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Abstract: A new data fusion technique based on Artificial Neural Networks (ANN) for the design
of a rainfall retrieval algorithm is presented. The use of both VIS/IR (VISible and InfraRed) data
from GEO (Geostationary Earth Orbit) satellite and of passive microwave data from LEO (Low Earth
Orbit) satellite can take advantage of both types of sensors reducing their limitations. The technique
can reconstruct the surface rain field with the MSG-SEVIRI (Meteosat Second Generation–Spinning
Enhanced Visible Infrared Imager) spatial and temporal resolution, which means 3 km at the sub
satellite point and 5 km at mid-latitudes, every 15 min, respectively. Rainfall estimations are also
compared with H-SAF (Hydrology Satellite Application Facility) PR-OBS3A operational product
showing better performance both on the identification of rainy areas and on the retrieval of the
amount of precipitation. In particular, in the considered test cases, results report an improvement in
average of 83% in terms of probability of rainy areas detection, of 45% in terms of false alarm rate,
and of 47% in terms of root mean square error in the retrieval of the amount of precipitation.

Keywords: precipitation; hydrology; meteorological satellites; global precipitation measurement
mission; MSG; SEVIRI; artificial neural networks; data fusion

1. Introduction

The prevailing element in the Earth water cycle is the precipitation, both liquid and
solid, which therefore assumes a crucial role in hydrological budget. A better knowledge
of the spatial and temporal distribution of this variable has positive consequences in many
different fields, like climatology, weather forecasting, agriculture, fishing, and flooding
early warning systems. Despite its importance, precipitation is one of the most difficult
geophysical parameter to be quantified, particularly in those regions (e.g., ocean, remote
lands, and developing countries) where there are sparse or even lacking ground measure-
ments. A significant improvement to monitor precipitation for those regions come from
meteorological satellites because of their spatial coverage and temporal sampling capabil-
ities over large areas. Areas covered by rain gauges network or weather radars can also
benefit from satellites precipitation estimation to compensate the usual irregular spatial
distribution of rain gauges or the orography problems that could affect weather radars.

Many algorithms for satellite-based rainfall retrieval exist. An important category
exploits the attenuation, measurable by microwave radiometers on satellites, due to the
presence of precipitation particles on Earth [1–4]. However, the passive microwave (PMW)-
based techniques observations are currently only available from LEO satellites, typically
resulting in two observations per day per satellite, which represent a significant operational
constraint. In addition, the spatial resolution also may be not adequate, being of the order
of 50 × 50 km for the low frequency channels that are used over the ocean and no better
than 10 × 10 km for the higher-frequency channels used over the land.

Algorithms based on data acquired from GEO satellites (VIS/IR sensors) represent
another approach [5,6]. In this case both spatial and temporal resolution is increased but
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the physical connection, based on scattering and absorption mechanisms, between the
visible and infrared part of the spectrum and precipitation is not as strong as for microwave,
affecting the final accuracies. A rising number of techniques are being also developed to
exploit the synergy between the polar-orbiting PMW retrievals (irregular, and more direct)
with the geostationary VIS/NIR/IR observations (regular, and less direct). Most of them
rely on some empirical inter-calibration operations [7]. This type of approach, however,
may have generalization limitations as the calibration holds only in a specific geographic
area or for a specific class of events. A motion-based technique has been also proposed [8],
where the IR data provide a reasonable measure of cloud movement, which is then used to
advect or morph the more direct PMW data between the successive satellite overpasses. A
more conceptual cloud-development model, driven by GEO satellite imagery, and locally
updated using MW-based rainfall measurements from LEO platforms, is described in
Bellerby et al. [9], such an approach has been refined in [10] where cloud classification is a
specific step incorporated in the precipitation estimation method.

In the context of the data fusion methods, the use of the Meteosat Second Generation
(MSG) satellite mission from the European Organization for the Exploitation of Meteo-
rological Satellites (EUMETSAT) has been only sparsely addressed [11]. MSG is a very
important mission in the context of GEO satellites. It carries the SEVIRI instrument, a
line-by-line scanning radiometer, which provides image data in four Visible (VIS) and
Near-InfraRed (VNIR) channels and eight InfraRed (IR) channels. Although “operational”
precipitation products are routinely produced within concerted programs, such as the
EUMETSAT Satellite Applications Facility on Support to Operational Hydrology and Water
Management (H-SAF) [12], more investigation is needed to analyze the potential of a data
fusion approach merging information provided by PMW and MSG. The objective of this
paper is to provide a contribution along this direction. The final goal is to improve the
accuracy of up-to-date precipitation products based on EUMETSAT SEVIRI data. To this
purpose, we propose an innovative methodology for merging MW and VIS/NIR/IR MSG
observations based on neural networks (NN).

In fact, rainfall estimation is a problem that contains many unknown processes. The
inverse problem of the radiative transfer process involves an ill-posed scenario which yields
many solutions for a given set of brightness temperatures. In such circumstances, NN
models, which can learn input–output significant relationships directly from the training
data and, if the training process is carried out properly, are able to generalize out of them,
can be very useful. The relationship between the amount of radiation reaching the satellite
sensor and the intensity (and the type) of surface rain is nonlinear and non-Gaussian, then
it is well-matched to NNs estimation capabilities. Additionally, NNs can handle huge
amount of data in an automatic and quick way without the need of new training sessions.
On the other hand, physically based models often require a great quantity of computational
resources, then NNs might take a considerable advantage in an operational context. Lastly,
noisy data are well managed by NNs, fault tolerance is indeed another advantage of using
such an approach [13].

On the other hand, the use of NN algorithms has been often considered suitable for
parameter retrieval in atmospheric remote sensing [14,15] and neural techniques for rainfall
monitoring involving some data fusion approach have been applied in the past [16,17].
More in detail, if we restrict the research to the use of MSG data, a first attempt of using
NN and a fusion technique for rainfall retrieval can be found in [18]. In this case only the
IR10.8 SEVIRI channel was considered together with SSM/I measurements. More recently,
in [19] a NN approach using MSG and ground based radar measurements is presented to
estimate rainfall over north of Algeria.

In this study, a novel NN architecture using as inputs MSG SEVIRI multispectral VIS
and IR data and capable to generate rainfall maps at the MSG SEVIRI time resolution is
presented. For the training phase, the possibility to use LEO PMW data from all in-orbit
satellites, “fusing” data from six different sensors has been explored. The methodology
is based on the design of two neural architectures, the first one to extract rainy pixels,
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the second one to provide the corresponding estimated rainfall value. The resolution
issues are handled by means of a rigorous and accurate collocation procedure and by
considering mean and standard deviation values over 3 × 3 and 5 × 5 pixel neighborhood.
The algorithm performance is tested through comparison with a more conventional one,
such as PR-OBS-3A, the EUMETSAT Hydrological Satellite Application Facility (HSAF)
precipitation product. It has to be noted that both daylight and night time scenarios have
been addressed. These latter characteristics together with the concurrent richness of the
data used, either in terms of MSG bands considered as NN inputs or in terms of the
microwave information exploited in the training phase, represent an additional significant
element of innovation in this field.

2. Datasets
2.1. Passive Microwave Data-GPM Mission

The GPM Mission, is an international space network of satellites designed to provide
precipitation observations every three hours anywhere around the world. As shown in
Table 1, the GPM constellation consists of several operational, research, and development
satellites that include (or will include) the operational US NOAA and European MetOp
polar orbiting series, the US Defence Meteorological Program satellites, the US Joint Po-
lar Satellite System, together with the Japanese GCOM-W1 (Global Change Observation
Mission-Water) mission, and the French-Indian Megha-Tropiques mission. The GPM core
satellite, the “observatory”, carries a dual frequency precipitation radar (DPR) using Ku
band at 13 GHz and Ka band at 35 GHz and a canonical-scanning microwave imager (GMI)
operating from 10 to 183 GHz with 13 channels. It builds upon the Tropical Rainfall Mea-
suring Mission (TRMM) heritage [7] but provides retrieval accuracy and higher sensitivity
to slight rainfall (smaller than 2.5 mm/h according to the definition of the Glossary of
Meteorology [20], such a reference will be considered also for other rainfall categories
mentioned in the paper) and snowfall detection relative to TRMM. DPR and GMI, during
their life-time, will generate an observational database on the microphysical properties of
precipitating particles. The GPM concept is based on the deployment of a “Core” obser-
vatory carrying active and passive microwave sensors in a non-Sun-synchronous orbit to
serve as a physics observatory to gain insights into precipitation systems and as a calibra-
tion reference to unify and refine precipitation estimates from a constellation of diverse
satellites. Through the inter-calibration of radiometric data obtained from this constellation
of different sensors, an accurate unified precipitation retrieval algorithm, using a common
hydrometeor database and working in the different environmental conditions, has been
developed [21]. These data set will be used to provide rainy pixels and to train the NN
performing the rainfall retrieval.

Table 1. Launch schedules and life spans of Global Precipitation Measurement constellation satellites. Satellites used in this
study are in bold.

SATELLITE SENSOR LIFE SPAN

Global Precipitation Measurement Core GPM Microwave Imager/Dual Frequency
Precipitation Radar 2014–beyond 2021

Global Change Observation Mission-Water 1 Advance Microwave Scanning Radiometer 2 2012–2018

Megha-Tropiques Sondeur Atmospherique du Profil d’Humidite
Intertropical par Radiometrie 2011–2017

Defence Meteorological Satellite Program-Flight 17 Special Sensor Microwave Imager/Sounder 2011–2015

Defence Meteorological Satellite Program-Flight 18 Special Sensor Microwave Imager/Sounder 2011–2016

Defence Meteorological Satellite Program-Flight 19 Special Sensor Microwave Imager/Sounder 2014–beyond 2021

Defence Meteorological Satellite Program-Flight 20 Special Sensor Microwave Imager/Sounder 2020–N/A

Meteorological Operational Satellites-A Microwave Humidity Sounder 2011–2014
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Table 1. Cont.

SATELLITE SENSOR LIFE SPAN

Meteorological Operational Satellites-B Microwave Humidity Sounder 2012–2017

Meteorological Operational Satellites-C Microwave Humidity Sounder 2016–beyond 2021

National Oceanic and Atmospheric
Administration-18 Microwave Humidity Sounder 2011–2017

National Oceanic and Atmospheric
Administration-19 Microwave Humidity Sounder 2011–2018

National Polar-orbiting Partnership Advanced Technology Microwave Sounder 2012–2019

Joint Polar Satellite System-1 Advanced Technology Microwave Sounder 2017–beyond 2021

2.2. Visible/Infrared MSG SEVIRI Data

The Meteosat Second Generation satellites have an altitude of about 36,000 km above
the equator at 0◦ W and 41.5◦ E. With respect to its precursor instrument MVIRI (Meteosat
Visible and InfraRed Imager,), the EUMETSAT Spinning Enhanced Visible and InfraRed
Imager (SEVIRI) [22] provides significantly increased information due to an imaging-repeat
cycle of 15 min (30 min for MVIRI) and 12 spectral channels (3 channels for MVIRI),
quantization with 10 bits per pixel (8 for MVIRI), and image sampling distances of 3 km
at nadir for all channels except the high-resolution visible with 1 km (for MVIRI, 5 and
2.5 km, respectively). These enhanced time-space resolution performances allow to retrieve
timely information on rapid weather development and are particularly helpful to rainfall
retrieval algorithms. The high resolution visible channel has an IFOV of 1.67 km, and the
oversampling factor is 1.67 that corresponds to a sampling distance of 1 km at nadir. The
corresponding values for the eight thermal IR and the other three solar channels are 4.8 km
IFOV, with an oversampling factor of 1.6 and a sampling distance of 3 km for nadir view.
Eight of the channels are in the thermal infrared, providing, among other information,
permanent data about the temperatures of clouds, land, and sea surfaces. One of the
channels is called the High Resolution Visible (HRV) channel and has a sampling distance
at nadir of 1 km, as opposed to the 3 km resolution of the other visible channels. Using
radiation with wavelengths physically and significantly interacting with ozone, water
vapor and carbon dioxide molecules, MSG satellites allow meteorologists to analyze the
characteristics of atmospheric air masses in the three dimensions. The improved horizontal
image resolution for the visible light spectral channel (1 km as opposed to 2.5 km) also
helps weather forecasters in detecting and predicting the onset or end of severe weather.
The crucial properties to detect rain (optical thickness, droplet size, cloud phase, cloud top
temperature, and water vapor content) can be retrieved using the SEVIRI channels [19,23].
This aspect will be more deeply addressed in Section 3.1 dealing with the selection of the
radiances measured by SEVIRI to be used as input for our NN algorithms.

2.3. MSG SEVIRI Cloud Mask

The MSG SEVIRI cloud mask (CMa) product permits the identification of cloud free
pixels in a satellite scene with a high confidence [24]. Indeed, cloudy pixels can be often
identified, because they appear colder (at 10.5 µm) and/or brighter (at 0.6 or 0.8 µm) than
cloud free areas. A fine analysis of their respective spectral behavior is nevertheless needed
to perform a full cloud detection. For example, low clouds identification at night-time
relies on their low emissivity at 3.8 µm, whereas thin cirrus clouds can be identified due to
their different emissivity at 10.5 µm and 12 µm. Cloud free areas covered by snow or ice
are identified at daytime with their very low reflectivity at 3.7 µm and high reflectivity at
0.6 µm, whereas oceanic cloud free areas affected by sun glint are identified with their very
high reflectivity at 3.8 µm. The CMa identifies pixels that are contaminated by either clouds,
dust, or snow/sea ice. The problem to be solved is to automatically predict, with sufficient
accuracy, brightness temperatures and reflectance of cloud free areas, so that any discrep-
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ancy between the measured and predicted values can be used to detect contaminated pixels.
Therefore, the algorithm is based on multispectral threshold technique applied to each
pixel of the image. A first process allows the identification of pixels contaminated by clouds
or snow/ice. This is complemented by an analysis of the temporal variation (between
individual image repeat cycles) of some spectral combination of channels (to detect rapidly
moving clouds) and a specific treatment combining temporal coherency analysis and region
growing technique (to improve the detection of low clouds). This first process is carried
out to determine the cloud cover category of each pixel (cloud-free, cloud contaminated,
cloud filled, snow/ice contaminated, or undefined/non-processed) and compute a quality
flag on the processing itself. A second process, allowing the identification of dust clouds
and volcanic ash clouds, is applied to all pixels (even already classified as cloud-free or
contaminated by clouds). The result is stored in the dust cloud and volcanic ash cloud
flags. Within the encoding of the product the pixels are identified as one of the following:

• Clear sky over water;
• Clear sky over land;
• Cloud;
• No data (if none of the classifications above is possible).

This product, as provided by EUMETSAT [25], will be used to select, at the SEVIRI
space resolution, for both the NN detecting rainy pixels and the NN providing rainfall
estimation, only cloudy pixels.

2.4. Validation Weather Radar Data

To validate the methodology proposed in this paper, weather radar over Europe are
used. They are provided by the Operational Programme for the Exchange of Weather
Radar Information (OPERA) in form of a composite mosaic of 200 weather radar across the
Europe [26] (see Figure 1). The number of dual-polarization radars in Europe is growing
steadily and the current count is 48. Most of the radars operate at C-band (168 sites), but
many S-band radars are installed in the south of Europe (33 sites). The most northern radar
is in Hasvik (Norway) at 70.6◦ N, and the most southern one is in Gran Canaria (Spanish
island off the African coast, southwest of Europe; not shown on the map) at 28.0◦ N. The
most western radar is located in Keflavik (Iceland) at 22.6◦ W, and the most eastern one
in Berlevåg (Norway) at 29.0◦ E. The median distance between two neighboring radars
in the network is 128 km, and the smallest distance between a pair is just 7 km (a C-band
and an S-band radar in Oradea, Romania) and the largest distance is only 276 km. These
mosaic products are generated on a Cartesian grid covering the whole of Europe (area:
3800 × 4400 km) with a horizontal grid spacing of 2.0 km. Every mosaic pixel is a weighted
average of the lowest valid pixels of the contributing radars, weighted by the inverse of the
beam altitude. Polar volume data cells within a search radius of 2.5 km of the composite
pixel are considered. Each pixel of the mosaic is provided with an error-based quality
index (range 0 to 1). This index is calculated by combining information on radar properties,
measurement position, and meteorological conditions in a form that relates directly to rain
rate error. The performance of the quality index have been demonstrated to be positive,
smoothing rain rates at the boundaries between radar fields, and reinstating some rain
that was missed in the operational composite. As reported in [27], the statistics show no
significant reduction in compositing skill, and in fact suggest improved skill at high rain
rates. These data indicate that use of a quality index for compositing increases the accuracy
of surface rain rate estimates at high intensity, without significantly decreasing accuracy at
lower rain rates.

2.5. PR-OBS-3A Precipitation Product

PR-OBS-3A, a EUMETSAT Hydrological Satellite Application Facility (HSAF) pre-
cipitation product, is the benchmark to evaluate the data fusion technique here proposed.
In fact, this product and the one yielded by our methodology have the same spatial and
temporal resolutions which is a very important aspect for a reliable comparison. A com-
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plete description of the algorithm is provided in [28]. PR-OBS-3A provides instantaneous
precipitation rain rate retrieved from blending information produced by PMW and IR
observations using SSMIS, MHS and SEVIRI sensors (channel 9, wavelength 10.8 µm) [29].
The product is designed to provide a better time continuity and even spatial coverage
with respect to the relatively infrequent precipitation observation of LEO instruments,
processing, and calibrating IR observation from GEO platforms. PR-OBS-3A is calibrated
directly by means of a “rapid update technique” lookup table of precipitation based on
time-space coincident GEO and LEO information.
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Figure 1. OPERA weather radar network.

PR-OBS-03 performs relatively well for the highest precipitation class when compared
either with the radar or with rain gauge observations. Its performance starts to decrease in
the intermediate precipitation class, until to become very poor for the lower precipitation
regime. The analysis of monthly statistical scores shows a seasonal trend: it performs better
during winter time, but an underestimation of precipitation rate is always observed [30,31].

2.6. Case Studies

To reflect the seasonal meteorological variability and the different type of precipita-
tions, four case studies, summarized in Table 2, have been selected to create an appropriate
dataset for this study.

Table 2. Case Studies.

Date Time Range Type of Event Country and Boundaty

5 June 2015 14:00–23:00 Thunderstorm Belgium (48 to 52)◦ N-(2 to 8)◦ E
20 February 2016 00:00–22:00 Rain associated to winter storm Belgium (48 to 52)◦ N-(2 to 8)◦ E
12 October 2015 03:00–12:00 Thunderstorm Poland (49 to 55)◦ N-(14 to 25)◦ E

8 July 2015 13:00–17:00 Cyclone over North Sea Hungary (45 to 50)◦ N-(16 to 22)◦ E

5 June 2015-Belgium
The weather in Belgium was influenced in the beginning by a high-pressure zone in

central Europe. This system was redirecting tropical continental air masses to western
Europe while a low-pressure zone from the Atlantic, accompanied by cold fronts, was
slowly approaching the British Isles. Such conditions were favorable for the development
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of a thermal trough over Belgium, resulting in thunderstorms and intense rainfall in the
afternoon and evening. The zones of highest rainfall accumulation were the central parts
of the country and a narrow zone near the coast.

20 February 2016-Belgium
This scenario is characterized by a vast zone of very low pressure in the south of

Iceland, moving towards Scandinavia. Several fronts and strong winds are accompanying
this system. Belgium is under the influence of warm and then cold fronts. During this event,
warm air from south-west caused a significant increase in temperatures while precipitation
lasted for many hours over several places in Belgium.

12 October 2015-Poland
On 12 October 2015, a significant weather change took place over Poland. The sunny

conditions were replaced by cloudy weather characterized by both solid and liquid precip-
itation in the southern regions of the country. The change was induced by low weather
system directing the advection and thus the precipitating cloud movement. The occluded
front located on the Polish/Czech border was the main driver for the rainfall events over
Poland on that day. The massive precipitation system was travelling from SE to NW with
slight northerly deviation. The stable stratiform precipitation was recorded over southern
regions of the country.

8 July 2015-Hungary
On 8 July 2015, an extra-tropical cyclone developed over North Sea. The cold front

of this cyclone caused lot of convective clouds in Europe. In Hungary (around Budapest)
lot of thunderstorms brought hail, storm wind and high precipitation intensity during
the afternoon.

3. Methodology

The proposed technology is summarized in Figure 2 where it can be seen that, for the
specific event, the core processing is based on two NNs, named NN1 and NN2. Part (a) and
part (b) show how NN1, providing the rain mask, and NN2, performing the precipitation
rate estimation, respectively, are trained. Part 9(c) reports the whole operational processing
chain. Once the two NNs are created, they can be used to reconstruct the precipitation field
associated to the event with a time sample of 15 min and with SEVIRI spatial resolution,
filling the temporal and geographical gaps between the LEO satellite passages. The
following paragraphs will address the main technical issues involved in the design of
the double-NN retrieval scheme.

3.1. Selection of the NN Input Data

A crucial issue in the design of a NN algorithm is the selection of appropriate inputs.
The information considered as input for the two NN algorithms presented in this study, one
for day time and the other one for night time, is now described. According to [32,33] a first
piece of information directly linked to the probability of a cloud of being rainy is represented
by the Cloud Water Path (CWP). The CWP is the amount of water vertically integrated in the
cloud, and given some assumptions about cloud vertical structures, it is related to the cloud
optical thickness and to the droplet effective radius where the effective particle radius is
defined by the ratio between the third and the second power of the droplet spectrum [34]. To
characterize the geometrical thickness of a cloud, the integration of the extinction coefficient
integrated over the cloud geometrical thickness, called Cloud Optical Thickness (τ), is also
used. To retrieve CWP using SEVIRI data, reflectance of VIS0.6 and NIR1.6 can be used [6,32].
High values of VIS0.6 reflectance correspond to high optical depth of cloud and low values
of NIR1.6 reflectance indicate large particles in the cloud. This means that a large CWP is
obtained when high values of VIS0.6 coincide with low values of NIR1.6. During the night,
the cloud optical thickness is well defined by brightness temperature difference BTIR10.8-
BTIR12.1 [35], while to infer information about microphysical and optical cloud properties,
the brightness temperature difference BTIR3.9-BTIR10.8 and BTIR3.9-BTWV7.3 may be
used [36–38]. Another distinctive aspect of the raining clouds is the thermodynamic phase.
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It may be assumed that if both liquid (droplets) and ice water (crystals) coexist then the cloud
is more likely to bring rain [32,33,35,39,40]. Two good indicators of the thermodynamic
phase of the cloud are the cloud top temperature (CTT) (provided by BTIR10.8) and the
brightness temperature difference BTIR8.7-BTIR10.8, used concurrently [33,41]. To take into
account the different temporal signature of convective (and orographic) processes with the
weather fronts, [18,42] suggest to consider not only the current value of BT of a pixel, but
also the value corresponding at the previous five acquisitions. Furthermore, to minimize
geolocation and synchrony problems between SEVIRI and GPM dataset and to provide
useful texture information of the clouds, average and standard deviation values over boxes
of 3 × 3 and 5 × 5 surrounding the pixel were added to the input vector. On the base of the
previous considerations, for each day, the input vector of the two NNs, for day-time and for
night-time, are listed in Tables 3 and 4, respectively.
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Table 3. Day time input.

Input # Data Type Explanation

1–6 BTIR10.8 t0 . . . t5 Brightness temperature of the pixel for the current IR image (t0) and the previous five
images. Cloud Top Temperature, Cloud Phase, Frontal System (time).

7 Refl. VIS0.6 Cloud Optical Thickness, Cloud Water Path.

8 Refl. NIR1.6 Effective Radius, Cloud Water Path.

9 BTIR8.7-BTIR10.8 Cloud Phase.

10 BTIR10.8-BTIR12.1 Cloud Optical Thickness, Cirrus test.

11–15 MEAN3(1, 7, 8, 9, 10) Mean value over a 3 by 3 pixel neighborhood. Minimization of geolocation and
synchrony problems. Texture information about the cloud cover.

16–20 STD3(1,7,8,9,10) Standard deviation of pixel value over the 3 by 3 pixel neighborhood. Texture
information about the cloud cover.

21–25 MEAN5(1, 7, 8, 9, 10) Mean value over a 5 by 5 pixel neighborhood. Minimization of geolocation and
synchrony problems. Texture information about the cloud cover.

26–30 STD5(1, 7, 8, 9, 10) Standard deviation of pixel value over the 5 by 5 pixel neighborhood. Texture
information about the cloud cover.
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Table 4. Night time input.

Input # Data Type Explanation

1–6 BTIR10.8 t0 . . . t5 Brightness temperature of the pixel for the current IR image (t0) and the previous five
images. Cloud Top Temperature, Cloud Phase, Frontal System (time).

7 BTIR3.9-BTIR10.8 Microphysical and optical cloud properties.

8 BTIR3.9-BTWV7.3 Water Vapor Content (CWP).

9 BTIR8.7-BTIR10.8 Cloud Phase.

10 BTIR10.8-BTIR12.1 Cloud Optical Thickness, Cirrus test.

11–15 MEAN3(1, 7, 8, 9, 10) Mean value over a 3 by 3 pixel neighborhood. Minimization of geolocation and
synchrony problems. Texture information about the cloud cover.

16–20 STD3(1, 7, 8, 9, 10) Standard deviation of pixel value over the 3 by 3 pixel neighborhood. Texture
information about the cloud cover.

21–25 MEAN5(1, 7, 8, 9, 10) Mean value over a 5 by 5 pixel neighborhood. Minimization of geolocation and
synchrony problems. Texture information about the cloud cover.

26–30 STD5(1, 7, 8, 9, 10) Standard deviation of pixel value over the 5 by 5 pixel neighborhood. Texture
information about the cloud cover.

3.2. Neural Network Topology

Standard MLP architectures have been already proven very effective in atmospheric
remote sensing retrieval problems [43,44] hence we used these types of models also in our
study with tangent sigmoid nodes [45]. The selection of the best topology was based on an
empirical way. The number of input neurons, hidden layers and nodes within it, and the
training algorithm were chosen to obtain the best scores in statistical tests (see below) using
an independent ground truth (weather radar). The two NNs (day-time and night-time)
are based on a Multi-Layer Perceptron (MLP) feed-forward model with 30 input neurons,
45 units in a unique hidden layer, and one output neuron. The Matlab development
environment has been considered for the design of both NNs.

3.3. Data Collocation

As far as the collocation of GPM data (providing rain rate in mm/h unit) with SEVIRI
data is concerned, this is achieved in 5 steps.

1. A timestamp is associated to each SEVIRI pixel. It is calculated starting with the
nominal date and time provided in the SEVIRI data file-name and adding the scansion
time at the latitude of the pixel (about 12 min at 45◦ N).

2. Geographical area and the temporal window are defined. The spatial and the temporal
window should be large enough to obtain a statistically significant dataset but not too
wide in order to avoid climatologically different zones, for example the Mediterranean
area and tropics, being processed at the same time.

3. Using the corresponding EUMETSAT cloud mask, all the cloud-free SEVIRI pixels are
filtered out from the dataset.

4. For each GPM pixel belonging to the chosen area and temporal window, all the SEVIRI
pixels at a distance less than 2.5 km (half SEVIRI pixel resolution at mid-latitude) and
with a temporal distance less than 7.5 min (half SEVIRI repeat cycle) are selected.

5. Among the SEVIRI pixels from step 4, the nearest in time is selected and collocated
with the GPM pixel.

3.4. Training Issues

Precipitation is a statistical rare event. Analyzing many polar orbits, it turns out that
just a few percent (or even less) of the pixels are rainy. Furthermore, considering cloudy
pixels, only 10% to 30% of them are rainy as it is shown in Table 9. Using indiscriminately
all the pixels of the images, the dataset would be totally unbalanced towards zero-rain
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points, and a NN trained with such a dataset will not be able to appreciate differences in
rain rate during a storm or to distinguish between a short violent thunderstorm from a long
stratiform rain. To avoid this problem a neural network classifier has been first created. A
subset of the total data, choosing randomly from the original dataset an equal number of
rainy and not-rainy pixels, is used to train a neural network classifier. GPM data are used
as output of this classifier with a threshold of 0.2 mm/h (above the threshold the pixel is
considered rainy; below not rainy).

Using the collocation procedure described above, with geographical areas and tem-
poral windows provided in Table 2, the subset to create the rainy mask is obtained. The
subset is randomly divided in three parts, 70% for training set, 15% for the validation
set, and 15% for the test set. The training set is used for computing the network weights
and biases. The error on the validation set is monitored during the training process. The
validation error normally decreases during the initial phase of training, as does the training
set error. However, when the network begins to overfit the data, the error on the validation
set typically begins to rise. The network weights and biases are saved at the minimum
of the validation set error. The test set error is not used during training, but it is used
for the final evaluations. The numbers of pixels used to create the NNs are reported in
Tables 5 and 6 for the day-time and night-time cases, respectively (in Table 6 the 8 July
2015 event is not reported due to night time data unavailability). As training algorithm, a
Bayesian Regularization has been preferred. This algorithm typically requires more time,
but provides good generalization for difficult, small, or noisy datasets like those used in
this study.

Table 5. Rainy mask subset-day-time.

Date Total Pixels Training Pixels Validation Pixels Testing Pixels

5 June 2015 61,418 42,992 9213 9213
20 February 2016 52,769 36,939 7915 7915
12 October 2015 89,709 62,797 13,456 13,456

8 July 2015 26,844 18,792 4026 4026

Table 6. Rainy mask subset-night-time.

Date Total Pixels Training Pixels Validation Pixels Testing Pixels

5 June 2015 15,826 11078 2374 2374
20 February 2016 150,653 105,457 22,598 22,598
12 October 2015 37,384 26170 5607 5607

As a final step, the dataset composed only of rainy pixel obtained at the previous step
is used to train the neural network with GPM rain rate as output. Moreover, in this case,
the subset is randomly divided in three parts, 70% for training set, 15% for the validation
set, and 15% for the test set as reported in Tables 7 and 8 (as for Table 6, in Table 8 the 8 July
2015 event is not reported due to night time data unavailability). Actually, the NN was
trained to estimate the base-e logarithm of the precipitation rate so that training would
not be dominated by heavy precipitation rates at the expense of lighter precipitation rates
which are more common.

Table 7. Rain rate estimation dataset-daytime.

Date Total Pixels Training Pixels Validation Pixels Testing Pixels

5 June 2015 30,709 23,031 4606 4606
20 February 2016 26,385 19,788 3957 3957
12 October 2015 44,855 33,641 6728 6728

8 July 2015 15,054 11,290 2258 2258
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Table 8. Rain rate estimation dataset-night-time.

Date Total Pixels Training Pixels Validation Pixels Testing Pixels

5 June 2015 7913 5934 1186 1186
20 February 2016 75,322 56,491 11,298 11,298
12 October 2015 18,693 14,019 2803 2803

Summarizing, we can say that the rain rate from SEVIRI data is retrieved in three steps:

1. After the re-gridding, not-cloudy pixels are filtered out using the cloud mask.
2. The first NN is applied only to cloudy pixels to obtain rainy pixels.
3. The second NN is applied only to rainy pixels to retrieve rain rate.

4. Results and Performance Evaluation

To test and validate the data-fusion technique proposed in this study, precipitation
fields for the case studies in Table 2 have been recreated and compared with radar data
(only pixels with quality index ≥ 0.6) and PR-OBS-3A rainfall estimation product. To make
these three products comparable, they must be brought to the same spatial grid. This has
been done with the nearest neighbor algorithm, assigning an average value to each node
that has one or more points within a radius of 3 km centered on the node. The distance
between each of the nodes is 5 km. The average value is computed as a weighted mean of
the nearest point from each pixel inside the search radius. The weighting function used is:

w(r) =
1

1 + d2 , d =
3 ∗ r
s_r

(1)

where s_r is the search radius and r is the distance from the node. Furthermore, MSG
SEVIRI images, weather radar rain rate and PR-OBS-3A products have the same time
sampling of 15 min.

In Table 9 the number of images processed, the number of pixels classified as rainy
or not rainy (both night and day) and the number of pixels for which rain rate has been
retrieved (both night and day) are presented for each case study.

Table 9. Number of pixels processed for performance evaluation.

Date Images Pixels Classified
Day

Pixels Classified
Night

Pixels Retrieved
Day

Pixel Retrieved
Night

5 June 2015 37 48,7547 658,634 57,097 49,732
20 February 2016 89 1,777,737 2,914,099 376,591 272,805
12 October 2015 37 739,551 409,922 34,193 19,412

8 July 2015 17 342,565 − 52,542 −

For all the case studies, two different statistical scores have been considered, continu-
ous and dichotomous statistical scores. Dichotomous statistical scores are calculated all
over the pixels classified as rainy or not. Continuous statistical scores are calculated all
over the pixels classified as rainy and for which rain rate has been retrieved.

4.1. Dichotomous Statistical

The dichotomous statistical scores help to evaluate the accuracy of rain detection
of the technique and then of the classifier. Six scores are used: probability of detection
(POD), false alarm rate (FAR), critical success index (CSI), the frequency bias index (BIAS),
probability of false detection (POFD), and the percentage of corrects (PC). The rain/no
rain threshold was set to 0.2 mm/h. Their definitions are:

POD =
s1

s1 + s3
, FAR =

s2
s1 + s2

, CSI =
s1

s1 + s2 + s3
, (2)
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BIAS =
s1 + s2
s1 + s3

, POFD =
s2

s2 + s4
, PC =

s1 + s4
N

. (3)

where s1, s2, s3, s4 are defined according to the contingency Table 10.

Table 10. Contingency table.

Radar

Rain No Rain Total

Satellite

Rain s1 s2

No Rain s3 s4

Total s1 + s3 s2 + s4 s1 + s2 + s3 + s4 = n

• POD measures the fraction of observed events that were correctly identified, the best
value is one.

• FAR measures the fraction of estimated rainy pixels that were not raining, its best
value is zero.

• CSI measures the fraction of estimated events that were correctly identified, its best
value is one.

• BIAS measures the overestimation or underestimation of the method, then a BIAS
greater than one indicates an overestimation, while a BIAS lower than one indicates
an underestimation.

• POFD indicates the fraction of pixels incorrectly identified by the satellite and its
optimal value is zero.

• PC is the percentage of correct estimations and its best value is one.

A pixel is considered “rainy” if the rain rate is greater than 0.2 mm/h. In Table 11 the
statistical results are listed.

Table 11. Dichotomous scores for neural network technique (NN) and PR-OBS-3A (H03) algorithm.

Case Studies POD
NN/H03

FAR
NN/H03

CSI
NN/H03

BIAS
NN/H03

POFD
NN/H03

PC
NN/H03

DAY-TIME
5 June 2015 0.79/0.45 0.34/0.65 0.69/0.38 1.03/1.51 0.07/0.09 0.91/0.34

20 February 2016 0.73/0.39 0.40/0.71 0.61/0.31 0.92/2.37 0.09/0.08 0.89/0.33
12 October 2015 0.74/0.37 0.35/0.69 0.61/0.29 0.81/2.21 0.08/0.07 0.91/0.35

8 July 2015 0.81/0.51 0.31/0.62 0.64/0.41 1.13/1.01 0.05/0.08 0.93/0.35
NIGHT-TIME

5 June 2015 0.72/0.41 0.39/0.64 0.62/0.33 1.05/1.67 0.06/0.09 0.88/0.39
20 February 2016 0.71/0.40 0.43/0.73 0.60/0.35 0.91/2.11 0.10/0.07 0.88/0.39
12 October 2015 0.69/0.33 0.40/0.73 0.59/0.42 0.79/1.99 0.09/0.07 0.87/0.38

According to the values in Table 11, globally, the fraction of raining cloud detected by
the proposed technique is quite consistent with the one detected by weather radars. Indeed,
high POD values go always together with very low POFD and low FAR. Bias values show
a more complex situation. During spring/summer case studies the technique seems to
overestimate raining area and the opposite in autumn/winter. As it appears clearly, the
data fusion technique is always much better the PR-OBS3 product which has performance
consistent with results of its validation report [31].

Performance during day time are usually better, showing that the use of visible channel
has a measurable impact on the algorithm. As suggested in [46] it seems that information
on CWP (provided by VIS0.6 and NIR1.6) helps to identify precipitation area better. This
behavior is not present for PR-OBS3 product because it only uses 10.8 µm infrared channel
during day and night.
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4.2. Continuous Statistical Scores

The continuous statistical scores are useful to evaluate the accuracy of the rain rate
estimation. To perform a better comparison between the NN technique and PR-OBS3
algorithm, the same PR-OBS3 continuous scores are used [30]: mean error (ME), mean
absolute error (MAE), standard deviation (SD), the root mean squared error (RMSE), and
root mean squared error percent (RMSE%). Their definitions are:

ME =
1
N ∑(NN −WR), (4)

MAE =
1
N ∑|NN −WR|, SD =

√
1
N ∑(NN −WT −ME)2 (5)

RMSE =

√
1
N ∑(NN −WR)2, RMSE% =

√
1
N ∑(NN −WR)2

WR2 (6)

where NN is the rain rate retrieved by the data fusion technique and WR is the rain rate
from weather radar. The sum is all over the pixels of all 15 min images.

• ME provides information on the local behavior of the rain. If the errors compensate
with reverse signs the score can be good even with large errors. Range: −∞ to ∞,
perfect score: 0, unit (mm/h).

• MAE measures the average magnitude of satellite data respect to radar data; in this
way it is a scalar measure of forecast accuracy. It must be used in conjunction with
ME. Range: 0 to ∞, perfect score: 0, unit (mm/h).

• SD measures how local behavior move away from ME. Range: 0 to ∞, perfect score: 0,
unit (mm/h).

• RMSE is more sensitive to large errors than the MAE. Range: 0 to ∞, perfect score: 0,
unit (mm/h).

• RMSE% compensates large sensitivity of RMSE to large errors. Range: 0 to ∞, perfect
score: 0, unit (×100%)

The product has been evaluated only for the precipitation class for which rain rate is
greater than 0.25 mm/h. In Table 12 continuous statistical scores are reported.

Table 12. Continuous scores for neural network technique (NN) and PR-OBS-3A (H03) algorithm.

Case Studies ME
NN/H03

MAE
NN/H03

SD
NN/H03

RMSE
NN/H03

RMSE%
NN/H03

Day-Time
5 June 2015 −1.23/−2.21 1.12/2.51 3.11/4.75 2.07/5.99 1.28/2.56

20 February 2016 −1.11/−1.98 1.48/2.41 2.54/4.59 2.39/3.56 1.34/1.99
12 October 2015 −1.09/−2.01 1.23/3.01 2.11/5.12 2.25/4.01 1.31/2.01

8 July 2015 −1.31/−1.89 1.57/2.22 3.09/2.09 2.48/6.13 1.43/2.43
Night-Time
5 June 2015 −1.28/−2.25 1.64/2.49 2.99/4.84 2.89/6.03 1.62/2.67

20 February 2016 −1.31/−2.03 1.23/2.38 2.77/4.77 2.37/4.83 1.33/2.54
12 October 2015 −1.19/−1.99 1.85/2.98 3.23/5.00 3.15/4.01 1.87/2.00

The interpretation of the continuous statistical scores is less straightforward than
the dichotomous ones even when a visual comparison is provided (see below). Globally,
looking at ME score, it appears clear that the technique underestimates the amount of
precipitation at ground, and this behavior is more pronounced during summer/spring case
studies when the precipitation is higher. MAE score confirms this fact. Standard deviation
is usually huge compared with ME, in particular for low regime raining. Comparing
these results with those of PR-OBS3 it is evident that both products suffer of the same
problems but in general the proposed technique provides a significant improved estimation
of the rainfall.
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A visual comparison is presented in Figure 3 that shows precipitation data on 5 June
at 17:30 UTC over Belgium. The images confirm the interpretation of the statistical scores.
Figure 3a,b represent rain rate of the data-fusion technique and rain rate from radar,
respectively. The main path of the precipitation crossing France, Belgium, and North Sea
over Holland is well recognized. The isolated storm in the low part of the image around
49◦ N 5◦ E is also fine detected. The underestimation of the model is evident as well. At
peaks of precipitation around and beyond 20 mm/h in various pixel of the radar image
correspond values of precipitation around 12 mm/h in the model. Values of FAR of about
0.4 are consistent for instance observing the precipitation area over the North Sea that is
overestimated in the NN model. On the other hand, the model shows an output more
similar to the nearest in time LEO passage of a PMW sensors (SSMIS Figure 3c). This is
not unexpected because of the use of GPM data as truth to train the NN. It should also be
considered that the quality of the radar data, according to Figure 4, is quite low (<0.5) over
the North Sea.
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In Figure 3d, the rain rate from PR-OBS3A product is shown. To better understand its
behavior, the SEVIRI brightness temperature at 10.8 µm has been added in Figure 5. The
main path of the precipitation is recognized, but the area is overestimated confirming the
high values of FAR of Table 11. Comparing the two images it appears clear that PR-OBS3A
is mostly driven by the cloud top temperature spreading high precipitation over a larger
area. It should be noted that SSMIS product also tend to spread precipitation over a larger
area then the radar.
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Furthermore, during the study it has been noticed that the results significantly benefit
choosing a higher threshold of the quality index of radar data (e.g., QI ≥ 0.8 instead of the
actual value 0.6). Nonetheless, because of the re-gridding process, the number of radar
pixels available for the validation decreases until not to have a valid statistical sample.
This is clear in Figure 5 where typical quality index values for OPERA radar composite
are shown (they do not change significantly between images through time). Many studies
conclude that precipitation measurements from ground (e.g., radar and rain gauge) are
subject to large uncertainty, especially when they are used to validate retrievals from
satellite data and the results presented in this study confirm this fact [30,47].

5. Conclusions and Future Improvements

A new data fusion technique based on NNs was presented. It uses both visible/infrared
data from GEO satellite and passive microwave data from LEO satellite to avoid their
single limitations and to take advantage of both types of sensors. It provides, for a given
geographical area and a time interval, a reconstruction of the surface rain field with the
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MSG-SEVIRI spatial and temporal resolution, e.g., 3 km at the sub satellite point and 5 km
at mid-latitudes, every 15 min.

The present method differs from previous NNs based works because it presents a
significantly greater number of input using all the information available from VIS/IR data,
two different NNs for day and night scenario, and the possibility to use all LEO PMW
data. Moreover, these preliminary results, even if over a limited number of cases not
covering the huge variability of the European climate, has shown its capacity over different
climatological scenarios.

The results that were obtained in the identification of rainy clouds in the various
test areas, compared with the benchmark precipitation product, PR-OBS3A, show an
improvement ranging from 59% up to 109% in terms of probability of rainy areas detection
and of from 39% to 50% in terms of false alarm rate. The use of two different NNs for
day and night has shown the impact of the visible channels in the estimation of the cloud
water path. During the night, when the information at the visible bands is missing, the
measure of such a parameter is more difficult and POD, FAR, and CSI have worse results,
but always better than PR-OBS3A that uses a single infrared channel.

As far as the retrieval of the amount of rainfall is concerned, compared with the HSAF
product, in the considered test cases our algorithm increases the accuracy from 21% up
to 65%. Nevertheless, a global underestimation is present, during summer/spring case
studies. This behavior seems to be common to precipitation products based on visible and
infrared data; however, the quality of radar data maybe an additional issue which should
be more investigated.

A possible future improvement might be the inclusion of a continuous updating and
re-training of the NNs as new measurements are available for the area of interest. In
this way, the technique might be more accurate and also considered for tracking or even
prediction purposes although this would involve the availability of suitable processing
capabilities. This would also permit to make the product operational and then to validate it
in many different climatological scenes, possibly covering the European weather variability.

Author Contributions: Conceptualization, M.S.; methodology, M.S. and F.D.F.; software, M.S.;
validation, M.S., F.D.F. and G.S.; formal analysis, M.S, F.D.F. and G.S.; investigation, M.S.; resources,
M.S., F.D.F. and G.S.; data curation, M.S.; writing—original draft preparation, M.S. and F.D.F.;
writing—review and editing, F.D.F. and G.S.; visualization, F.D.F.; supervision, F.D.F. and G.S.; project
administration, F.D.F. and G.S.; funding acquisition, F.D.F. and G.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, F.; Staelin, D. AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens. 2003, 41, 410–417. [CrossRef]
2. Smith, E.A.; Cooper, H.J.; Xiang, X.; Mugnai, A.; Tripoli, G.J. Foundations for Statistical-Physical Precipitation Retrieval from

Passive Microwave Satellite Measurements. Part I: Brightness-Temperature Properties of a Time-dependent Cloud-Radiation
Model. J. Appl. Meteorol. 1992, 31, 506–531. [CrossRef]

3. Mugnai, A.; Smith, E.A.; Tripoli, G.J. Foundations for Statistical–Physical Precipitation Retrieval from Passive Microwave Satellite
Measurements. Part II: Emission-Source and Generalized Weighting-Function Properties of a Time-dependent Cloud-Radiation
Model. J. Appl. Meteorol. 1993, 32, 17–39. [CrossRef]

4. Gasiewski, J. Microwave radiative transfer in hydrometeors. In Atmospheric Remote Sensing by Microwave Radiometry; Michael, A.J.,
Ed.; John Wiley & Sons: New York, NY, USA, 1993; pp. 91–144.

5. Ba, M.B.; Gruber, A. GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteorol. 2001, 40, 1500–1514. [CrossRef]
6. Roebeling, R.A.; Holleman, I. SEVIRI rainfall retrieval and validation using weather radar observations. J. Geophys. Res. Space

Phys. 2009, 114, d012102. [CrossRef]

http://doi.org/10.1109/TGRS.2002.808322
http://doi.org/10.1175/1520-0450(1992)031&lt;0506:FFSPPR&gt;2.0.CO;2
http://doi.org/10.1175/1520-0450(1993)032&lt;0017:FFSPRF&gt;2.0.CO;2
http://doi.org/10.1175/1520-0450(2001)040&lt;1500:GMRAG&gt;2.0.CO;2
http://doi.org/10.1029/2009JD012102


Appl. Sci. 2021, 11, 4686 17 of 18

7. Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM
Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales.
J. Hydrometeorol. 2007, 8, 38–55. [CrossRef]

8. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal resolutions. J. Hydrometeorol. 2004, 5, 487–503. [CrossRef]

9. Bellerby, T.; Hsu, K.-L.; Sorooshian, S. LMODEL: A Satellite Precipitation Methodology Using Cloud Development Modeling.
Part I: Algorithm Construction and Calibration. J. Hydrometeorol. 2009, 10, 1081–1095. [CrossRef]

10. Behrangi, A.; Imam, B.; Hsu, K.; Sorooshian, S.; Bellerby, T.J.; Huffman, G.J. REFAME: Rain Estimation Using Forward-Adjusted
Advection of Microwave Estimates. J. Hydrometeorol. 2010, 11, 1305–1321. [CrossRef]

11. Reudenbach, C.; Nauss, T.; Bendix, J. Retrieving Precipitation with GOES, Meteosat, and Terra/MSG at the Tropics and Mid-latitudes
In Measuring Precipitation from Space; Levizzani, V., Bauer, P., Turk, F.J., Eds.; Advances in Global Change Research; Springer:
Dordrecht, Germany, 2007; Volume 28.

12. Bizzarri, B.; H-SAF Consortium. Update on the status of precipitation products in the EUMETSAT Satellite Application Facility on
Support to Hydrology and Water Management. In Proceedings of the IPWG Workshop on Precipitation Measurements, Beijing,
China, 13–17 October 2008; p. 54, ISBN 978-92-9110-085-9.

13. Del Frate, F.; Schiavon, G. A combined natural orthogonal functions/neural network technique for the radiometric estimation of
atmospheric profiles. Radio Sci. 1998, 33, 405–410. [CrossRef]

14. Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Del Frate, F.; Erbertseder, T.; Felder, M.D.;
et al. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms. J. Geophys. Res.
Space Phys. 2006, 111. [CrossRef]

15. Blackwell, W.J.; Milstein, A.B. A Neural Network Retrieval Technique for High-Resolution Profiling of Cloudy Atmospheres.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 1260–1270. [CrossRef]

16. Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN System Satellite–Based
Estimates of Tropical Rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [CrossRef]

17. Bellerby, T.; Todd, M.; Kniveton, D.; Kidd, C. Rainfall Estimation from a Combination of TRMM Precipitation Radar and GOES
Multispectral Satellite Imagery through the Use of an Artificial Neural Network. J. Appl. Meteorol. 2000, 39, 2115–2128. [CrossRef]

18. Tapiador, F.J.; Kidd, C.; Levizzani, V.; Marzano, F.S. A Neural Networks–Based Fusion Technique to Estimate Half-Hourly Rainfall
Estimates at 0.1◦ Resolution from Satellite Passive Microwave and Infrared Data. J. Appl. Meteorol. 2004, 43, 576–594. [CrossRef]

19. Lazri, M.; Ameur, S.; Mohia, Y. Instantaneous rainfall estimation using neural network from multispectral observations of SEVIRI
radiometer and its application in estimation of daily and monthly rainfall. Adv. Space Res. 2014, 53, 138–155. [CrossRef]

20. Seguin, W. Glossary of Meterology; American Meteorological Society: Boston, MA, USA, 2000.
21. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global

precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]
22. EUMETSAT; MSG. 2021. Available online: https://www.eumetsat.int/meteosat-second-generation (accessed on 17 May 2021).
23. Wolters, E.L.A.; Van Den Hurk, B.J.J.M.; Roebeling, R.A. Evaluation of rainfall retrievals from SEVIRI reflectances over West

Africa using TRMM-PR and CMORPH. Hydrol. Earth Syst. Sci. 2011, 15, 437–451. [CrossRef]
24. Derrien, M.; Le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote. Sens. 2005, 26, 4707–4732. [CrossRef]
25. EUMETSAT. Cloud Mask Product User Guide. Available online: https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:

CLM (accessed on 17 May 2021).
26. Huuskonen, A.; Saltikoff, E.; Holleman, I. The Operational Weather Radar Network in Europe. Bull. Am. Meteorol. Soc. 2014, 95,

897–907. [CrossRef]
27. Sandford, C.; Gaussiat, N. Evaluation of an Error-Based Quality Index for Compositing Using UK Radar Data. OPERA

Deliverable OPERA_2011_12, 13 pp. 2011. Available online: www.eumetnet.eu/sites/default/files/OPERA_2011_12_Quality_
index_evaluation.pdf (accessed on 30 June 2016).

28. Zauli, F.; Biron, D.; Melfi, D. The precipitation products generation chain for the EUMETSAT Hydrological Satellite Application
Facility at CNMCA. In Proceedings of the 2009 EUMETSAT Meteorological Satellite Conference, Bath, UK, 21–25 September 2009;
pp. 21–25.

29. Turk, J.F.; Rohaly, G.; Hawkins, J.; Smith, E.A.; Marzano, F.S.; Mugnai, A.; Levizzani, V. Meteorological applications of precipitation
estimation from combined SSM/I, TRMM and geostationary satellite data. In Microwave Radiometry and Remote Sensing of the
Earth’s Surface and Atmosphere; Pampaloni, P., Paloscia, S., Eds.; VSP Int. Sci. Publisher: Utrecht, The Netherlands, 2000; pp.
353–363.

30. Puca, S.; Porcu, F.; Rinollo, A.; Vulpiani, G.; Baguis, P.; Balabanova, S.; Campione, E.; Ertürk, A.; Gabellani, S.; Iwanski , R.; et al.
The validation service of the hydrological SAF geostationary and polar satellite precipitation products. Nat. Hazards Earth Syst.
Sci. 2014, 14, 871. [CrossRef]

31. EUMETSAT. H-SAF Product Validation Report (PVR)—PR-OBS-3—Precipitation Rate at Ground by GEO/IR Supported
by LEO/MW. 2011. Available online: https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:PROBS3 (accessed on
17 May 2021).

32. Thies, B.; Nauss, T.; Bendix, J. Discriminating raining from nonraining clouds at mid-latitudes using meteosat second generation
daytime data. Atmos. Chem. Phys. 2008, 8, 2341–2349. [CrossRef]

http://doi.org/10.1175/JHM560.1
http://doi.org/10.1175/1525-7541(2004)005&lt;0487:CAMTPG&gt;2.0.CO;2
http://doi.org/10.1175/2009JHM1091.1
http://doi.org/10.1175/2010JHM1248.1
http://doi.org/10.1029/97RS02219
http://doi.org/10.1029/2005JD006778
http://doi.org/10.1109/JSTARS.2014.2304701
http://doi.org/10.1175/1520-0477(2000)081&lt;2035:EOPSSE&gt;2.3.CO;2
http://doi.org/10.1175/1520-0450(2001)040&lt;2115:REFACO&gt;2.0.CO;2
http://doi.org/10.1175/1520-0450(2004)043&lt;0576:ANNFTT&gt;2.0.CO;2
http://doi.org/10.1016/j.asr.2013.10.005
http://doi.org/10.1175/BAMS-D-13-00164.1
https://www.eumetsat.int/meteosat-second-generation
http://doi.org/10.5194/hess-15-437-2011
http://doi.org/10.1080/01431160500166128
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:CLM
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:CLM
http://doi.org/10.1175/BAMS-D-12-00216.1
www.eumetnet.eu/sites/default/files/OPERA_2011_12_Quality_index_evaluation.pdf
www.eumetnet.eu/sites/default/files/OPERA_2011_12_Quality_index_evaluation.pdf
http://doi.org/10.5194/nhess-14-871-2014
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:PROBS3
http://doi.org/10.5194/acp-8-2341-2008


Appl. Sci. 2021, 11, 4686 18 of 18

33. Thies, B.; Nauss, T.; Bendix, J. Delineation of raining from nonraining clouds during nighttime using Meteosat-8 data. Meteorol.
Appl. 2008, 15, 219–230. [CrossRef]

34. Baedi, R.; De Wit, J.; Russchenberg, H.; Erkelens, J.; Baptista, J.P. Estimating effective radius and liquid water content from radar
and lidar based on the CLARE98 data-set. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 1057–1062. [CrossRef]

35. Feidas, H.; Giannakos, A. Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation
satellite data. Theor. Appl. Climatol. 2011, 104, 25–42. [CrossRef]

36. Hutchison, K.; Wong, E.; Ou, S.C. Cloud base heights retrieved during night-time conditions with MODIS data. Int. J. Remote
Sens. 2006, 27, 2847–2862. [CrossRef]

37. Lensky, I.M.; Rosenfeld, D. A night-rain delineation algorithm for infrared satellite data based on microphysical considerations. J.
Appl. Meteorol. 2003, 42, 1218–1226. [CrossRef]

38. Lensky, I.M.; Rosenfeld, D. Satellite-based insights into precipitation formation processes in continental and maritime convective
clouds at nighttime. J. Appl. Meteorol. 2003, 42, 1227–1233. [CrossRef]

39. Feidas, H.; Giannakos, A. Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation
satellite data. Theor. Appl. Climatol. 2012, 108, 613–630. [CrossRef]

40. Levizzani, V. Satellite rainfall estimations: New perspectives for meteorology and climate from the EURAINSAT project. Ann.
Geophys. 2003, 46, 363–372.

41. Wolters, E.L.A.; Roebeling, R.A.; Feijt, A.J. Evaluation of cloud phase retrieval methods for SEVIRI onboard Meteosat-8 using
ground-based lidar and cloud radar data. J. Appl. Meteorol. Climatol. 2008, 47, 1723–1738. [CrossRef]

42. Tapiador, F.J.; Kidd, C.; Hsu, K.-L.; Marzano, F. Neural networks in satellite rainfall estimation. Meteorol. Appl. 2004, 11, 83–91.
[CrossRef]

43. Picchiani, M.; Chini, M.; Corradini, S.; Merucci, L.; Sellitto, P.; Del Frate, F.; Stramondo, S. Volcanic Ash Detection and Retrievals
from MODIS Data by means of Neural Networks. Atmos. Meas. Tech. 2011, 4, 2619–2631. [CrossRef]

44. Sellitto, P.; Del Frate, F.; Solimini, D.; Casadio, S. Tropospheric Ozone Column Retrieval From ESA-Envisat SCIAMACHY Nadir
UV/VIS Radiance Measurements by Means of a Neural Network Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 50, 998–1011.
[CrossRef]

45. Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer Perceptron Neural Networks Model for Meteosat Second
Generation SEVIRI Daytime Cloud Masking. Remote Sens. 2015, 7, 1529–1539. [CrossRef]

46. Lazri, M.; Ameur, S.; Brucker, J.M.; Testud, J.; Hamadache, B.; Hameg, S.; Ouallouche, F.; Mohia, Y. Identification of raining clouds
using a method based on optical and microphysical cloud properties from Meteosat second generation daytime and nighttime
data. Appl. Water Sci. 2013, 3, 1–11. [CrossRef]

47. Sanò, P.; Panegrossi, G.; Casella, D.; Di Paola, F.; Milani, L.; Mugnai, A.; Petracca, M.; Dietrich, S. The Passive microwave Neural
network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: Description and application to European case
studies. Atmos. Meas. Tech. 2015, 8, 837–857. [CrossRef]

http://doi.org/10.1002/met.56
http://doi.org/10.1016/S1464-1909(00)00152-0
http://doi.org/10.1007/s00704-010-0316-5
http://doi.org/10.1080/01431160500296800
http://doi.org/10.1175/1520-0450(2003)042&lt;1218:ANDAFI&gt;2.0.CO;2
http://doi.org/10.1175/1520-0450(2003)042&lt;1227:SIIPFP&gt;2.0.CO;2
http://doi.org/10.1007/s00704-011-0557-y
http://doi.org/10.1175/2007JAMC1591.1
http://doi.org/10.1017/S1350482704001173
http://doi.org/10.5194/amt-4-2619-2011
http://doi.org/10.1109/TGRS.2011.2163198
http://doi.org/10.3390/rs70201529
http://doi.org/10.1007/s13201-013-0079-0
http://doi.org/10.5194/amt-8-837-2015

	Introduction 
	Datasets 
	Passive Microwave Data-GPM Mission 
	Visible/Infrared MSG SEVIRI Data 
	MSG SEVIRI Cloud Mask 
	Validation Weather Radar Data 
	PR-OBS-3A Precipitation Product 
	Case Studies 

	Methodology 
	Selection of the NN Input Data 
	Neural Network Topology 
	Data Collocation 
	Training Issues 

	Results and Performance Evaluation 
	Dichotomous Statistical 
	Continuous Statistical Scores 

	Conclusions and Future Improvements 
	References

