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Abstract: The through-transmission (TT) method is mainly used to measure the amplitude of the
second harmonic from which the acoustic nonlinear parameter is determined for early damage
detection of materials. The pulse echo (PE) method, however, has been excluded from nonlinear
studies of solid materials because the stress-free boundary suppresses the generation of second
harmonics. It is more demanding to develop the PE method for practical applications and this
paper considers a novel phase shift technique of annular array transducers to improve second
harmonic generation (SHG) at the stress-free boundary. The fundamental and second harmonic
fields after phase-shifted radiation are calculated, and their received amplitudes are investigated.
The phase difference between the two second harmonic components after reflection from the stress-
free boundary is analyzed to explain the enhanced SHG. The PE method with optimal phase shift
can generate an improved second harmonic amplitude as high as about 45% of the TT method.
Four element array transducers are also found to be more efficient in improved SHG than two
element transducers.

Keywords: pulse-echo method; stress-free boundary; second harmonic generation; array transducer;
phase shift

1. Introduction

Ultrasonic nondestructive evaluation allows the detection of defects within a material
or structure. This plays an important role in preventing failures and is especially important
in inspecting load-bearing components used in the industry [1]. So-called micro-defects or
damage, such as internal stress, closed cracking, and zero-volume delamination, are gener-
ally the forerunners of material cracking and subsequent failures. Microscopic changes due
to precipitation, dislocation and embrittlement affect the overall properties of the material.
However, measurements of conventional linear ultrasonic parameters, such as sound ve-
locity, attenuation, and backscattering, are not sensitive to these inhomogeneities and do
not provide quantitative information on material condition [2]. Nonlinear acoustic meth-
ods, such as second harmonic generation (SHG) and measurement of acoustical nonlinear
parameters, have proven useful for detecting these types of material defects [3–5].

When finite amplitude ultrasonic waves propagate in a material, the nonlinear elastic
properties of the material distort the waveform and generate harmonics [6]. Nonlinear
ultrasound methods often measure the second harmonic generation (SHG) to obtain a
nonlinear parameter β, defined as the ratio of the second harmonic amplitude to the
square of the fundamental wave amplitude, and draw conclusions about the material
state. Nonlinear parameters can be measured, using longitudinal waves [7–11], Rayleigh
waves [12–14], and Lamb waves [15–17]. Rayleigh waves require sufficient propagation
distance to measure SHG; the measured nonlinearity is averaged over distance and cannot
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be localized. In addition, it is sometimes difficult to obtain pure, nonlinear Rayleigh waves
because a certain setup can introduce source nonlinearity. Lamb waves have limited use
because they propagate in very thin plates and there are few modes that meet the require-
ment for cumulative propagation. In contrast, longitudinal waves have been widely used
for nonlinear characterization of materials. However, experiments are usually performed
in the through-transmission (TT) mode requiring access to both sides, and this technique
may be limited in field applications where access is only possible on the external surface of
the component.

A practical method for nonlinear ultrasonic measurements, using the normal incidence
of longitudinal waves is pulse-echo (PE) testing, which uses only one side of the specimen.
Biomedical imaging [18,19] and fluid nonlinearity [20,21] were studied in the PE mode,
using heavy metals as reflectors to resemble the rigid boundary condition. However, the
problem of PE nonlinear testing of solids with stress-free surfaces is that such boundaries
suppress the SHG process and make it hard to acquire reliable nonlinear parameters.
In the case of pure plane waves, the harmonic component generated during forward
propagation is reflected off the stress-free boundary and decreases to zero after returning
to the initial position [22,23]. This is because the two second harmonic components—the
reflected and newly generated second harmonics—cancel each other out due to their phase
difference of π after being reflected from the stress-free boundary. According to theory and
experiment, however, the received second harmonic amplitude reflected from the stress-
free boundary is not really zero due to the finite size transducer and material attenuation.
The currently available pulse-echo nonlinear testing method basically requires the test
sample to be thick enough and may not be accurate for thin samples in nonlinear parameter
measurements [24,25].

An acoustic beam focused on a stress-free boundary was proven to improve SHG
during back propagation from the stress-free boundary [26]. A recent study showed that
the phase difference is about π/2 between the two second harmonic components when
a focused beam is used in water [27]. Thus, the received second harmonic amplitude is
greatly increased due to the constructive interference of these two components and can be
measured in the pulse-echo mode. This study was conducted in fluids where a focused
beam can easily be formed. Phased array transducers can produce focused beams in flat
solid samples, but it is not easy to create a tightly focused beam, especially with a small
number of elements. Therefore, we need to devise another way to create nonlinear beam
fields that can produce a phase difference of about π/2 in the presence of the stress-free
boundary. A dual element transducer with a phase shift of the input signal in one element
relative to the other was found to improve the SHG in the pulse-echo test simulation of
thick samples [28]. A multiple element transducer can provide more options in the control
of phase shifts and improve SHG in the pulse-echo setup of thin solid samples.

This paper investigates the efficient SHG from the stress-free boundary of a nonlinear
solid by control of the transmission phase shift of array elements. When a sound beam
radiates from annular array elements with different phase shifts, the fundamental and
second harmonic waves, which are reflected from the rigid or stress-free boundary, are
calculated in the pulse-echo setup and their characteristic behavior are examined based
on the magnitude of received amplitudes. The phase difference between the reflected
and newly generated second harmonic components is completely analyzed to explain the
enhanced SHG in solid samples. We also study the effects of various phase shifts applied
to array transducers. Simulation results are also given for the case of the plane wave and
a single element transducer to check the diffraction effects and the through-transmission
results. Optimal phase shifts for a given sample thickness and frequency are illustrated in
terms of SHG and nonlinear parameter determination.

2. Theory

Consider nonlinear wave fields reflected from a planar stress-free boundary, as shown
in Figure 1, where a pulse-echo testing setup is schematically displayed. In the forward
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propagation direction of Figure 1, v1i is the particle velocity of the fundamental wave and
v2i is the generated second harmonic due to the forcing of v2i. In the backward propagation
direction, v1r represents the boundary-reflected wave of v1i. As discussed in our previous
study [21], the nonlinear wave after reflection consists of two components, v2r1 and v2r2,
where v2r1 is the second harmonic generated by the reflected v1r and v2r2 is the reflected
second harmonic when v2i hits the boundary. The total second harmonic after reflection,
v2r, is then obtained by adding v2r1 and v2r2. The stress-free boundary is located at z = z0.
The acoustic impedance of the solid sample (medium 1) is z1 = ρ1c1 and the acoustic
impedance of medium 2 (air) is z2 = ρ2c2 ≈ 0. Therefore, the reflection coefficient of the
fundamental and the second harmonic is assumed to be R1 = R2 ≈ −1.
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Figure 1. Schematic of a pulse-echo testing configuration with a stress-free boundary.

Nonlinear wave equations are needed to study wave propagation, reflection and SHG
in nonlinear solids. For this purpose, the Westervelt equation or the KZK (Khokhlov–
Zabolotskaya–Kuznetsov) equation is a suitable model equation because they can account
for the effects of nonlinearity, diffraction and attenuation [6]. Compared to the KZK
equation, the Westervelt equation is described by three-dimensional coordinates and the
solution of the quasilinear equation is valid for all axial ranges. These equations were used
to model the nonlinear wave fields in fluids, but they are also suitable for use in solid
materials when longitudinal waves are employed exclusively. In this work, we introduce
the Westervelt-like equation for calculating the longitudinal wave fields in nonlinear solids.

Several types of planar transducers are considered in this study, as shown in Figure 2.
Figure 2a is a single element transducer that will be used for comparison purposes. Since
this transducer has only one element, it works both as a transmitter and as a receiver. The
annular array transducer of Figure 2b has four concentric elements of equal width [29]. This
transducer will be used to apply the transmission phase shift to each element to improve
SHG at the stress-free boundary. The emitted waves from the transducer elements will
have different phases. The phase shift of each element can be controlled independently.
Compared to a two-element transducer, a four-element transducer allows finer phase
shifting and is, therefore, much more effective for SHG.

A dual element transducer with phase-shifted radiation (Figure 2c) was shown to be
useful in generating improved SHG in pulse-echo testing of thick samples [28] and will
be used here for comparison purposes. We will also consider a focused beam using the
four-element array transducer of Figure 2b and compare the received wave fields with the
phase-shifted radiation. The array beam will be focused on the reflecting boundary by
applying appropriate time delays to each element [30].
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Figure 2. Examples of transducers used for simulation of second harmonic generation in the pulse-
echo setup: (a) single element, (b) four−element annular array, and (c) dual-element annular array.

2.1. Pure Plane Wave

As can be seen in Figure 2a, if the size of the transducer is large enough, the propaga-
tion wave can be treated as a plane wave. When the nonlinear parameter β is introduced
for a solid medium, the one-dimensional longitudinal wave equation can be expressed as
follows [9]:

∂2u
∂t2 = c2 ∂2u

∂z2

(
1 + β

∂u
∂z

)
(1)

where u is the wave particle displacement, t is the time, c is the wave velocity, and z is
the one-dimensional coordinate. In Equation (1), β is the nonlinear parameter of solids
and defined as β = −(3 + C111/C11) where C11 and C111 are the second- and third-order
elastic constants.

Using a standard perturbation theory yields the quasilinear system of equations for
the fundamental and second harmonic displacements u1 and u2, respectively. The solutions
are then obtained as follows:

u = U sin(kz−ωt) +
βU2k2z

8
cos 2(kz−ωt) (2)

where U is the uniform source displacement at the transmitter surface, k = ω/c is the wave
number and ω is the angular frequency. If the amplitudes of the fundamental and second
harmonic are represented as A1 = U and A2 = βU2k2z/8, the nonlinear parameter β can
be obtained as follows:

β =
8A2

k2zA2
1

(3)

When the fundamental wave encounters the boundary in the propagation path, it
will reflect with its amplitude determined by the reflection coefficient. In the case of the
second harmonic wave, as stated previously in Figure 1, two second harmonic components
will reflect from the boundary and propagate back to the initial source position [19]. The
stationary phase method can be used [20] to write the reflected wave fields in terms of
the initial sound source and the coordinate system. Thus, the reflected fundamental and
second harmonic waves propagating in the backward direction can be expressed as follows:

u1r = R1 ×U sin(kz−ωt) (4)

u2r = u2r1 + u2r2

= R2 ×
(

βU2k2z0
8

)
cos 2(kz−ωt) + R2

1 ×
(

βU2k2(z−z0)
8

)
cos 2(kz−ωt)

= βU2k2

8
(

R2z0 + R2
1(z− z0)

)
cos 2(kz−ωt)

(5)

where z0 is the distance between the transmitting plane and the boundary, and R1 and
R2 are the reflection coefficients for the fundamental and second harmonics, respectively.
In Equation (5), the first term represents the reflected second harmonic and the second
term represents the newly generated one. The reflection coefficients of the fundamental
and second harmonic waves can be assumed to be R1 = R2 = −1 for the stress-free
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boundary, and R1 = R2 = 1 for the rigid boundary when the longitudinal wave is incident
perpendicular to the boundary.

The nonlinear parameter in the pulse-echo mode can be defined from Equations (4)
and (5) as the following:

β =
8A2

k2 A2
1

[
R2

1
R2z0 + R2

1(z− z0)

]
(6)

where A1 and A2 are the amplitudes of the fundamental and second harmonic waves after
being reflected from the boundary. In Equation (6), β is not defined at z = 2z0 for the
stress-free boundary since the total second harmonic amplitude is 0 in this case. In the
case of the rigid boundary, the β corresponds to that of the through-transmission mode
with the sample thickness 2z0. It is also noted that any harmonic content generated in
the forward path is cancelled by the nominally equal and opposite phase of harmonics
generated on the return path, as the reflection coefficient is negative (R1 = R2 = −1) at the
stress-free boundary.

2.2. Single Element Transducer

When a finite-size transducer is used to generate and receive nonlinear waves, the
wave diffraction effect should be included in the wave equation. Therefore, we introduce a
nonlinear wave equation in the three-dimensional coordinate system to model the propa-
gating and reflecting waves. The attenuation effects will not be considered in this study. In
terms of the particle velocity, v, the Westervelt-like equation for longitudinal waves can be
expressed as follows [15]: (

∇2 − 1
c2

∂2

∂t2

)
v = − β

c3
∂2v2

∂t2 , (7)

where the operator ∇2 is the Laplacian in the (x, y, z) space and z is taken as the direction
of propagation.

The quasilinear solution is assumed to have the following form:

v = v1 exp(−iωt) + v2 exp(−2iωt) (8)

Substitution of Equation (8) into Equation (7) yields the following two equations:

∇2v1 + k2v1 = 0 , (9)

∇2v2 + 4k2v2 =
2βk2

c
v2

1. (10)

The solutions of the above equations can be obtained by using the Rayleigh integral
method and Green’s function approach:

v1i(x, y, z) = −2ik
∫

S
v1(x′, y′, 0)G1(x, y, z

∣∣x′, y′, 0)dS (11)

v2i(x, y, z) =
2βk2

c

∫ z

0

∫ +∞

−∞

∫ +∞

−∞
v2

1i(x′, y′, z′) G2(x, y, z|x′, y′, z′) dx′dy′dz′ (12)

The Green’s function for the nth harmonic is given as follows:

Gn(x, y, z|x′, y′, z′) =
1

4πr
exp(nikr), n = 1, 2 (13)
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where r =
√
(x− x′)2 + (y− y′)2 + (z− z′)2 is the distance from the source point (x′, y′, z′)

to the target point (x, y, z). The sound source on the transducer surface is defined as the
following: {

v1(x′, y′, z′ = 0) = v0(x′, y′), 0 ≤ x′2 + y′2 ≤ a2

v2(x′, y′, z′ = 0) = 0
(14)

where a is the radius of the circular transmitting element.
The reflected wave fields can be derived from the stationary phase method when a

wave is reflected from a large planar interface [17]. Then, the solution in the backward
direction can be expressed as follows:

v1r(x, y, z) = R× (−2ik)
∫

S
v0(x′, y′, z = 0)G1(x, y, z

∣∣x′, y′, 0)dS (15)

v2r(x, y, z) = v2r1(x, y, z) + v2r2(x, y, z)

= R× 2βk2

c
∫ z0

0

∫ +∞
−∞

∫ +∞
−∞ v2

1i(x′, y′, z′) G2(x, y, z|x′, y′, z′) dx′dy′dz′+

R2 × 2βk2

c
∫ z

z0

∫ +∞
−∞

∫ +∞
−∞ v2

1i(x′, y′, z′) G2(x, y, z|x′, y′, z′) dx′dy′dz′
(16)

The average velocity received by the same transducer at z = 2z0 can be obtained by
the following integral:

ṽn(2z0) =
1
S

∫
S

vnr(x, y, 2z0)dS, n = 1, 2 (17)

where dS is the receiver area.
Now that the received velocities of the fundamental and second harmonics are avail-

able, the nonlinear parameter β′ in the pulse-echo setup can be defined in terms of displace-
ment. Using the relationship between velocity and displacement, vn = −nωun, n = 1, 2, β′

in the pulse-echo mode at z = 2z0 can be expressed as follows:

β′ =
8ũ2

k2z0ũ2
1

(18)

where β′ denotes the “uncorrected” or “relative” nonlinear parameter.

2.3. Annular Array Transducer with Phase-Shifted Radiation

When the array transducer shown in Figure 2b is used to generate and receive nonlin-
ear waves, each element of the array transducer can be operated individually. In nonlinear
ultrasonic testing, a tone burst with many cycles is typically used to drive the element.
Here, we introduce a phase shift technique that improves SHG through phase control of
the second harmonic components reflected at the stress-free boundary.

Here is a brief description of the phase shift technique. Figure 3 shows a sine wave of
two cycles with the zero phase. Waveforms with phase shifts of π/2 and π are also shown
in the same figure. When every element of an array transducer emits waves without a
phase shift, the array transducer works as a single-element transducer. However, when
there is a phase shift between the elements, the wave fields in some positions will be
strongly enhanced.

A time-delayed signal in the time-domain is equivalent to multiplying the frequency
domain signal by the phase term, which is linear in frequency and proportional to the delay.
The relationship between the phase angle and the delay time is given by φ = ω∆t. Thus,
the fundamental and second harmonic wave fields generated by an array transducer with
the phase shift can be calculated in the frequency domain by introducing an exponential
term exp(iφ(m)) to each element m and adding contributions from all elements.
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The single element approach can be extended to calculate the radiated and received
beam fields of the four-element array transducer in the pulse-echo mode. Nonlinear
interaction that may occur between the elements of the array transducer is ignored. The
fundamental velocity fields in the forward propagation region (0 ≤ z ≤ z0) due to the
excitation of the jth element, v(j)

1i , and the generated second harmonic velocity fields, v(j)
2i ,

can be expressed in the same forms as Equations (11) and (12), respectively. The sound
source prescribed on the jth element is now given by the following:

vj
1(x′, y′, z′ = 0) =

{
v0eiφ(j)

, 0 ≤ x′2 + y′2 ≤ b2
j , j = 1 (central disk element)

v0eiφ(j)
, a2

j ≤ x′2 + y′2 ≤ b2
j , j = 2, 3, 4 (outer ring element)

(19)

where φ(j) is the transmission phase shift of the jth element, and a and b denote the inner
and outer diameters, respectively. The diameter b1 of the center disk element is equal to
the diameter a2, so there is no gap between the two adjacent elements.

The propagated and reflected velocity fields due to the phase-shifted radiation of the
jth element can be found using the integral solutions for the single-element transducer
described in the previous section. Next, it is necessary to calculate the received average
velocity of the jth element by summing the contributions from the phase-shifted radiation
of all elements of the array transducer. The average velocity received on each element at
the source position (z = 2z0) can be written as the following:

ṽ(j)
n (2z0) =

1
S(j)

∫
S(j)

[
4

∑
m=1

v(m−>j)
nr (x, y, 2z0)eiφ(m)

]
dS(j), n = 1, 2 (20)

where S(j) is the area of the jth element, and v(m−>j)
nr (x, y, 2z0)eiφ(m)

is the reflected velocity
arriving at the jth element when the phase-shifted mth element is radiated. Finally, the
received total velocity of the nth harmonic is given by the following:

ṽn(2z0) =
4

∑
j=1

ṽ(j)
n (2z0) (21)

and the uncorrected nonlinear parameter, β′, can be calculated by Equation (18).

3. Simulation Results and Discussion

The fundamental and second harmonic wave fields generated by different types of
transducers are calculated in this section to obtain the received average fields. In numerical
simulations, the propagation medium is chosen as Al6061 with the wave velocity of
c = 6430 m/s and the nonlinear parameter of β = 5.5. To investigate the pulse-echo
nonlinear behavior in a relatively thin sample, the sample thickness is set to z0 = 15 mm.
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The attenuation was ignored in this study. Each transducer element emits a fundamental
wave at a frequency of 5 MHz with the source displacement of u0 = 1 × 10−9 m.

The radius of the single-element transducer shown in Figure 2a was chosen to be
12.7 mm. For the four-element array transducer shown in Figure 2b, the inner radii of
these elements are r0 = 0 mm, r2 = 3.175 mm, r4 = 6.35 mm and r6 = 9.525 mm, respectively.
The outer radii are r1 = 3.175 mm, r3 = 6.35 mm, r5 = 9.525 mm and r7 = 12.7 mm. It was
assumed that there is no gap between the elements of the array transducer.

The dual element transducer shown in Figure 2c is composed of an outer ring element
and a central disk element. The inner and outer diameters of the ring element are 6.35 mm
and 12.7 mm, respectively. There is no gap between the two elements, so the diameter of
the inner element is 6.35 mm.

3.1. Pure Plane Wave

Figure 4 shows a schematic view in which the propagation process of a plane wave in
the pulse-echo mode with a reflecting boundary is unfolded. When the calculation results
are displayed in the pulse echo mode, the two propagation regions overlap, making it
difficult to identify. Therefore, in Figure 4 and thereafter, the back propagation region
is developed and spreads to the right side of the reflection boundary for convenience
of observation.
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Figure 4. Unfolded schematic of plane longitudinal wave propagation in the pulse-echo mode.

The results of the pure longitudinal wave are presented here as references to other
propagation and reflection problems. Plane waves are ideal waves without diffraction
and attenuation. Figure 5 shows the variation in fundamental and second harmonic
wave amplitudes in the forward and backward propagation directions. In the forward
propagation, the displacement solution is given by Equation (2) for the fundamental and
second harmonic waves. Since there is no diffraction and attenuation, the fundamental
wave amplitude is constant, and the second harmonic amplitude linearly increases with
propagation distance z.

The displacement solutions after reflection from the boundary are given by Equa-
tions (4) and (5), for the fundamental and second harmonic waves, respectively. Two kinds
of boundary conditions are considered: the stress-free boundary (R = −1) and the rigid
boundary (R = 1). The same fundamental wave amplitudes are observed in Figure 5a
after reflection from the rigid and stress-free boundaries because the reflection coefficient is
|R| = 1.

Figure 5b shows the reflected and newly generated second harmonic amplitudes and
the total second harmonic amplitudes after being reflected from the two boundaries. The
total second harmonic amplitude varies greatly depending on the boundary conditions
used. It decreases linearly during backward propagation from the stress-free boundary
and becomes 0 at the source position but continues to increase linearly in the case of the
rigid boundary. This is known as the canceling and cumulative effects of the 2nd harmonic,
respectively, which occur depending on the boundary conditions.
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Figure 5. Changes in the amplitude of displacement received from plane wave propagation: (a) fundamental wave and (b)
second harmonic wave. The vertical line in each figure denotes the location of the reflection boundary.

To illustrate the behavior of the received displacement, the phase before and after the
boundary reflection was analyzed. The phase of the received wave was calculated by the
function φn(z) = ATAN2(Im(ṽ(z)), Re(ṽ(z))), n = 1, 2. The calculated phase angle was
in the range of −π to π; therefore, 2π radians were inserted whenever there was a jump of
more than 2π radians in order to make the phase spectrum continuous.

Figure 6 presents the phase calculation results for the fundamental and second har-
monic waves. The phase of the fundamental wave in Figure 6a is continuous at the rigid
boundary (R = 1), while the reflected fundamental wave shows a phase difference of π
after reflection at the stress-free boundary (R = −1). The continuous phase means that the
reflected wave has the same sign of the incident wave. The π phase difference means that
the reflected wave has the opposite sign of the incident wave. Note in Figure 6b that the
phase of the reflected second harmonic is continuous at the rigid boundary (R = 1), and
the phase of the newly generated one is also continuous regardless of boundary conditions
(R = 1 or R = −1). On the other hand, the reflected second harmonic shows a phase differ-
ence of π after reflection at the stress-free boundary (R = −1). Therefore, the two second
harmonic components will be added in the phase after reflection at the rigid boundary
(R = 1) and will cancel each other out after reflection at the stress-free boundary (R = −1).
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3.2. Single Element Transducer

Figure 7 shows the unfolded schematic of the longitudinal wave radiating from a
single element transducer in the pulse-echo mode.
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The phase analysis results for the received displacement of Figure 8 are shown in 
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difference of the two second harmonic components for the stress-free boundary ( 1= −R ) 
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Figure 7. Longitudinal wave propagation from a single−element transducer and reception in the
pulse-echo mode.

Figure 8 shows the received displacement amplitude of the fundamental and second
harmonics for the single-element transducer. Note that the received displacement ampli-
tude of the fundamental wave gradually decreases in Figure 8a. This behavior compares
well with the behavior of the plane wave, where the received amplitude is constant at all
distances (see Figure 5a). This is due to the diffraction effects of the finite size transducer in
radiation and reception.
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Figure 8. Changes in the amplitude of displacement received from the single-element transducer: (a) fundamental wave
and (b) second harmonic wave.

Figure 8b shows the received displacement amplitude of the second harmonic for
rigid (R = 1) and stress-free (R = −1) boundaries. The overall behavior of R = −1 is
almost identical to that of the plane wave, except that the total second harmonic amplitude
at the initial position does not completely disappear. This is due to the diffraction effect of
the finite size transducer. It is noted that the results of R = 1 continue to increase linearly.
This is known as the cumulative effect of the second harmonic, which provides a major
advantage in experimental measurement of the nonlinear effect [21]. The signal-to-noise
ratio improves simply by letting the wave propagate for a longer distance.

The phase analysis results for the received displacement of Figure 8 are shown in
Figure 9. Comparing Figure 9 to Figure 6, the results of the two cases are almost the same,
so all discussions of Figure 6 can be applied to Figure 9. One thing to note is that the phase
difference of the two second harmonic components for the stress-free boundary (R = −1)
is not exactly π at the source position because of the diffraction effect.
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3.3. Annular Array Transducer with Phase-Shifted Radiation

(1) Phase shift of π between adjacent elements.

Figure 10 shows the unfolded schematic of longitudinal wave radiation from the four-
element array transducer with the transmit phase shift of π radians between the elements
and reception in the pulse-echo mode.
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Figure 10. Phase−shifted radiation of π between the elements of the annular array transducer and
reception in the pulse-echo mode.

A phase shift technique can be applied to array transducers to improve SHG from
the stress-free boundary. Here, the linear phase shifting is used for simulation, i.e.,
φ(m) = (m− 1)φ where m denotes the element number and φ represents the phase an-
gle of the input signal. A schematic of the phase-shifted radiation is shown in Figure 10,
where the phase difference of φ = π between the elements is used and the simulation
results are shown in Figure 11.

Figure 11 presents the distribution of the received displacement amplitude of the
fundamental and second harmonics for the four-element transducer. The received funda-
mental wave amplitude is about half of that of the single-element transducer as shown in
Figure 11a.

Figure 11b shows the received displacement amplitude of the second harmonic. The
overall behavior looks much different from the single-element transducer of Figure 8b. The
total second harmonic displacement amplitude decreases during backward propagation
from the rigid boundary (R = 1). On the other hand, it gradually increases during back-
ward propagation from the stress-free boundary (R = −1) and exhibits weak cumulative
behavior, achieving about 45% of the rigid boundary case of the single-element transducer
at the source position. This is a big change achieved through the phase shift. As further
studied below, one can optimize the amount of phase shift to apply to maximize second
harmonic generation from the stress-free boundary.
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Figure 11. Changes in the amplitude of displacement received from phase−shifted radiation of π: (a) fundamental wave
and (b) second harmonic wave.

The results of the phase analysis for the received displacement in Figure 11 are shown
in Figure 12. For the fundamental wave of Figure 12a, the phase behavior is the same as in
the previous two cases, so no further discussion is made here.
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Figure 12. Phase analysis results of Figure 11: (a) fundamental wave and (b) second harmonic wave.

Figure 12b shows the phase analysis results of the second harmonic. The phase of
the reflected second harmonic is continuous at the rigid boundary (R = 1), and the phase
difference with the newly generated one starts from about 2π/5 at the boundary and
gradually increases to about 7π/10 at the source position. As a result, the total second
harmonic displacement decreases as shown in Figure 11b. Conversely, the phase difference
between the reflected and newly generated second harmonics gradually decreases from
about 3π/5 to about 3π/10 for the stress-free boundary (R = −1). This is why the summed
second harmonic amplitude increases slowly after reflection, as seen in Figure 11b.

(2) Summary of phase−shifted simulation results.

Since the received fundamental and second harmonic amplitudes are highly depen-
dent on the applied phase shift, the simulation was performed using more phase-shift
values. A series of phase shifts were applied, using the linear phase between the adja-
cent elements as before, φ(m) = (m− 1)φ, where m denotes the element number and φ
represents the phase angle. Here, φ ranges from 0 to π in π/20 increments.

The simulation results are presented in Figure 13. When there is no phase shift,
the received amplitude of the four-element transducer is the same as the single-element
transducer. The rigid boundary for the four-element transducer with zero phase shift
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corresponds to the through-transmission mode of thickness z = 2z0. It is noticed that the
received fundamental wave amplitude does not depend on the boundary type.
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Figure 13. Amplitude of the received displacement as a function of the phase shift between the array transducer elements:
(a) fundamental wave, and (b) second harmonic wave.

The received second harmonic amplitudes resulting from the stress-free boundary
are lower than those from the rigid boundary in most phase shift cases. However, in the
last three cases of phase shifts (18π/20, 19π/20 and π) with the stress-free boundary, the
received second harmonic amplitudes are larger than those of the rigid boundary, and
the π phase shift provides the highest received amplitude. This amount of amplitude is
about one order of magnitude larger than that of the single-element transducer with the
stress-free boundary.

When the phase shift near π is applied, the phase difference between the reflected and
newly generated second harmonic waves reach the minimum for the stress-free boundary.
Therefore, the pulse-echo harmonic generation in this condition corresponds to the optimal
condition, which is consistent with our previous research [28]. In this case, the first and
third elements have the same phase, and the second and fourth elements have the same
phase. This indicates that only two amplifiers are required in the experiment, even if a
four-element array transducer is used.

4. Time Delay Focusing and Received Amplitudes

An annular array transducer that emits the longitudinal wave consists of a number of
source elements and the radiation beam can be focused by applying an appropriate time
delay to each element of the array transducer [29], as shown in Figure 14. A delay law for
each element of the array transducer along the symmetry axis of the transducer with zero
steering angle can be derived by considering the time-of-flight (TOF) from the centroid of
each element to the specified focal distance F. The TOF difference between the mth element
and the center element can be calculated as follows [30]:

∆tm =
r2

m + r2
m+1

4cF
(22)

where c is the longitudinal velocity of the sample, and rm and rm+1 are the inner and outer
radii of the mth element, respectively.
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Figure 14. Conventional time delay focusing of the four-element array transducer and reception in
the pulse-echo mode.

The delay of the time–domain signal is equivalent to multiplying the frequency
domain signal by a phase term that is linear in frequency and proportional to its delay. If
F(ω) is the Fourier transform (FT) of the time–domain signal f (t), then the FT of the time
shifted signal f (t− ∆t) can be obtained as exp(iω∆t)F(ω), where ∆t is the time delay.

The array transducer used for a focused beam generation is the same as the four-
element transducer, described before, used for phase-shifted radiation. The focal distance
is set at the reflecting boundary of the sample (F = 15 mm) and the steering angle is 0◦. In
the simulation, the transmission time delay was calculated using Equation (22) and applied
to focus the radiation beam at the specified focal distance. When calculating the received
acoustic fields, the reception time delay was applied in the same way.

Figure 15 shows the received displacement amplitude of the fundamental and second
harmonic waves when the radiation beam was focused at the reflecting boundary. Note
that the received displacement amplitude of the fundamental wave fluctuates and increases
very little in Figure 15a for both boundary conditions. This is due to the beam focusing of
the array transducer. The boundary condition does not affect the calculated results of the
fundamental wave. Figure 15b shows the received displacement amplitude of the second
harmonic. In the back-propagation region, the rigid boundary yields a much larger SHG
than the stress-free boundary. The stress-free boundary provides a relatively strong SHG,
but the received amplitude initially tends to decrease due to the canceling effect and then
accumulates during back propagation to the source location.
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wave and (b) second harmonic wave.

Figure 16a shows the phase analysis results of the fundamental wave, which are
the same as before. Figure 16b shows the phase analysis results of the second harmonic.
The phase of the reflected second harmonic is continuous at the rigid boundary (R = 1),
and the phase difference with the newly generated one starts from 0 at the boundary
and gradually increases to about π/5 at the source position. As a result, the total second
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harmonic amplitude increases continuously as shown in Figure 15b. On the other hand, the
phase difference between the reflected and newly generated second harmonics gradually
increases from about π to about 6π/5 for the stress-free boundary (R = −1). This is why
the summed second harmonic amplitude exhibits a sudden decrease at first and then a
continuous increase, thereafter, as seen in Figure 15b.
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5. Comparison of Simulation Results and discussion
5.1. Fundamental and Second Harmonic Amplitudes

Table 1 lists the case numbers for various types of transducers and their received
displacement amplitudes calculated in the pulse-echo (PE) mode, using two boundary
conditions. The single element transducer is listed as Case 1. The single element transducer
in the PE mode with the rigid boundary is the same as the through-transmission (TT) mode
of thickness z = 2z0. Four representative cases (2 to 5) are listed for the four-element array
transducer with three different phase shifts applied. Three representative cases (6 to 8) are
listed for the dual-element transducer with three different phase shifts applied. Finally, the
focused transducer is included as Case 9, where the focal distance is set at the reflecting
boundary of the sample. The single element transducer with the rigid boundary will be
used as a reference in the comparison of received amplitudes in various cases.

Table 1. Summary of received displacement amplitudes in various simulation cases.

Type Case No.
Phase Shift Fundamental

(10−10 m)

Second Harmonic (10−13 m)

Disk Annular Elements Rigid Stress-Free

Single element 1 - - - - 8.95 8.82 0.31

Four element

2 0 π/4 2π/4 3π/4 3.78 1.39 0.16
3 0 π/3 2π/3 π 1.62 1.31 0.34
4 0 π/2 π 3π/2 1.33 4.51 0.71
5 0 π 2π 3π 4.51 2.02 3.92

Dual element
6 0 π/2 - - 2.93 7.23 0.88
7 0 2π/3 - - 5 4.18 0.67
8 0 π - - 8.04 7.57 1.74

Focused 9 0 1.16π 3.10π 5.78π 4.94 4.09 1.98

Equation (11), for calculating the propagating sound beam fields, is called the Rayleigh–
Sommerfeld (RS) integral and serves as the exact solution to the linear wave equation,
Equation (9). Equation (12) also serves as an exact solution to the second harmonic wave
equation in the quasilinear theory since the exact linear solution is used in the right hand-
side of Equation (12). Therefore, all of the sound beam field equations derived in this
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study can be treated as exact solutions. Numerical calculations for the simulation were
performed using MATLAB program. The amplitudes of the received displacements given
in Table 1 can also be considered exact, although it may contain inherent errors that cannot
be avoided in general numerical calculations.

First, it is noticed that the received fundamental amplitude does not depend on the
type of boundary used (Case 1). This is because the magnitude of the received displacement,
which is always positive, is calculated. The received fundamental and second harmonic
amplitudes show a strong dependence on the applied phase shift (Case 2 to 8). The received
amplitude also varies with the focal position [31], although the results of only one focal
position are shown in this study (Case 9).

The single-element transducer with the rigid boundary (Case 1, R = 1), which is
equivalent to the through-transmission setup of propagation distance 2z0, provides the
largest SHG. This is why such a pulse-echo setup is used to successfully measure the
nonlinear parameter of fluids [7].

Table 1 shows the improvement of SHG through the phase shift of the multi-element
array transducer, and the maximum second harmonic amplitude is obtained when the
phase shift between the elements is π (Case 5, R = −1). The enhanced second harmonic
generation also validates the determination of the nonlinear parameter, as further discussed
below. The improved SHG in the dual-element transducer (Case 8, R = −1) is much weaker
compared to the phase shift effect of the four-element transducer. These results indicate
that the phase shift can be applied more effectively, using the four-element transducer to
produce improved SHG in solid samples with stress-free boundaries.

The focusing of the incident beam at the reflecting surface (Case 9, R = −1) provides
only slightly improved SHG, compared to the maximum possible SHG obtained by the
phase-shift of the four-element transducer (Case 5, R = −1). This can be attributed to the
insufficient number of transmission elements that cannot achieve very tight focusing. A
64-element linear array probe or a spherically focused probe provides tight focusing to
achieve the maximum possible SHG, with the phase difference between the two second
harmonic components reaching about π/2 [26,27].

5.2. Uncorrected Nonlinear Parameter

The material nonlinearity is frequently quantified by the “absolute” nonlinear pa-
rameter, β, which is defined by Equation (3). However, in practical experiments, the
“uncorrected” nonlinear parameter of Equation (18) is measured using finite size trans-
ducers. In this case, in order to determine the β, corrections for diffraction effects and
material attenuation are required. In pulse-echo mode experiments, additional correction
for boundary reflection is required.

The β′ was calculated using the data of Table 1 and is presented in Figure 17. Case
5 with R = −1 shows a relatively high β′ because it yields the largest second harmonic
amplitude. In fact, the calculated β′ is about three times larger than the reference β, so a
small correction value much lower than 1 is required. This case may be a possible option
for an accurate measurement of β, but it is not the best option. The focused transducer
(Case 9, R = −1) may be a better choice because it gives a reasonable β′ resulting from
the improved SHG and requires a correction value close to 1. When a phase shift is
accompanied for the measurement of β′ only with R = −1, it seems that Cases 3 and 6
are suitable choices. The optimal phase shift criterion for the reliable determination of β
using the four-element transducer is to maximize SHG from the stress-free boundary and
to minimize the dependence on the correction by making the correction value as close to
one as possible. It is noted that the largest value of β′ occurs when R = 1 in Case 4 because
the second harmonic amplitude is relatively large, and the fundamental wave amplitude is
the smallest.
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The simulation results observed here show that the transmission phase shift can
be a useful tool in the pulse-echo SHG of relatively thin solid samples with stress−free
boundaries. The design of array transducers and the amount of phase shift to apply for a
given material and frequency can be optimized in terms of maximum possible SHG or in
terms of the more accurate determination of β.

The current work covers ideal cases, but the actual phenomenon will not differ much
from the theoretical investigation presented here. Future work should be able to include
laboratory verification and field verification. Some of the challenges associated with
experimental validation are making such a multiple element transducer. It should be
able to carry high power input signals with minimal source harmonics. All elements
of the transducer should be able to act as both a transmitter and a receiver and need to
have a wide bandwidth to cover both the fundamental and second harmonic frequency
components. In addition, at least four channels of function generators and high-power
amplifiers may be required.

This study deals with the generation of second harmonic in relation to the evaluation
of the properties of nonlinear solid materials. Just as the nonlinear image based on the
second harmonic is superior to the linear image, the third harmonic image can have
a better resolution in tissue characterization because the main lobe is narrower in the
transverse beam pattern than in the second harmonic. A measure of the third harmonic is
the nonlinear coefficient C/A in fluids and biological media. Other studies have shown that
the third harmonic is more sensitive to microstructure changes than the second harmonic
by measuring the amplitude of the third harmonic or measuring the relative third-order
nonlinear parameter for the damaged solid medium [32].

6. Conclusions

In this work, we studied a novel phase shift technique to enhance SHG reflected
at the stress−free boundaries of thin solid samples, using annular array transducers.
The received second harmonic amplitudes generated from various sound sources were
compared through simulation, and their phase characteristics were analyzed. Based on the
simulation results, the following conclusions are drawn:

(1) Plane or diffracted waves emitted by single−element transducers are difficult to use
to generate second harmonic amplitudes or to measure the nonlinear properties of
solids in the pulse-echo mode. This is because the two components of the second
harmonic are out of phase with each other and cancel at the receiver position.

(2) The transmission phase shift can be a useful tool in the pulse-echo SHG of relatively
thin samples. Moreover, the design of four−element transducers can be optimized in
terms of shape and size along with the amount of phase shift to obtain the maximum
possible SHG. Array transducers with four elements offer distinct advantages over
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two elements, as they give more options when applying the phase shift or adjusting
the focal length.

(3) To measure the nonlinear parameter (β) of a specimen with much improved second
harmonic amplitude, compared to a single element transducer, a four−element array
transducer using a beam focused at the specimen boundary may be a good alternative.
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