
applied
sciences

Article

Bit Streaming Processing Algorithms for Intelligent
Hardware Converters

Olga Bureneva *, Mikhail Kupriyanov and Nikolay Safyannikov

����������
�������

Citation: Bureneva, O.; Kupriyanov,

M.; Safyannikov, N. Bit Streaming

Processing Algorithms for Intelligent

Hardware Converters. Appl. Sci. 2021,

11, 4899. https://doi.org/10.3390/

app11114899

Academic Editor: Askhat Diveev

Received: 8 April 2021

Accepted: 24 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, Faculty of Computer Technologies and Informatics,
Saint-Petersburg State Electrotechnical University “LETI”, ul. Professora Popova 5, 197376 St. Petersburg, Russia;
mskupriyanov@etu.ru (M.K.); nmsafyannikov@etu.ru (N.S.)
* Correspondence: oibureneva@etu.ru

Abstract: The need to transfer the primary data conversions close to the sensors, to the endpoints of
monitoring systems, as well as in IoT terminal devices makes the development of new approaches to
computing and the design of appropriate algorithms relevant. The article shows stream processing
algorithms that provide functional transformations of signals presented in bit stream form (single
pulse streams, PWM signal streams) and binary codes at the same time. In such algorithms, the
computational process is based on discretization, pulse frequency sweep and pulse-width sweep of
codes as well as organization of parallel-serial processing. The suggested principles of algorithm
organization are based on the fact that the computation is considered not as an event associated
with calculation but as a continuous process of a result formation. The transition to algorithmic
representations proposed by the authors makes it possible to obtain universal behavioral descriptions,
independently of the specific hardware on which their implementation is performed.

Keywords: bit stream algorithms; digital converters; intelligent equipment; fault-tolerant; computa-
tional process; programmable logic device; VerilogHDL

1. Introduction

New approaches to the organization of computation and related hardware and soft-
ware usually appear when existing solutions do not meet the growing technical require-
ments or when the element base changes significantly. At present, both of these factors
affect the development of intelligent equipment, i.e., sensors, computing units operating
near sensors, primary converters of measurement information, etc.

To reduce the amount of transferred data and the load of the communication channels
as much as possible, one can perform calculations near sensing devices, including at
sensors, the endpoints of monitoring systems, and terminal devices of the Internet of
Things [1]. The relocation of calculations close to the sensors leads to the new problems.

First, it is necessary to perform the calculations in the same data format as generated at
the sensor output. The absence of data format converters allows us to reduce the hardware
cost. A frequently used option is near-sensor calculation in the analog form [2,3]. Another
option is pulse form calculations, since the conversion of analog signals into pulse time
parameters is not complicated. The appropriate converters were introduced in [4,5]. The
data format conversion can be combined with the required calculations, as shown in [6,7].

Second, we need to develop special calculators that will be fast, energy-efficient,
capable of performing real-time analysis, and provide high fault-tolerance of information
processing and transmission. Examples of such special calculators are stochastic near-
sensor computations [8], memory-based computations using memory for individual tasks
based on multiply-accumulate operation [9], and processor elements based on pulse unary
processing [10].

The change in the element base for near-sensor computing is related to active FPGA
development. FPGA can be used to create both simple transducers and system-on-chip

Appl. Sci. 2021, 11, 4899. https://doi.org/10.3390/app11114899 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/app11114899?type=check_update&version=1
https://doi.org/10.3390/app11114899
https://doi.org/10.3390/app11114899
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114899
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4899 2 of 14

devices where software-hardware implementations are integrated [11,12]. Many sensor
signal converters focused on FPGA implementation can be eventually manufactured as
ASICs, providing additional opportunities in terms of power efficiency, reliability, and
accuracy, as shown in [13,14].

The aim of this article is to introduce algorithms that perform functional processing of
single pulse streams, PWM signal streams and binary codes simultaneously. Pulse coded
signals (pulse-width modulated: PWM signals; pulse-frequency modulated: PFM signals)
provide intrinsic immunity to interference. The information to be transmitted is encoded
not in the signal amplitude but in the time parameters of the pulse signals. Such signals are
often called “bit streams” since they use binary values of «0» or «1», and the information is
transmitted continuously.

The main properties of bit stream processing algorithms are as follows:

• Pulses in the bit stream are of equivalent weight; therefore, the bit stream conversion
is highly reliable. Loss of one pulse in the stream is equivalent to loss of the least
significant bit of the binary code, while loss of one bit in the code can lead to loss of
value equal to 2i, where i stands for the lost bit position.

• The usage of single wire instead of multi-bit buses simplifies data transmission be-
tween the endpoints and the computational cores of the systems.

• Measurement and calculation processes can be easily parallelized.
• The presence of pauses between pulses in the stream reduces the average power

consumption that implies high energy efficiency.

Implementation of transducers near sensors is one of the options to increase the
endpoint devices’ intelligence of sensor systems and the Internet of Things. This is in line
with the general trend in the design of sensor information transducers.

In this paper we introduce new algorithms for bit stream conversion that work in
the tracking mode by means of a small increment technique. Functional conversions
are factorized into the increment/decrement operations performed as soon as the pulse
comes. Through the example of temperature sensors signal processing, we show how
our algorithms can be implemented into programmable logic devices for temperature
measurement.

The algorithms we propose can be utilized to obtain universal behavioral descriptions,
independent of the specific hardware on which they are implemented. Behavioral descrip-
tions of stream processing, based on the simplest operations, can be adapted to various
environments that provide the performance of the simplest logical functions and work with
different pulse information carriers: electrical, biological, pneumatic, mechanical, optical
and others [15–17].

2. Materials and Methods

From the structural point of view, bit stream processing algorithms correspond to
processes with negative feedback, aimed at achieving an equilibrium state characteriz-
ing the final result. Step-by-step calculations in this case are absent, and mathematical
transformations are obtained in a single process of result formation.

The conversion of binary code to bit streams is simple. Hence codes can be processed
using functional transformation algorithms of bit stream. In this case, the computational
processes are based on the following operations:

• Pulse frequency sweep (PFS);
• Pulse-width sweep (PWS).

By using PFS we convert the binary codes into PFM bit stream, i.e., bit stream charac-
terized by the number of single pulses per unit time. By means of PWS, we transform the
binary codes to the PWM signal, i.e., relative duration of the active signal value per unit
of time.

Appl. Sci. 2021, 11, 4899 3 of 14

2.1. Bit-Stream Multiplication Process

The main operation for bit stream processing algorithm implementation is streaming
multiplication (SM). In order to perform this operation, the one for multiplied code should
be converted into a pulse frequency modulated bit stream (PFM bit stream), while the other
should be converted into a pulse width modulated signal (PWM signal) stream.

The conversion of a binary code to a pulse frequency modulated bit stream involves
representing the code as a stream of bits, in which the number of bits in period T corre-
sponds to the processed code N1. The average value (frequency) of bits in period T is
defined as follows:

FN1 =
N1

T
.

Conversion of the binary code to a pulse width modulated signal is achieved by
generating an active signal θ, for example, equal to one. The duration of this signal for the
code N2 is determined as follows:

θN2 =
N2

Nmax
.

In this equation, Nmax is the maximum value of the code represented in the selected
bit grid n, Nmax = 2n − 1. The process period T is defined as

T =
2n

f
,

where n is the digit capacity of the codes to be processed; f stands for the clock frequency
of the process quantization.

During the bit stream multiplication of two codes, three operations are performed
simultaneously. The first is multiplication of code N1 by code N2, the second is multiplica-
tion of code N1 by inversion of code N2, and the third is multiplication of code N1 by one.
A schematic of the parallel bit stream multiplication process is shown in Figure 1a.

The code N1 is converted into a bit stream P1 (blocks 1, 3). The code N2 is converted
into a PWM stream (blocks 2, 4). As a result, three bit streams are formed. The PWM
stream has no effect on P1; therefore, P1 is the result of the code to the bit stream sweep
(block 7): Nout1 = N1. To obtain stream P2, it is necessary to interrupt the stream based on
the code N1, with the stream PWM generated from N2 (block 5). This interrupt provides
streams multiplication and allows us to implement the following operation: Nout2 = N1N2
(block 8). The P3 stream is the result of interrupting the stream based on the N1 code by
a stream of inverted PWM pulses. Such an interrupt implements the multiplication by
inverted code N2:Nout3 = N1N2 (block 9).

2.2. Process of Calculating of the Bit-Stream Multiplication-Division Function

The multiplication-division function is often used in the implementation of functional
conversions; using this function as an example, we can show the stream calculation pe-
culiarities. A block diagram of the multiplication-division operation process is shown in
Figure 1b.

The process of calculating multiplication-division operation is periodic, and its period
T depends on the digit capacity of the processed codes.

To implement the streaming mode of conversion, the input codes N1, N2, N3 (blocks 1,
2, 3) and initial undefined output code Nout (block 13) are converted into bit streams. These
threads form the positive and negative branches of the calculation process.

In each branch of the process, pulse-frequency sweep (PFS) of codes N1, Nout
(blocks 4, 7) and pulse-width sweep (PWS) of codes N2, N3 (blocks 5, 6) are executed
in parallel. In the process under consideration, two streaming multiplications SM are
organized (blocks 8, 9). Both of these perform multiplication of the PFM signal stream by
PWM signals. That is, both SM blocks generate only the P2 streams (see Figure 1a).

Appl. Sci. 2021, 11, 4899 4 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 14

Figure 1. The scheme of the parallel bit-stream process: (a) multiplication process; (b) multiplica-
tion-division process.

To implement the streaming mode of conversion, the input codes N1 , N2 , N3
(blocks 1, 2, 3) and initial undefined output code Nout (block 13) are converted into bit
streams. These threads form the positive and negative branches of the calculation process.

In each branch of the process, pulse-frequency sweep (PFS) of codes N1 , Nout
(blocks 4, 7) and pulse-width sweep (PWS) of codes N2, N3 (blocks 5, 6) are executed in
parallel. In the process under consideration, two streaming multiplications SM are orga-
nized (blocks 8, 9). Both of these perform multiplication of the PFM signal stream by PWM
signals. That is, both SM blocks generate only the P2 streams (see Figure 1a).

At the output of block 8 there appears a bit stream. The number of pulses on the
output of the block during the device operation period is defined as Nout1=N1N2 (block
10). The bit stream on the output of block 9 is the result of the following operation
Nout2=N3Nout (block 12).

The resulting bit streams are combined and grouped (block 11) to get the difference
R=N1N2 − N3Nout, which is accumulated and converted into the output code Nout (block
13).

Due to the use of negative feedback, the process branches come to an equilibrium
state. In this state, the intensity of streams based on codes Nout1 and Nout2 is equal, and
hence R = 0. Using equality R=N1N2 − N3Nout = 0, we obtain

Nout = N1N2

N3
. (1)

The multiplication-division operation is implemented as a tracking process, and the
result of the computation is generated during the balancing of the system. The process
constantly tries to maintain an equilibrium state and restores to its state after short-term
failures occur.

(a) (b)

Figure 1. The scheme of the parallel bit-stream process: (a) multiplication process; (b) multiplication-
division process.

At the output of block 8 there appears a bit stream. The number of pulses on the output
of the block during the device operation period is defined as Nout1 = N1N2 (block 10). The
bit stream on the output of block 9 is the result of the following operation Nout2 = N3Nout
(block 12).

The resulting bit streams are combined and grouped (block 11) to get the difference
R = N1N2 − N3Nout, which is accumulated and converted into the output code Nout
(block 13).

Due to the use of negative feedback, the process branches come to an equilibrium
state. In this state, the intensity of streams based on codes Nout1 and Nout2 is equal, and
hence R = 0. Using equality R = N1N2 −N3Nout = 0, we obtain

Nout =
N1N2

N3
. (1)

The multiplication-division operation is implemented as a tracking process, and the
result of the computation is generated during the balancing of the system. The process
constantly tries to maintain an equilibrium state and restores to its state after short-term
failures occur.

3. Results

The stream processes can be described algorithmically.

3.1. Bit-Stream Algorithms

The conversion of the code into a pulse-frequency stream is based on the method of
small increments. According to this method, the input code is represented as a stream
of single bits occurring at fixed moments of time, ti. The number of pulses per process
period is equal to the normalized value of the code. Figure 2 shows the algorithm of
pulse-frequency sweep.

Appl. Sci. 2021, 11, 4899 5 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 14

3. Results
The stream processes can be described algorithmically.

3.1. Bit-Stream Algorithms
The conversion of the code into a pulse-frequency stream is based on the method of

small increments. According to this method, the input code is represented as a stream of
single bits occurring at fixed moments of time, ti. The number of pulses per process period
is equal to the normalized value of the code. Figure 2 shows the algorithm of pulse-fre-
quency sweep.

Figure 2. Algorithm of pulse-frequency sweep.

When performing the sweep of the n-bit binary code Nk, n bit streams are formed in
parallel.

The algorithm works as follows: some base code n-bit binary code Nb at each mo-
ment of time ti is incremented by 1, and Nbinc code is formed.

The value of Nbinc is compared with Nb in order to find the position m (0 ≤ m ≤ n −
1), where Nbinc code contains 1, and Nb code contains 0. If such a combination is found,
then a single bit is generated in the stream with the number n − 1 − m (Pν(n-1-m)).

The converted code Nk is used as a mask of the current state of the streams Pν0,
Pν1, … Pν(n-1). For masking, we use the following rule: the least significant bit 0 of the bi-
nary code Nk masks the stream Pν(n-1), formed on the basis of the most significant bit of
codes Nbinc, and the most significant (n − 1) bit codes Nk masks the stream Pν0. The result
of the masking makes it possible to determine the necessity of the bit generation to repre-
sent the Nk code at the current time ti.

Table 1 shows an example of obtaining the bit streams Pν0, Pν1, Pν2, Pν3 for n = 4.
When considering the sweeping of the code Nk, if Nk = 7 (binary equivalent: 0111),

the streams Pν0, Pν1, Pν2 will be selected. The zero value of the most significant bit of the
code Nk blocks the stream Pν3. The merging of bits of Pν0, Pν1, and Pν2 streams allows
the formation of a stream in which the number of bit pulses per period is equal to the
value of the sweeping code Nk = 7. If Nk = 12 (binary equivalent: 1100), then Pν2 and
Pν3 streams are selected. The sum of bits in Pν2 and Pν3 is equal Nk = 12. The streams
Pν0, Pν1 are blocked by zero values of bits number 0 and number 1 of the Nk code.

The multiplication of PFM and PWM data is realized by passing bits of the PFM
stream only at times when the PWM signal is active (equal to 1).

Figure 2. Algorithm of pulse-frequency sweep.

When performing the sweep of the n-bit binary code Nk, n bit streams are formed
in parallel.

The algorithm works as follows: some base code n-bit binary code Nb at each moment
of time ti is incremented by 1, and Nbinc code is formed.

The value of Nbinc is compared with Nb in order to find the position m (0 ≤ m ≤
n− 1), where Nbinc code contains 1, and Nb code contains 0. If such a combination is found,
then a single bit is generated in the stream with the number n − 1 −m (Pν(n−1−m)).

The converted code Nk is used as a mask of the current state of the streams Pν0,
Pν1, . . . Pν(n−1). For masking, we use the following rule: the least significant bit 0 of the
binary code Nk masks the stream Pν(n−1), formed on the basis of the most significant bit
of codes Nbinc, and the most significant (n − 1) bit codes Nk masks the stream Pν0. The
result of the masking makes it possible to determine the necessity of the bit generation to
represent the Nk code at the current time ti.

Table 1 shows an example of obtaining the bit streams Pν0, Pν1, Pν2, Pν3 for n = 4.

Table 1. Example of obtaining bit streams.

Nb Nbinc Pν0 Pν1 Pν2 Pν3

0000 0001 0 0 0 1
0001 0010 0 0 1 0
0010 0011 0 0 0 1
0011 0100 0 1 0 0
0100 0101 0 0 0 1
0101 0110 0 0 1 0
0110 0111 0 0 0 1
0111 1000 1 0 0 0
1000 1001 0 0 0 1
1001 1010 0 0 1 0
1010 1011 0 0 0 1
1011 1100 0 1 0 0
1100 1101 0 0 0 1
1101 1110 0 0 1 0
1110 1111 0 0 0 1
1111 0000 0 0 0 0

When considering the sweeping of the code Nk, if Nk = 7 (binary equivalent: 0111),
the streams Pν0, Pν1, Pν2 will be selected. The zero value of the most significant bit of the

Appl. Sci. 2021, 11, 4899 6 of 14

code Nk blocks the stream Pν3. The merging of bits of Pν0, Pν1, and Pν2 streams allows
the formation of a stream in which the number of bit pulses per period is equal to the value
of the sweeping code Nk = 7. If Nk = 12 (binary equivalent: 1100), then Pν2 and Pν3
streams are selected. The sum of bits in Pν2 and Pν3 is equal Nk = 12. The streams Pν0,
Pν1 are blocked by zero values of bits number 0 and number 1 of the Nk code.

The multiplication of PFM and PWM data is realized by passing bits of the PFM
stream only at times when the PWM signal is active (equal to 1).

We used the multiplication-division operation algorithm shown in Figure 3 to im-
plement function (1). One of the input numerator codes, e.g., N1, is converted into a bit
stream, and the code N2 is converted into a PWM signal ΘN2 . As a result of bit-stream
multiplication, the value N1ΘN2 is formed.

The result calculation starts when the bit corresponding to the code value N1 appears,
i.e., the output code Nout is incremented when N1ΘN2 = 1 (blocks 3, 4). If after the pulse
frequency sweep of the code N1 the bit is not formed, the output code Nout does not change.

To form the compensatory actions, the denominator code N3 is converted into a PWM
signal ΘN3 . The code Nout is converted into a bit stream, and the result of multiplying
in the compensation branch of the algorithm is the value of NoutΘN3 . When NoutΘN3 = 1
(blocks 7, 8), it is necessary to form a compensating bit. When the compensating bit appears,
the compensation mechanism starts working, and the code Nout is decreased by one. If
NoutΘN3 = 0, then the bit in the compensatory stream is not formed, and the output code
Nout does not change. Operations 1–3 and 5–7 can be executed in parallel.

At the initial stage of the algorithm operation, the number of compensating actions is
small, but as the output code Nout increases, the stream in the compensating loop becomes
more intense. This continues until the process reaches equilibrium, characterized by the
equality of the intensities of the streams causing the increments and decrements. If equilib-
rium is reached, the code Nout is the result of calculations. If the streams change randomly
during the computation, the equilibrium is disturbed and automatically compensated,
and the result is restored. Any changes in the input signal lead to the transition of the
computational process to a new equilibrium state.

The period T of the algorithm operation is determined by the selected bit width of
codes and is T = 2n ti, where ti is the time interval determined frequency of the process
quantization. The description of the computational process is based on the time interval ti,
chosen as the unit time, and then in relative units T = 2n. The number of time samples ti
per period T is denoted as Xt.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 14

Figure 3. Algorithm of the multiplication-division operation.

The input and output codes are scaled by the maximum value in the used bit grid. A
scaling factor equal to one is taken, so that the maximum values of Nin and Nout coincide
with the maximum value of the period T in relative time units.

The number of bits in the stream generated from the input signals during the period
T is determined as

X+ = N1ΘN2Xt1
2n . (2)

The number of time segments ti per period can be any number. By taking Xt1=2n, this
simplifies the mathematical description of the process but does not change its essence.
Formula (2) can be written as follows:

X+ = N1ΘN2.

In a similar way, we can determine the number of bits generated in the compensating
branch during the period T:

 X-=
Nout൫ΘN3,ΘN2,N1൯ΘN2Xt2

2n . (3)

The sampling frequency of the process when forming compensation streams is the
same as when tracking input codes, Xt2=2n. Formula (3) can be written as follows:

X- = Nout൫ΘN3,ΘN2,N1൯ΘN3.

After completion of the first period of signals ΘN2and ΘN3, i.e., after 2n cycles of the
work of multiplication-division algorithm, the output code is defined as follows:

Nout1൫ΘN2,ΘN3,N1൯ = Nout1+N1ΘN2–ΘN3,

Nout൫ΘN2,ΘN3,N1൯ = Nout0൫1–ΘN3൯+N1ΘN2,

where Nout1 is some initial value of the output code.
At the end of the algorithm second period, the following code is generated:

Nout2൫ΘN2,ΘN3,N1൯ = Nout0൫1–ΘN3൯2+N1ΘN2ൣ1+൫1–ΘN3൯൧.

The result after the i-th period is defined as

Nouti൫ΘN2,ΘN3,N1൯ = Nout൫1–ΘN3൯i+N1ΘN2 ቂ1+൫1–ΘN3൯+…+൫1–ΘN3൯i-1ቃ.

The second term of this expression is a geometric progression with base q = 1− ΘN3 .
It can be replaced by the amount

Figure 3. Algorithm of the multiplication-division operation.

The input and output codes are scaled by the maximum value in the used bit grid. A
scaling factor equal to one is taken, so that the maximum values of Nin and Nout coincide
with the maximum value of the period T in relative time units.

Appl. Sci. 2021, 11, 4899 7 of 14

The number of bits in the stream generated from the input signals during the period T
is determined as

X+ =
N1ΘN2Xt1

2n . (2)

The number of time segments ti per period can be any number. By taking Xt1 = 2n,
this simplifies the mathematical description of the process but does not change its essence.
Formula (2) can be written as follows:

X+ = N1ΘN2 .

In a similar way, we can determine the number of bits generated in the compensating
branch during the period T:

X− =
Nout

(
ΘN3 , ΘN2 , N1

)
ΘN2Xt2

2n . (3)

The sampling frequency of the process when forming compensation streams is the
same as when tracking input codes, Xt2 = 2n. Formula (3) can be written as follows:

X− = Nout
(
ΘN3 , ΘN2 , N1

)
ΘN3 .

After completion of the first period of signals ΘN2 and ΘN3 , i.e., after 2n cycles of the
work of multiplication-division algorithm, the output code is defined as follows:

Nout1

(
ΘN2 , ΘN3 , N1

)
= Nout1 + N1ΘN2 −ΘN3 ,

Nout
(
ΘN2 , ΘN3 , N1

)
= Nout0

(
1−ΘN3

)
+ N1ΘN2 ,

where Nout1 is some initial value of the output code.
At the end of the algorithm second period, the following code is generated:

Nout2

(
ΘN2 , ΘN3 , N1

)
= Nout0

(
1−ΘN3

)2
+ N1ΘN2

[
1+
(
1−ΘN3

)]
.

The result after the i-th period is defined as

Nouti

(
ΘN2 , ΘN3 , N1

)
= Nout

(
1−ΘN3

)i
+ N1ΘN2

[
1+
(
1−ΘN3

)
+ . . .+

(
1−ΘN3

)i−1
]
.

The second term of this expression is a geometric progression with base q = 1 − ΘN3 .
It can be replaced by the amount

S =
1−
(
1−ΘN3

)i−1

ΘN3

.

Thus, the function describing the result of the algorithm at the end of period t is
defined by the following expression:

Noutt = Nout0

(
1−ΘN3

)t
+

N1ΘN2

ΘN3

−
N1ΘN2

(
1−ΘN3

)(t−1)

ΘN3

As for the value of ΘN3 , when it lies in the range of 0 < ΘN3 < 1, we can use the
following equations:

lim
t→∞

(
1−ΘN3

)t
= 0, lim

t→∞

(
1−ΘN3

)t−1
= 0.

Appl. Sci. 2021, 11, 4899 8 of 14

Thus, in the equilibrium state, the output code Nout is determined by the following
dependence:

Nout = N1
ΘN2

ΘN3

or Nout =
N1N2

N3

The time to reach the equilibrium state is determined by the number Nt periods, T.
If the process quantization frequency is high, we can treat the sequence of output

codes as a continuous function. Therefore, the dynamics of the transient process can be
determined using the following equation:

Nout =
∫ Nt

0

(
N1ΘN2 −NoutΘN3

)
dt.

The equation describes the process of transition to the tracking mode as the process of
accumulating the difference of incrementing and decrementing streams during each period
T. If the values N1, ΘN2 , ΘN3 do not change during the transition process, the equation
for the variable t can be solved as follows. Differentiating the right and left parts of the
equation, we have

dNout

dt
= N1ΘN2 −NoutΘN3 whence dt =

dNout

n1ΘN2 −NoutΘN3

.

We integrate the expression and obtain

t + C =
∫ dNout

n1ΘN2 −NoutΘN3

.

As a result of the transformation of this expression, we can get

t =
1

ΘN3

ln

∣∣∣∣∣Nout0 −N1
(
ΘN2 /ΘN3

)
Nout −N1

(
ΘN2 /ΘN3

) ∣∣∣∣∣.
The dependence of the transient duration is logarithmic, and its parameters are

determined by the combination of input data and the initial state of the process.

3.2. Algorithm Implementation

We use VerilogHDL to implement and verify the considered algorithms. The Ver-
ilogHDL behavioral descriptions can be used to synthesize hardware modules.

The input signals of the pulse frequency sweep module are the reference frequency
signal clk and the input code Nk. The pulse stream Fout is generated at the output of
the synthesized module. Figure 4 shows the result of the Verilog module simulation with
the ModelSim.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14

the input code in a bit grid i; the frequency of code Nk changing during the test is fclk/(3 ×
2i).

Figure 4. Result of pulse-frequency sweeping algorithm simulation.

The bit width of the processed codes Nk is 4, so the pulse-frequency sweeping algo-
rithm generates 4 pulse streams Pν0–Pν3. The lines DF_vlg_tst/i1/Pv[3 ...0] of the diagram
show the generation of these streams. The total number of pulses in these streams during
one period corresponds to the maximum possible value of the code represented in the 4-
digit grid, and this value is equal to 15.

Three periods of algorithm operation are highlighted in Figure 4. The first period
(time marks 9.967–9.999) shows the code Nk = 7 conversion. The number of pulses gener-
ated during the period of algorithm is 7 (line DF_vlg_tst/Fout). The second period is tran-
sitional. In this period the input code Nk is changed, so part of the period the output pulse
stream is formed on the basis of the code Nk = 7, and then for Nk = 12. The third period
(time marks 10.031–10.063) shows the code Nk = 12 conversion. The number of pulses
generated per the period of the algorithm at the DF_vlg_tst/Fout output is 12.

The streaming multiplication-division module calculates the function using formula
(1). We simulate it with the use a 10-bit implementation.

A generalized block diagram of the module is shown in Figure 5.

Figure 5. Result of pulse-frequency sweeping algorithm simulation.

The scheme contains the following sub-modules:
• two code-to-bit-stream converters performing the conversion of codes N1 and Nout

into a bit stream using the Figure 2 algorithm and implementing the operations of
blocks 1 and 5 of the algorithm shown in Figure 3;

• two code-to-PWM converters performing the conversion of N2 and N3 codes into
a stream of PWM signals; they implement the operations of blocks 2 and 6 of the

Figure 4. Result of pulse-frequency sweeping algorithm simulation.

Appl. Sci. 2021, 11, 4899 9 of 14

To test the module, we used a TestBench. It is a non-synthesizable fragment of the
VerilogHDL program that continuously generates the clock signal clk with frequency fclk as
well as the changing input code Nk. The function $urandom_range is used to generate the
input code in a bit grid i; the frequency of code Nk changing during the test is fclk/(3 × 2i).

The bit width of the processed codes Nk is 4, so the pulse-frequency sweeping algo-
rithm generates 4 pulse streams Pν0–Pν3. The lines DF_vlg_tst/i1/Pv[3...0] of the diagram
show the generation of these streams. The total number of pulses in these streams during
one period corresponds to the maximum possible value of the code represented in the
4-digit grid, and this value is equal to 15.

Three periods of algorithm operation are highlighted in Figure 4. The first period (time
marks 9.967–9.999) shows the code Nk = 7 conversion. The number of pulses generated
during the period of algorithm is 7 (line DF_vlg_tst/Fout). The second period is transitional.
In this period the input code Nk is changed, so part of the period the output pulse stream
is formed on the basis of the code Nk = 7, and then for Nk = 12. The third period (time
marks 10.031–10.063) shows the code Nk = 12 conversion. The number of pulses generated
per the period of the algorithm at the DF_vlg_tst/Fout output is 12.

The streaming multiplication-division module calculates the function using formula (1).
We simulate it with the use a 10-bit implementation.

A generalized block diagram of the module is shown in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14

the input code in a bit grid i; the frequency of code Nk changing during the test is fclk/(3 ×
2i).

Figure 4. Result of pulse-frequency sweeping algorithm simulation.

The bit width of the processed codes Nk is 4, so the pulse-frequency sweeping algo-
rithm generates 4 pulse streams Pν0–Pν3. The lines DF_vlg_tst/i1/Pv[3 ...0] of the diagram
show the generation of these streams. The total number of pulses in these streams during
one period corresponds to the maximum possible value of the code represented in the 4-
digit grid, and this value is equal to 15.

Three periods of algorithm operation are highlighted in Figure 4. The first period
(time marks 9.967–9.999) shows the code Nk = 7 conversion. The number of pulses gener-
ated during the period of algorithm is 7 (line DF_vlg_tst/Fout). The second period is tran-
sitional. In this period the input code Nk is changed, so part of the period the output pulse
stream is formed on the basis of the code Nk = 7, and then for Nk = 12. The third period
(time marks 10.031–10.063) shows the code Nk = 12 conversion. The number of pulses
generated per the period of the algorithm at the DF_vlg_tst/Fout output is 12.

The streaming multiplication-division module calculates the function using formula
(1). We simulate it with the use a 10-bit implementation.

A generalized block diagram of the module is shown in Figure 5.

Figure 5. Result of pulse-frequency sweeping algorithm simulation.

The scheme contains the following sub-modules:
• two code-to-bit-stream converters performing the conversion of codes N1 and Nout

into a bit stream using the Figure 2 algorithm and implementing the operations of
blocks 1 and 5 of the algorithm shown in Figure 3;

• two code-to-PWM converters performing the conversion of N2 and N3 codes into
a stream of PWM signals; they implement the operations of blocks 2 and 6 of the

Figure 5. Generalized block diagram of the streaming multiplication-division module.

The scheme contains the following sub-modules:

• two code-to-bit-stream converters performing the conversion of codes N1 and Nout
into a bit stream using the Figure 2 algorithm and implementing the operations of
blocks 1 and 5 of the algorithm shown in Figure 3;

• two code-to-PWM converters performing the conversion of N2 and N3 codes into a
stream of PWM signals; they implement the operations of blocks 2 and 6 of the Figure 3
algorithm and can be implemented by known methods, for example, using counters;

• two «&» elements performing multiplication of bit stream by PWM signal (blocks 3
and 7 of the Figure 3 algorithm);

• increment/decrement counter, which counts the pulses generated in the positive and
negative branches of the unit (blocks 4 and 8 of the Figure 3 algorithm).

Figure 6 shows the processes in the multiplication-division module.

Appl. Sci. 2021, 11, 4899 10 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14

Figure 3 algorithm and can be implemented by known methods, for example, using
counters;

• two «&» elements performing multiplication of bit stream by PWM signal (blocks 3
and 7 of the Figure 3 algorithm);

• increment/decrement counter, which counts the pulses generated in the positive and
negative branches of the unit (blocks 4 and 8 of the Figure 3 algorithm).
Figure 6 shows the processes in the multiplication-division module.

(a)

(b)

Figure 6. Result of multiplication-division algorithm simulation: (a) transition process and (b) the
process of tracking the result in a state of equilibrium.

To test the streaming multiplication-division module, we used TestBench, in which
the clock signal clk was formed continuously and the input codes N1, N2 and N3 were
formed using the function $urandom_range. The frequency of change of input codes was
chosen so that on the time diagram we could observe the transient process when the de-
vice tends to an equilibrium state, as well as the process of holding the stable state.

The input code N1 is converted into a pulse stream (line MDU_tst/i1/F_plus). The
codes N2 and N3 are converted into PWM signal streams (line MDU_tst/i1/PWM_Active2
and MDU_tst/i1/PWM_Active3). Figure 6a shows the transient where the resulting signal
(MDU_tst/i1/r_count) increases on each cycle, coming closer to the result. The correspond-
ing pulse stream becomes more intense on each cycle (MDU_tst/i1/F_minus). At the digi-
tal output (MDU_tst/i1/N_out), the data is fixed at the end of each period; this allows for
a stable output code value during the period.

Figure 6b shows the process of tracking the result in the equilibrium state. The result-
ant signal (MDU_tst/i1/r_count) changes during each cycle, but by the end of the period
it retains the value recorded at the end of the previous cycle. The corresponding pulse
stream (MDU_tst/i1/F_minus) does not change. The digital output (MDU_tst/i1/N_out)
stores the result in digital form. For given values N1 = 120, N2 = 60, and N3 = 30, the result
Nout = 240.

Figure 6. Result of multiplication-division algorithm simulation: (a) transition process and (b) the process of tracking the
result in a state of equilibrium.

To test the streaming multiplication-division module, we used TestBench, in which
the clock signal clk was formed continuously and the input codes N1, N2 and N3 were
formed using the function $urandom_range. The frequency of change of input codes was
chosen so that on the time diagram we could observe the transient process when the device
tends to an equilibrium state, as well as the process of holding the stable state.

The input code N1 is converted into a pulse stream (line MDU_tst/i1/F_plus). The
codes N2 and N3 are converted into PWM signal streams (line MDU_tst/i1/PWM_Active2
and MDU_tst/i1/PWM_Active3). Figure 6a shows the transient where the resulting
signal (MDU_tst/i1/r_count) increases on each cycle, coming closer to the result. The
corresponding pulse stream becomes more intense on each cycle (MDU_tst/i1/F_minus).
At the digital output (MDU_tst/i1/N_out), the data is fixed at the end of each period; this
allows for a stable output code value during the period.

Figure 6b shows the process of tracking the result in the equilibrium state. The resul-
tant signal (MDU_tst/i1/r_count) changes during each cycle, but by the end of the period
it retains the value recorded at the end of the previous cycle. The corresponding pulse
stream (MDU_tst/i1/F_minus) does not change. The digital output (MDU_tst/i1/N_out)
stores the result in digital form. For given values N1 = 120, N2 = 60, and N3 = 30, the result
Nout = 240.

3.3. Application of the Developed Modules

The designed behavioral HDL modules are used in the design of the temperature
regulator built into the human blood cholinesterase activity analyzer. This device provides
analytical procedures with biological liquids. According to the rules of analysis, it is
necessary to keep the temperature of the analytical solutions between 34 and 39 ◦C, since
cholinesterase activity depends on temperature [18].

Figure 7 shows the cholinesterase activity analyzer. Thermal control is performed
independently in two elements of the device: the measuring cuvette (A) and the reagent
platform (B).

Appl. Sci. 2021, 11, 4899 11 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

3.3. Application of the Developed Modules
The designed behavioral HDL modules are used in the design of the temperature

regulator built into the human blood cholinesterase activity analyzer. This device pro-
vides analytical procedures with biological liquids. According to the rules of analysis, it
is necessary to keep the temperature of the analytical solutions between 34 and 39 °C,
since cholinesterase activity depends on temperature [18].

Figure 7 shows the cholinesterase activity analyzer. Thermal control is performed
independently in two elements of the device: the measuring cuvette (A) and the reagent
platform (B).

Measurement of cholinesterase activity is performed by measuring the time that the
optical density of analytical solution changes by 10% from the initial value. The reservoir
with analyte is placed in the measuring cuvette (A); the temperature of measuring cuvette
is maintained within the specified range. The Analog Devices TMP03 sensor used for tem-
perature control is inserted into the hole on the back side of the measuring cuvette using
the thermally conductive paste.

Figure 7. The cholinesterase activity analyzer: (a) exterior view of analyzer; (b) sensor installation; (c) temperature control
using the proposed implementation and using mercury thermometers.

The aluminum platform (B) is used to preheat the reagent containers to the specified
temperature. To control the platform temperature, a second AD TMP03 sensor is installed
using a thermally conductive paste in the hole on the back of the platform. Both sensors
generate PWM output signals continuously.

The analyzer does not have a processing core, and its elements and modules operate
under control of a digital finite state machine implemented on the CPLD chip (C). CPLD
do not have special hardware elements for arithmetic calculations, but the temperature
measurement requires arithmetic conversions according to the sensor characteristic:

 T(°C) = 235 - 400
𝑇ଵ𝑇ଶ. (4)

To calculate the temperature according to Equation (4), we used designed algorithm
of multiplication-division operation (Figure 3). In this case, the algorithm is not fully im-
plemented; blocks 2 and 6 are not executed since the sensor signals are presented in the
form of PWM, and operations to change the data format (pulse-width sweep, PWS) are
not required. PWM signals come to processing immediately. The subtraction operation is
also performed in stream form by decrementing constant 235 at the moment when the
multiplication-division unit generates the next pulse of the output stream. Figure 8 shows
the result of the simulation of the processes occurring during temperature measurement.

Figure 7. The cholinesterase activity analyzer: (a) exterior view of analyzer; (b) sensor installation; (c) temperature control
using the proposed implementation and using mercury thermometers.

Measurement of cholinesterase activity is performed by measuring the time that the
optical density of analytical solution changes by 10% from the initial value. The reservoir
with analyte is placed in the measuring cuvette (A); the temperature of measuring cuvette
is maintained within the specified range. The Analog Devices TMP03 sensor used for
temperature control is inserted into the hole on the back side of the measuring cuvette
using the thermally conductive paste.

The aluminum platform (B) is used to preheat the reagent containers to the specified
temperature. To control the platform temperature, a second AD TMP03 sensor is installed
using a thermally conductive paste in the hole on the back of the platform. Both sensors
generate PWM output signals continuously.

The analyzer does not have a processing core, and its elements and modules operate
under control of a digital finite state machine implemented on the CPLD chip (C). CPLD
do not have special hardware elements for arithmetic calculations, but the temperature
measurement requires arithmetic conversions according to the sensor characteristic:

T(◦C) = 235− 400
T1

T2
. (4)

To calculate the temperature according to Equation (4), we used designed algorithm
of multiplication-division operation (Figure 3). In this case, the algorithm is not fully
implemented; blocks 2 and 6 are not executed since the sensor signals are presented in the
form of PWM, and operations to change the data format (pulse-width sweep, PWS) are
not required. PWM signals come to processing immediately. The subtraction operation
is also performed in stream form by decrementing constant 235 at the moment when the
multiplication-division unit generates the next pulse of the output stream. Figure 8 shows
the result of the simulation of the processes occurring during temperature measurement.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14

Figure 8. Result of simulation of processes in the temperature measurement system.

We tested the algorithm operation during the experiments by means of an analyzer.
To indicate the temperature, we used an external board with indicators, since the alpha-
numeric indicator of the analyzer is intended to display the results of the analysis of cho-
linesterase activity. The modules based on the behavioral description of the temperature
meter were implemented into the CPLD (MAX3512), and the indicator of the external
board showed the measurement results. At the same time, we monitored the temperature
of the measuring cuvette and platform by means of mercury thermometers; Figure 7c
shows this process.

Rounding of the measurement results was performed with an accuracy of 0.5 °C, as
the used sensor TMP03 for measurements in the range of 0–50 °C has such accuracy, and
we conducted tests in this range. Mercury thermometers allow measurements with an
accuracy of −0.1 °C. During the tests, the readings of the thermometers and the indicator
of the device coincided.

The solution of this problem by the traditional method requires the use of calculators
such as counters to determine the code values of the duration of PWM signals, multiplier,
divider, and subtractor. These elements are available in the Quartus II library of parame-
terized modules. However, when selecting a chip of the CPLD class as a device, the com-
pilation of the project finishes with error messages. To compare the traditional and bit-
stream approaches, we compiled a HDL description with FPGA selecting. The library el-
ements were configured in a combinational way, and registers were not used. The results
of the bit-parallel and bit-stream methods comparison are shown in Table 2.

Table 2. Bit-parallel and bit-stream method comparison.

Family/Device/Fitter Summary Bit-Parallel Method Bit-Stream Method
MAX3000A/

EPM3512AFC256-7 Not synthesized
Total macrocells 171/512

(33%)
Cyclone II/EP2C5AF256A7/

Total logic elements 157/4608 (3%) 70/4608 (2%)
Total combinational functions 152/4608 (3%) 49/4608 (1%)

Dedicated logic registers 32/4608 (<1%) 62/4608 (1%)
Total registers 32 62

Total pins 13/158 (8%) 13/158 (8%)
Embedded Multiplier 9-bit elements 2/26 (8%) 0/26 (0%)

A hardware cost analysis shows the cost-effectiveness of the bit-stream implementa-
tion.

The frequency characteristics were analyzed using Time Quest Timing Analyzer. The
maximum frequency fmax for the bit-parallel method was 35.94 MHz. For the bit-stream
method, the maximum frequency was 111.73 MHz, but the processing period was related
to the bit rate, and for the 10-bit device version the frequency was defined as fmax/210, or
109 kHz.

Figure 8. Result of simulation of processes in the temperature measurement system.

Appl. Sci. 2021, 11, 4899 12 of 14

We tested the algorithm operation during the experiments by means of an analyzer. To
indicate the temperature, we used an external board with indicators, since the alphanumeric
indicator of the analyzer is intended to display the results of the analysis of cholinesterase
activity. The modules based on the behavioral description of the temperature meter were
implemented into the CPLD (MAX3512), and the indicator of the external board showed the
measurement results. At the same time, we monitored the temperature of the measuring
cuvette and platform by means of mercury thermometers; Figure 7c shows this process.

Rounding of the measurement results was performed with an accuracy of 0.5 ◦C, as
the used sensor TMP03 for measurements in the range of 0–50 ◦C has such accuracy, and
we conducted tests in this range. Mercury thermometers allow measurements with an
accuracy of −0.1 ◦C. During the tests, the readings of the thermometers and the indicator
of the device coincided.

The solution of this problem by the traditional method requires the use of calculators
such as counters to determine the code values of the duration of PWM signals, multiplier,
divider, and subtractor. These elements are available in the Quartus II library of param-
eterized modules. However, when selecting a chip of the CPLD class as a device, the
compilation of the project finishes with error messages. To compare the traditional and
bitstream approaches, we compiled a HDL description with FPGA selecting. The library
elements were configured in a combinational way, and registers were not used. The results
of the bit-parallel and bit-stream methods comparison are shown in Table 2.

Table 2. Bit-parallel and bit-stream method comparison.

Family/Device/Fitter Summary Bit-Parallel Method Bit-Stream Method

MAX3000A/EPM3512AFC256-7 Not synthesized Total macrocells 171/512 (33%)

Cyclone II/EP2C5AF256A7/
Total logic elements 157/4608 (3%) 70/4608 (2%)

Total combinational functions 152/4608 (3%) 49/4608 (1%)
Dedicated logic registers 32/4608 (<1%) 62/4608 (1%)

Total registers 32 62
Total pins 13/158 (8%) 13/158 (8%)

Embedded Multiplier 9-bit elements 2/26 (8%) 0/26 (0%)

A hardware cost analysis shows the cost-effectiveness of the bit-stream implementation.
The frequency characteristics were analyzed using Time Quest Timing Analyzer. The

maximum frequency fmax for the bit-parallel method was 35.94 MHz. For the bit-stream
method, the maximum frequency was 111.73 MHz, but the processing period was related
to the bit rate, and for the 10-bit device version the frequency was defined as fmax/210, or
109 kHz.

The conversion accuracy is determined by the bit rate of the device and can be
corrected for additional bits if necessary.

4. Discussion

In this paper, we proposed an approach for transferring the processes taking place in
pulse stream devices into algorithmic form.

The suggested principles of organization of computation and designed algorithms
are based on the fact that the computation is considered not as an event associated with
obtaining a result, but as a continuous process of its formation. The algorithms implement
processes tending to an equilibrium state, and in this state, the results of calculations are
formed. The considered examples of the proposed algorithms’ realization show stability to
noises and hindrances in work. Automatic return to the result after failures is provided
due to the negative feedback implemented in the algorithm.

The proposed approach to calculations is characterized by simple hardware imple-
mentation. It does not require the use of arithmetic blocks, even when calculations require
performing multiplication and division operations. Therefore, CPLD chips can be used

Appl. Sci. 2021, 11, 4899 13 of 14

to implement the obtained hardware modules. The main disadvantage of the method
is a significant time for equilibrium regime, which can reach 10 periods of device work.
Because of this disadvantage, the proposed method can be used to build systems to control
slow processes, for example, for temperature control systems.

The proposed approach can be applied to the design of primary transducers for smart
sensors and sensor networks as well as in intelligent data streaming systems.

In addition, the developed algorithms can be used in the design of the pulse neural
network elements. The application of algorithms makes it possible to realize computational
operations in pulse streaming mode. In this case, pulses can have different physical nature:
electrical, optical, mechanical, biological and others.

Author Contributions: Conceptualization, N.S., M.K. and O.B.; methodology, N.S. and O.B.; formal
analysis, N.S., M.K. and O.B.; writing—original draft preparation, N.S. and O.B.; writing—review and
editing, N.S. and M.K.; visualization, O.B.; supervision, N.S.; project administration, M.K.; funding
acquisition, M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation by the Agreement No. 075-15-2020-933, dated 13.11.2020, on the provision of a grant
in the form of subsidies from the federal budget for the implementation of state support for the
establishment and development of the world-class scientific center «Pavlov center, Integrative
physiology for medicine, high-tech healthcare, and stress-resilience technologies».

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Najafi, M.H.; Faraji, S.R.; Bazargan, K.; Lilja, D. Energy-efficient near-sensor convolution using pulsed unary processing. In

Proceedings of the IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP),
New York, NY, USA, 15–17 July 2019.

2. Chen, Z.; Zhu, H.; Ren, E.; Liu, Z.; Jia, K.; Luo, L.; Zhang, X.; Wei, Q.; Qiao, F. Processing Near Sensor Architecture in Mixed-Signal
Domain with CMOS Image Sensor of Convolutional-Kernel-Readout Method. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 67,
389–400. [CrossRef]

3. Ma, T.; Jia, K.; Zhu, X.; Qiao, F.; Wei, Q.; Zhao, H.; Liu, X.; Yang, H. An Analog-Memoryless Near Sensor Computing Architecture
for Always-On Intelligent Perception Applications. In Proceedings of the IEEE International Conference on Integrated Circuits,
Technologies and Applications (ICTA), Chengdu, China, 13–15 November 2019.

4. Stout, T.; Dean, A. Voltage source based voltage-to-time converter. In Proceedings of the IEEE 58th International Midwest
Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015.

5. Jia, S.; Weng, L.; Wang, W.; Wang, Y. A highly linear 5GS/s voltage-to-time converter for time-based analog-to-digital converters.
In Proceedings of the IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, Malaysia, 13–16 November 2017.

6. Chen, K.; Chen, T.; Wei, C. Novel Pulse-Based Analog Divider with Digital Output. IEEE Solid State Circ. Lett. 2019, 3, 21–24.
[CrossRef]

7. Safyannikov, N.M.; Bureneva, O.I. Time-to-Voltage Converters Based on the Time-Sharing Principle. IEEE Access 2020, 8,
17442–17453. [CrossRef]

8. Lee, V.T.; Alaghi, A.; Hayes, J.P.; Sathe, V.; Ceze, L. Energy-efficient hybrid stochastic-binary neural networks for near-sensor
computing. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland,
27–31 March 2017.

9. Liu, Z.; Ren, E.; Qiao, F.; Wei, Q.; Liu, X.; Luo, L.; Zhao, H.; Yang, H. NS-CIM: A Current-Mode Computation-in-Memory
Architecture Enabling Near-Sensor Processing for Intelligent IoT Vision Nodes. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67,
2909–2922. [CrossRef]

10. Faraji, S.R.; Bazargan, K. Hybrid Binary-Unary Hardware Accelerator. IEEE Trans. Comput. 2020, 69, 1308–1319. [CrossRef]
11. Santos, E.J.P.; Silva, L.B.M. FPGA-based smart sensor implementation with precise frequency to digital converter for flow

measurement. In Proceedings of the 2010 VI Southern Programmable Logic Conference (SPL), Ipojuca, Brazil, 24–26 March 2010.
12. Elkateeb, A. SOC-Based Sensor Mote Design. Int. J. Mobile Netw. Commun. Telemat. 2013, 3, 1–6. [CrossRef]
13. Kim, H.; Lee, B.; Mun, Y.; Kim, J.; Han, K.; Roh, Y.; Song, D.; Huh, S.; Ko, H. Reconfigurable Sensor Analog Front-End Using

Low-Noise Chopper-Stabilized Delta-Sigma Capacitance-to-Digital Converter. Micromachines 2018, 9, 347. [CrossRef] [PubMed]

http://doi.org/10.1109/TCSI.2019.2937227
http://doi.org/10.1109/LSSC.2019.2959778
http://doi.org/10.1109/ACCESS.2020.2966023
http://doi.org/10.1109/TCSI.2020.2984161
http://doi.org/10.1109/TC.2020.2971596
http://doi.org/10.5121/ijmnct.2013.3401
http://doi.org/10.3390/mi9070347
http://www.ncbi.nlm.nih.gov/pubmed/30424280

Appl. Sci. 2021, 11, 4899 14 of 14

14. Sajjad, M.; Yusoff, M.B.Z.; Ahmed, M. Design of Double-Precision Fully-Programmable Computational Unit for FPGA and
ASIC. In Proceedings of the 2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE),
Southend, UK, 17–18 August 2020.

15. Song, Y.; Panas, R.M.; Chizari, S.; Shaw, L.A.; Jackson, J.A.; Hopkins, J.B.; Pascall, A.J. Additively manufacturable micro-
mechanical logic gates. Nat. Commun. 2019, 10, 882. [CrossRef] [PubMed]

16. Rao, D.G.S. Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photonic Netw.
Commun. 2021, 41, 109–118. [CrossRef]

17. Teo Jonathan, J.Y.; Woo, S.S.; Sarpeshkar, R. Synthetic Biology: A Unifying View and Review Using Analog Circuits. IEEE Trans.
Biomed. Circ. Syst. 2015, 9, 453–474.

18. Reiner, E.; Buntić, A.; Trdak, M.; Simeon, V. Effect of temperature on the activity of human blood cholinesterases. Arch. Toxicol.
1974, 32, 347–350. [CrossRef] [PubMed]

http://doi.org/10.1038/s41467-019-08678-0
http://www.ncbi.nlm.nih.gov/pubmed/30787283
http://doi.org/10.1007/s11107-020-00916-6
http://doi.org/10.1007/BF00330117
http://www.ncbi.nlm.nih.gov/pubmed/4480035

	Introduction
	Materials and Methods
	Bit-Stream Multiplication Process
	Process of Calculating of the Bit-Stream Multiplication-Division Function

	Results
	Bit-Stream Algorithms
	Algorithm Implementation
	Application of the Developed Modules

	Discussion
	References

