agent Learning Structure Features Scientific Spreading

Hysteretic
Q-Learning [26] Value based Independent learners Uses a different learning rate for increasing and decreasing Q-values.

No need for communication between agents 1100

Lenient Q-Learning [27] Value based Independent learners Accumulates rewards for a state–action-pair and then update it using
the maximum reward 333

QD-learning [28] Value based Networked agents Receives the Q-values from agents in the proximity with the objective of
minimizing the difference and reaching consensus 104

Actor–Critic with Net-
worked Agents [29] Actor–critic Networked agents Both the policy of the actor and the Q-estimates of the critic are parame-

terized. The agents share the parameters of their critic to reach consensus 3050

Lenient deep Q-
network [32] Value based Independent agents Stores a temperature variable in the experience replay to decide the

amount of leniency to apply to the updates 97

Multi-Agent Deep Q-
Network [33] Value based Independent agents Use of importance sampling and low-dimensional fingerprints to disam-

biguate samples in the experience replay 3380

Dec-HDQRN [35] Value based Independent agents
Integrates the recursive neural network to estimate the non observed
state and hysteretic Q-learning to address non stationarity. Possibility to
use transfer learning to adapt to multi task applications

49

PS-TRPO [36] Policy optimization Centralized training
Shares parameters between agents during training. The policy parame-
ters are bounded to change in a trust region. Can scale progressively to
more agents using curriculum learning

23

COMA [39] Actor–critic Centralized training A centralized critic is used only during the training phase. Can differen-
tiate rewards between agents using a conterfactual baseline 4750

VDN [40] and QMIX [41] Value based Networked agents The Q-table of the joint action can be factorized as a sum or a combination
of independent Q-Tables 847

CommNet [42] Policy optimization Networked agents
The agents communicate for a number of rounds before selecting their
action. The communication protocol is learned concurrently with the
optimal policy

319

DDRQN [43] Value based Networked agents Uses a deep recursive network architecture in a partial observable setting
with the use of parameter sharing to speed-up the learning process 3510

Q-RTS [24] Value based Centralized training
Agents create a global knowledge Q-matrix combining their most valu-
able experiences and make updates on a linear combination of the matrix
and their local Q-table.

108
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4. Benchmark Environments for Multi-Agent Systems

Reinforcement learning, especially when compared to more traditional data-driven
machine learning approaches, presents an implicit difficulty in terms of evaluating the
performance of its algorithms. For small problems, it is possible to compare the obtained
policies to optimal ones computed using, for example, game theory. The performance is
evaluated as the number of steps and/or episodes required to converge at the optimal
policy. When the state and actions space grow in size—for example, due to the introduction
of multiple agents—the optimal solution gradually becomes intractable, and this type of
approach cannot be used. Since reinforcement learning uses an online, experience-based
approach to learn policies with data generated by a simulator or by in-field implementation,
it is a natural fit to use the same infrastructure during the evaluation phase to determine
the effective performance of the algorithm. There are two main types of environments used
to evaluate the performances: continuous and episodic-based simulation. In a continuous
simulation, the agents act in an environment that is capable of generating tasks for a
theoretical infinite time horizon, and the performances can be represented as the sum of
cumulative rewards over a fixed time-step window. This could apply to a traffic simulation
in which the performances are determined by the number of total collisions in a fixed
time slot. On the other hand, episodic-based simulations are characterized by a number of
final states that represent the completion of a task and a maximal time-step at which the
system reaches a terminal state, indicating that the task has failed. In this case, a possible
benchmark could be to run a number of episodes and present the percentage of completed
tasks over the number of simulated episodes.

MazeBaze [44] is a highly configurable, open source, 2D learning environment that
is suitable for cooperative and competitive tasks. The environment is represented by a
rectangular grid in which a set of items is placed; these items could be obstacles, goal grids,
movable objects, doors, and switches, granting a flexible approach for task definitions.

MazeBaze was developed for single-agent environments but is easily adapted to multi-
agent scenarios, as was performed in [42] to create a traffic junction, as shown in Figure 5.
The environment can be sensed by the agents as a set of features or directly using the pixel
representation of the environment as an input. Another useful framework to evaluate
the decision making and coordination capabilities of a group of agents is the strategic
video-game Starcraft—in particular, the Starcraft II Learning Environment (SC2LE) [45],
which is a combat-based learning environment that allows the development of algorithms
with heterogeneous agents with partial observability. The difficulty of the problem makes it
a good benchmark for cooperative multi-agent algorithms. If the end-goal of the algorithm
is to develop robotic movement control, the physics-based environment of MuJuCo [46]
is ideal. This environment offers some robotics-related features, such as the avoidance of
joint violation and the capability to operate in continuous action spaces.

Figure 5. Traffic junction environment.
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5. Applications

MARL algorithms have been used in a variety of applications in different fields thanks
to their ability to model competitive and cooperative scenarios. In [47], a team of UAVs
equipped with a downward-facing camera was considered; the UAVs were assigned the
task of optimal sensing coverage. The drone fleet had to cover an area of interest under
its FOV while minimizing the overlap between camera captures. This task is required in
several applications, such as wildlife monitoring or search and rescue, where the use of
UAVs is growing due to their mobility and ease of deployment. UAVs are considered as
independent agents, and the convergence to a singular joint action policy is obtained by the
means of social conventions. The agents act in a prior-defined order so that the last agent
can observe the preceding actions of its teammates and make a decision accordingly. This
action selection order allows easy collision avoidance, as the agents are not able to choose an
action that will cause a collision with its predecessors. To emphasize collaboration between
agents, a single global reward is used during learning, and to reduce the dimensionality
of the state space, several techniques of function approximation are implemented. In [48],
the authors proposed a novel actor–critic multi-agent reinforcement learning algorithm
to address the problem of multi-UAV target assignment and path planning (MUTAPP). A
team of UAVs operates in an environment containing target locations to reach and locations
to avoid and has to decide the most efficient way to maneuver while avoiding collisions.
The critic and the actor are designed according to the multi-agent deep deterministic
policy gradient (MADDPG) algorithm [49]. The critic of each agent shares its actions and
observations during training while the actor network works exclusively based on local
information. The reward signal is factorized into three components, with each one being
responsible for a desired behavior: minimizing travel distance, avoiding collisions with
other agents, or avoiding collisions with target areas. The evaluation was performed using
the openAI platform and showed that the proposed algorithm can solve the problem of
MUTAPP. In terms of convergence speed over the number of agents, the method showed
some evident limitations in scaling.

Another UAV application used a UAV team to implement a network for line-of-sight
(LoS) communications using MARL to optimize resource management, including the
transmit power and subchannel selection [50]. The multi-agent setting is addressed via
independent learner agents using Q-learning to maximize the future rewards, defined as
the difference between the data throughput and the cost of power consumption. Agents
select an action tuple θm(t) = (am(t), cm(t)), pm(t) where am(t) is the selected user, cm(t)
is the selected subchannel and pm(t) is the power level. A simulation showed that, in this
context, if a high exploration level is selected (ε = 0.5), the algorithm can reach a tradeoff
between system performance and information exchange that other methods in this setting
require, such as the Gale–Shapley algorithm, which is based on the matching theory for
user selection [51]. In [52], the authors study the problem of the limited spectrum in UAV
networks considering a relay-based cooperative spectrum leasing scenario. The UAV fleet
needs to transmit its data to a fusion center and does that by forwarding data packets for a
ground user in exchange for spectrum access. The objective of the algorithm is to partition
the UAVs into two groups: the relaying group, which handles the data transfer for the
ground user, and the transmitting group, which forwards packets to the UAV fusion center.
The learning algorithm is developed in a distributed way using independent learner agents
using Q-learning without the need for communications, but only has access at the task
partition, which serves as the state (we can consider this to be a fully observable setting).
The algorithm was tested in scenarios with two UAVs and six UAVs and in both cases
managed to achieve the optimal configuration.

In [53], a multi-agent approach based on a CommNet architecture [42] was proposed
to coordinate the operation of the wireless recharging towers of a group of UAVs. The
aim of the algorithm was to schedule the UAV to serve, determine how much energy
should be delivered, and share the energy between charging towers. Each tower had
access to a local photo-voltaic power generator, and the energy was shared to minimize
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the purchase of electricity from the energy market, resulting in lower operating costs.
The proposed algorithm was tested in an urban simulation consisting of 30 UAVs and
four charging towers. It performance improvements over the baseline policies of random
sharing and scheduling.

Applications of MARL do not consider only the control of UAV fleets. In [54], the
problem of a joint top-down active search of multiple objects was addressed. Each detector
was an agent, and deep reinforcement learning was used to learn the optimal policy for
object localization. Coordination between agents was obtained by the use of a differential
message for each agent, which was a function of the action selected and the state of
the environment with parameters θm, m(a, s; θm). The agent-wise Q-function was then
defined as

Q := Q(i)(a(i), m(i), s(i), m(−i); θ
(i)
a , θ

(i)
m ) (28)

The agent could control the effect of messages from other agents in its decision making
process by the use of a learning gating mechanism. The algorithm was tested with a
two-agent implementation on a series of datasets for joint image detection of man–bike,
ball–racket, or person–handbag; the joint model achieved good performance using fewer
iterations than the single-agent counterpart. Agents managed to "help" each other by
sending clues about the correlations between object locations in the messages. In [55], a
deep multi-agent reinforcement algorithm was developed to regulate the energy exchange
between a community of buildings with heterogeneous energy production and storage
capabilities. The objective was to reach nearly zero energy community (nZEC) status, which
is defined as "A micro-grid that has distributed generation, storage, delivery, consumption
and zero net annual energy balance." The buildings were modeled as DRL agents, and the
authors proposed the presence of a community monitoring service (CMS) to aggregate data
from all the agents and enable cooperation. Each agent used its local energy generation,
consumption, and storing states as its states, and the energy balance of the entire community.
This information was used to select an optimal action, maximizing the global reward signal
given by the CMS, which was the negative of the community energy status

r = −
(

n

∑
i=1

c(hi)− g(hi)

)
(29)

where c(hi) is the energy consumed by the i-th house and g(hi) is the energy generated by
the i-th house. This approach was tested in a simulation of a summer and winter setting
with up to 10 agents and confronted with some behavioral baselines, including never-share,
always share and a random selection of actions. Baselines were outperformed especially in
the summer setting. A limitation of this approach is that the learning was conducted using
an episodic base approach and thus there is no guarantee that using an online learning
approach would lead to the same convergence to an optimum.

In [56], a novel multi-agent reinforcement learning algorithm called Equilibrium
selection MARL (ES-MARL) to control the energy scheduling of residential microgrid was
presented. The microgrid consisted of renewable energy generators (RG) (wind turbines
and photo-voltaic), households that demanded energy from the grid and a number of
electric vehicles (EV) that could offer or request energy when connected to a recharging
station with a Vehicle to Grid (V2G) connectivity. The algorithm uses several types of agents:
an EV Aggregator agent that macromanages the exchanges of energy of all the EVs parked
by demanding a certain charging power from the grid or by offering power to the grid
while selecting the price; a User Aggregator agent, which receives the energy demand of the
residential household and decides how much load to curtail (i.e., reducing air conditioning)
and how much load to shift to another time-step (i.e., postponing the use of a washing
machine). Two RG agents—one for each type of energy generation—were used to decide the
price for selling their energy production. Cooperation between the heterogeneous agents
is achieved throughout the action of an Equilibrium Selecting Agent with the objective
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of separately negotiating with all the agents to select the optimal equilibrium based on
the average reward. Several scenarios of the microgrid were simulated, and the proposed
approach showed an higher average reward compared to single-agent reinforcement
learning approaches. When confronted with another MARL algorithm, such as Nash-
Q [57], ES-MARL showed a faster convergence rate.

A similar application but for an industry production control setting was presented
in [58]. An independent MARL algorithm based on Proximal Policy Optimization (PPO)
was proposed to control the energy exchanges in a factory, composed of local power
generators (renewable and fuel based), a battery system and a certain number of resources
that could consume power to produce a variety of products. Each of these elements
were represented in the algorithm as separated agents and a market agent that regulated
the energy purchase from the energy market. The coordination between agents was
encouraged by the use of a global reward combined with agent-specific local rewards. The
reward function could be decomposed into energy and production costs that needed to
be minimized. The proposed algorithm was compared to a reactive control strategy (RCS)
and a predictive–reactive control strategy (PCS). MARL outperformed the RCS but did
not match the performance of the PCS, indicating that it was able to reach only a local
optimum. Comparing the time required to make a decision ( 1 s for MARL and 2.5 h for
PCS), the MARL approach showed the capability to operate online and change its policy in
real-time according to stochastic changes in the environment, such as changes of electricity
cost or the failure of a production job.

The autonomous driving setting is a natural framework to develop MARL algorithms;
however, controlling vehicles with passengers on-board requires strict safety guarantees
that are not compatible with the learned nature of MARL. In [59], a safe reinforcement
learning algorithm was presented. The policy function was decomposed into a learned
policy for desires and trajectory planning. The desires policy was related to granting
a comfortable driving experience (for example, the absence of sharp curves or sudden
acceleration) and producing a cost function over driving trajectories and was learned
through using policy gradient methods. The trajectory planning, on the other hand, was
not learned and was tied to hard constraints. It took as its input the cost function and aimed
to find a trajectory that minimized the cost while enforcing driving safety. For the trajectory
planning, an approach based on the option framework was used [60]. The resulting
algorithm was tested in the noticeably difficult setting of a double-merge intersection while
avoiding collision.

A multi-agent reinforcement learning framework was used to address the fleet man-
agement problem for large-scale online ride-sharing platforms such as Uber and Lift [61].
The authors proposed two algorithms, namely, contextual DQN (cDQN) and contextual
actor–critic (cA2C), which allocate each car (represented by an agent) to a particular zone
of a city, divided into hexagonal grids. The computational efficiency was increased by the
use of contexts: a geographical context was employed that reduced the action space of an
agent in a grid by filtering the actions that would lead to an infeasible grid, as well as a
collaborative context that avoided situations in which the agents moved in conflicting di-
rections (for example, swapping grids at a given time). The efficiencies of those algorithms
were tested in a simulator environment calibrated using the historical data provided by the
Didi Chuxing ride-sharing app. It was compared to independent-DQN and the historical
data, achieving good performances in terms of gross merchandise volume (GVM) and
order response rate.

In [62], an independent deep Q-network (IDQN) architecture was used to address a
heterogeneous multi-junction urban traffic controlled scenario. The state was considered as
an image-like representation of the simulator environment, and the actions for each agent
(which represents an intersection) were the possible configurations of a traffic light. The
reward to be maximized was connected to the cumulative waiting time of all the vehicles in
the road network. The algorithm was tested in an open-source traffic simulator SUMO [63],
showing promising results, particularly in a low-traffic setting.
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In [64], a framework for developing an RL algorithm for the smart charge–discharge
of a lithium battery pack was proposed in order to achieve a longer lifespan of electric
vehicles, cellular phones and embedded systems. A multi-agent actor–critic algorithm in
which every battery of the pack was represented by an agent was compared to a weighted-
k round robin heuristic [65] and managed to achieve a better overall lifespan, as well
as maintaining the battery temperature under a safety threshold. Another capability of
the MARL approach was to adapt to several lithium battery models while still using the
same structure.

MARL was used in social sciences in common pool resource (CPR) appropriation [66] and
the study of sequential social dilemmas (SSD) [67]. The behavior of a group of people was
analyzed, representing each person as a self-interested agent that aimed to maximize their
own rewards. Independent Q-learning was used in [68] to address the mobile network
management problem. The control parameters of a group of base stations (BSs), such as
transmission power (TXP) and tilt, were optimized using the quality-of-service of mobile
terminals in the range of the base station as a local reinforcement signal. The algorithm
proposed used the current TXP value and the connection quality of the terminals as a state-
space. The environment state was computed independently for each BS and abstracted
to reduce its dimensionality. The state space with the exclusion of the control parameters
was used to compute the reward, which was a linear combination of all the quality of
service vectors. The effectiveness of the proposed algorithm was tested in a simulator for
a mobile network developed by Nokia, composed of 12 base stations and 2000 mobile
users moving randomly around the simulation area. Simulations showed an increase in
the reward received by the cells; however, there were fluctuations in performance. All
of the presented application can be found summarized in Table 2 and divided by field
of application.

Table 2. Applications of MARL algorithms divided by field of use.

Sector Applications

UAVs

Drone field coverage [47]
Target assignment and path planning [48]

LoS Networks [50]
Packet routing relaying [52]

Recharging towers [53]

Image processing Joint active objective search [54]

Energy sharing and scheduling

Zero-energy community [55]
Residential microgrid with V2G exchange [56]

Industry production control [58]
Lithium battery lifetime optimization [64]

Automotive
Safe driving [59]

Fleet control for ride sharing platform [61]
Intersection traffic light control [62]

Social Science Common Pool Resource Approximation [66]
Sequential Social Dilemmas [67]

Networking Base-station parameter approximation [68]

6. Conclusions

Multi-agent reinforcement learning is a new, promising branch of machine learning
theory. The technological trend is moving towards distributed systems composed of
multitudes of computational units, which is also due to the development of the IoT and
the edge computing sector. MARL could be the answer to the realization of intelligent
systems that are capable of learning how to cooperate to maximize their efficiency. The
development of such algorithms can eliminate the need to interface with a centralized
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controller for multi-agent systems, such as cloud servers, minimizing the time required to
select an action, and—from a reliability perspective—not having a singular point of failure.
In this work, the main challenges in the development of MARL algorithms were presented,
addressing the nonstationarity of the environment, the scaling, and the need to move to
partially observable settings as key components of a fast-converging, efficient algorithm.
The research community has proposed an assortment of solutions to these challenges in
recent years. It was shown that MARL algorithms have been used to address a large variety
of applications, such as traffic light control, autonomous driving, and smart energy grids;
however, the vast majority of approaches have adopted an independent learning paradigm.
It would be interesting to observe the performance of more MARL algorithm typologies in
real-world applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
RL Reinforcement Learning
MAS Multi Agent System
MARL Multi Agent Reinforcement Learning
MDP Markov Decision Process
MG Markov Game
POMDP Partially-Observable Markov Decision Process
Dec-POMDP Decentralized Partially Observable Markov Decision Process
TD Temporal Difference
DQN Deep Q-Network
IL Independent Learner
JAL Joint Action Learner
Q-RTS Q Learning Real Time Swarm
LMRL Lenient Multi-agent Reinforcement Learning
DRL Deep Reinforcement Learning
DQN Deep Q-Network
cDQN Contextual DQN
LDQN Lenient Deep Q-Network
DRQN Deep Recurrent Q-Network
LSTM Long Short Term Memory
Dec-HDRQN Decentralized Hysteretic Deep Recurrent Q-Network
CERT Concurrent Experience Replay Trajectories
TRPO Trust Region Policy Optimization
PS-TRPO Parameter Sharing Trust Region Policy Optimization
COMA Counterfactual Multi-Agent
A3C Asynchronous Advantage Actor-Critic
cA2C Contextual Asynchronous Advantage Actor-Critic
VDN Value Decomposition Network
DDRQN Distributed Deep Recurrent Q-Network
MA Multi-Agent
MADQN Multi-Agent Deep Q-Network
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SC2LE Starcraft 2 Learning Environment
UAV Unmanned Aerial vehicle
FOV Field of View
MUTAPP Multi-UAV Target Assignment and Path Planning
MADDPG Multi Agent Deep Deterministic Policy Gradient
LoS Line of Sight
nZEC Nearly Zero Energy Community
CMS Community Monitoring Service
ES-MARL Equilibrium Selection Multi Agent Reinforcement Learning
RG Renewable Generator
EV Electric Vehicle
V2G Vehicle to Grid
PPO Proximal Policy Optimization
RCS Reactive Control Strategy
PCS Predictive Control Strategy
GVM Gross Volume of Merchandise
IDQN Independent Deep Q-Network
CPR Common Pool Resources
SSD Sequential Social Dilemma
BS Base Station
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