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Featured Application: The proposed decomposition-ensemble learning model can be efficiently
used to enhance the prediction accuracy of landslide displacement prediction and can also be
extended to other difficult forecasting tasks in the geosciences with extremely complex nonlinear
data characteristics.

Abstract: As vital comments on landslide early warning systems, accurate and reliable displacement
prediction is essential and of significant importance for landslide mitigation. However, obtaining
the desired prediction accuracy remains highly difficult and challenging due to the complex non-
linear characteristics of landslide monitoring data. Based on the principle of “decomposition and
ensemble”, a three-step decomposition-ensemble learning model integrating ensemble empirical
mode decomposition (EEMD) and a recurrent neural network (RNN) was proposed for landslide
displacement prediction. EEMD and kurtosis criteria were first applied for data decomposition and
construction of trend and periodic components. Second, a polynomial regression model and RNN
with maximal information coefficient (MIC)-based input variable selection were implemented for
individual prediction of trend and periodic components independently. Finally, the predictions of
trend and periodic components were aggregated into a final ensemble prediction. The experimental
results from the Muyubao landslide demonstrate that the proposed EEMD-RNN decomposition-
ensemble learning model is capable of increasing prediction accuracy and outperforms the traditional
decomposition-ensemble learning models (including EEMD-support vector machine, and EEMD-
extreme learning machine). Moreover, compared with standard RNN, the gated recurrent unit
(GRU)-and long short-term memory (LSTM)-based models perform better in predicting accuracy.
The EEMD-RNN decomposition-ensemble learning model is promising for landslide displacement
prediction.

Keywords: landslide displacement prediction; decomposition-ensemble model; recurrent neural
network (RNN); ensemble empirical mode decomposition (EEMD); maximal information coefficient
(MIC)

1. Introduction

Landslides are a ubiquitous global hazard [1] posing significant threats to life and
property. The statistics data show that landslide disasters affected 5 million people and
caused total damage of 4.7 billion US dollars during the period from 2000 to 2020 [2].
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As shown in Figure 1, China, the USA, Japan, Nepal, and India are the most landslide-
prone regions [3], among which China suffers the most landslide disasters. In the past
two decades, landslides have killed 3706 people and caused over 2 billion US dollars of
estimated damage to China. Landslide early warning has proven to be the most effective
measure for landslide mitigation [4,5], and landslide displacement prediction has been
catching extensive attention from practitioners and scholars because of its significant im-
portance in early landslide warning systems [6,7]. However, due to the inherent nonlinear
characteristics of landslide monitoring data, achieving the desired prediction accuracy
remains highly difficult and challenging. Therefore, it is essential to develop an effective
and accurate prediction model to improve the performance of landslide displacement
prediction, thus aiding landslide mitigation.

Figure 1. Spatial distribution of landslide disasters during the period from 2000 to 2020. Each dot
represents a single landslide. The insets show the total deaths and total estimated damages. (Source:
https://public.emdat.be/data, accessed on 2 December 2020).

A variety of landslide displacement prediction models have been proposed since
the pioneering work of Saito [8]. These prediction models generally fall into two main
groups: Physics-based models and data-driven models [9]. Physics-based models generally
require a clear understanding of the physical processes that involve a large amount of
input, sophisticated mathematical tools, and significant user expertise. Therefore, the
generalization ability of physics-based models is limited [4].

Recently, data-driven models, including artificial neural networks (ANNs) [10], de-
cision trees [4], extreme learning machines (ELMs) [11,12], support vector machines
(SVMs) [13–15], quantile regression neural networks [16], random forest (RF) [17], and
kernel-based ELMs and SVMs [9,18,19], have attracted attention in landslide displacement
prediction. These studies have demonstrated that a data-driven model is capable of pro-
viding satisfactory predictions by recognizing movement patterns in historical monitoring
data and establishing a mapping between input and output displacements without the
requirement of complex physical processes. Recent applications have demonstrated the
feasibility of data-driven models to capture nonlinear relationships and to model landslide
dynamic processes based on historical model data; however, limitations remain.

First, in most data-driven models, the input variables that have an important influence
on the accuracy of landslide displacement prediction [9] are selected based on a priori
expert knowledge, trial and error, or linear cross-correlation [9,12]. Nevertheless, a priori
expert knowledge of landslide systems is biased [20], or not always available, or even
when available, knowledge acquisition tends to be a difficult and time-consuming process.
Generally, input variable selection via trial and error is a brute-force process that is compu-
tationally expensive, especially for data-driven models with large input candidates. The
most commonly used linear correlation coefficients only evaluate linear correlation and
cannot reveal the nonlinear relationships that are generally involved in data-driven models.
Therefore, a clear need exists for a systematic input variable selection process that does

https://public.emdat.be/data
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not rely on a priori expert knowledge, is computationally inexpensive, and can describe
nonlinear relationships.

Second, conventional data-driven models ignore the intrinsic temporal dependency,
which involves the effect of preceding actions on present actions [21,22]. Actually, measured
landslide displacement data contain temporal dependencies [23,24].

The abovementioned limitations can be addressed from the following perspectives.
The first is to utilize mutual information index describing nonlinear relationships by the
amount of related information that is jointly owned by two or more variables [25] for input
variable selection. The second solution is to recognize intrinsic temporal dependencies by
deploying advanced modeling techniques. A promising solution is the recurrent neural
network (RNN) [26]. The temporal dependency in monitoring data can be captured by
adopting a sequential approach, thereby improving the ability to model dynamic systems.
In addition, the “decomposition-ensemble” learning paradigm can also be considered a
promising tool for analyzing series with complex nonlinearity characteristics and enhancing
prediction accuracy [27–31]. The effectiveness of the “decomposition-ensemble” has already
been confirmed in a variety of fields.

Based on the “decomposition-ensemble” principle, a novel “decomposition-ensemble”
learning model integrating EEMD and RNN was proposed in this study to enhance the
performance of landslide displacement prediction. The Muyubao landslide located in the
Three Gorges Reservoir area was selected as a case study to verify the performance of the
proposed model.

2. Study Area and Datasets
2.1. Overview of the Muyubao Landslide

The Muyubao landslide, an ancient landslide, is located in Zigui County, Hubei
Province and is situated on the right bank of the Yangtze River (see Figure 2 for landslide
location). The length and width of the landslide are approximately 1500 m and 1200 m,
respectively. The landslide is 50 m thick on average. The landslide covers approximately
2 million m2 in the planar area and has a volume of approximately 90 million m3. The
altitude at the toe of the landslide is 100 m, and the altitude at the crown is 520 m (see
Figure 2 for the landslide geological profile). The Muyubao landslide mainly slides in
a direction of 20 degrees from North. The borehole analysis reveals that the Muyubao
landslide slide along a soft coal layer with an average thickness of 0.2 m. The landslide
materials are distributed in two layers: The upper Quaternary deposit and the lower highly
disturbed rock mass (Figure 2). The underlaid bedrock is mudstone and sandstone of the
Jurassic Xiangxi Formation.

Figure 2. Cont.
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Figure 2. Location and geological profile of the Muyubao landslide, Three Gorges Reservoir area.

2.2. Data Collection

The ancient Muyubao landslide was reactivated by the impoundment of the Three
Gorges Reservoir in September 2006. A landslide monitoring system consisting of twelve
GPS survey monuments was installed on the landslide mass (see Figure 2 for GPS mon-
ument locations) to monitor landslide movement. Nearly 13 years of monitoring data
from October 2006 to October 2018 were acquired. According to the monitoring data, the
maximum landslide displacement occurred at ZG291 with a cumulative displacement of
2437.36 mm. The landslide displacement at ZG291, reservoir level in the Yangtze River,
and rainfall intensity are shown in Figure 3. As shown, the Muyubao landslide exhibits
step-like deformation. Sharp increments of displacement occur mainly from November to
March, with the reservoir level decreasing from 175 m to 165 m.

Figure 3. Time series of landslide displacement at ZG291, reservoir level, and rainfall intensity during
the monitoring period from October 2006 to October 2018.
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3. Methodology
3.1. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) is an approach to decompose nonlinear signals
into a finite number of simple components called intrinsic mode functions (IMFs). These
components form a complete and nearly orthogonal basis for the original signal. The main
idea of EMD is repeatedly subtracting the local mean from the original signal. EEMD was
improved from EMD to overcome modal aliasing problems by adding white noise [32], and
it has been widely used for the decomposition of nonlinear and nonstationary signals [33].
EEMD has the advantages of robust self-adaptability and local variation. As shown in
Figure 4, the EEMD decomposition process can be briefly described as the following steps:

Figure 4. Schematic diagram of the EEMD decomposition process.
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Add a random noise signal nj(t) to the original raw data x(t) to obtain the noise-added
data signal xj(t)

xj(t) = x(t) + nj(t), j = 1, 2, · · · , M (1)

(1) Use EMD to decompose the noise data xj(t) into some IMFs:

xj(t) =
L

∑
i=1

ci,j(t) + rL,j(t)), j = 1, 2, · · · , M (2)

where ci,j(t) is the ith IMF of noise-added data xj(t) in the jth decomposition and
rL,j(t) is the corresponding residue.

(2) Perform M trials by repeating steps (1) and (2) with diverse white noise.
(3) Calculate the mean values of the corresponding IMFs ci(t) and residue rL(t) as

follows:

ci(t) =
M

∑
j=1

ci,j(t)/M (3)

rL(t) =
M

∑
j=1

rL,j(t)/M (4)

3.2. Maximal Information Coefficient (MIC)

Compared with the traditional statistical indexes such as the Pearson coefficient, MIC
allows to detect various correlation relationships including linear, non-linear, functional,
and non-functional relationships. Secondly, the MIC is designed to maintain similar results
even in presence of equal levels noise of different types [34,35].

For continuous variables x and y, the MIC between x and y is described by the
following formula:

MIC(x, y) = max
{

I(x, y)/ log2 min
{

nx, ny
}}

where
I(x, y) = H(x) + H(y)− H(x, y)

=
nx
∑

i=1
p(xi) log2

1
p(xi)

+
ny

∑
j=1

p
(
yj
)

log2
1

p(yj)
−

nx
∑

i=1

ny

∑
j=1

p
(
xiyj

)
log2

1
p(xiyj)

(5)

where P(xi) presents the marginal probability of x, P(yj) presents the marginal probability
of y, P(xi, yj) presents the joint probability density function of x and y, and nx, ny is the
number of bins of the partition of the x- and y-axis. An MIC of zero indicates that there
is no dependence between the concerned variables, while MIC of one implies a stronger
relationship [36]. Based on previous research, the final input variables with MICs greater
than 0.1 [37,38] were selected from input candidates for model training.

3.3. Recurrent Neural Network

An RNN is an artificial neural network wherein adjacent hidden neurons are con-
nected [39]. These recurrent structures of RNNs can transfer time dependence through
hidden units and consider temporal correlations. There are three main types of RNNs: Stan-
dard RNN, long short-term memory (LSTM), and gated recurrent unit (GRU) (Figure 5).
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Figure 5. Basic structures of RNN units: (a) Standard RNN; (b) LSTM; (c) GRU.

3.3.1. Standard RNN

A standard RNN is a simple and powerful RNN. Figure 5a shows the typical structure
of a standard RNN. xt is the input vector at time step t and ht is the hidden state of RNN
cell at time step t, which is computed based on the hidden state (ht–1) at the previous time
step t–1 and the input vector (xt) at the current time step t. Formally, the output of the
hidden units of the standard RNN can be formulated as follows:

ht = tan h(Wxxt + Whht−1 + b) (6)

The final output of RNN depends on not only the input of the current time step
but also the calculated of the hidden layer in the previous time step. Theoretically, RNN
can take advantage of all information no matter how long the sequences are. However,
according to previous studies, because of the vanishing gradient problem, standard RNNs
are suitable only for short-term dependencies [39,40].

3.3.2. LSTM

LSTM was improved to overcome the gradient disappearance problem [41] in standard
RNN [42]. Figure 5b shows the basic structure of LSTM. A typical LSTM cell consists of one
unit state and three types of gates: Input gate (it), output gate (ot), and forget gate (ft). These
three gates act as filters, serving different purposes. The input gate (it) determines what
new information is going to be stored in the cell state (Ct). The output gate (ot) specifies
what information from the cell state (Ct) is used as output. The forget gate (ft) determines
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what information will be moved away from the cell state (Ct). More formally, the outputs
of the input gate (it), output gate (ot), and forget gate (ft) can be formulated as follows:

ft = σ
(

W f xxt + W f hht−1 + b f

)
(7)

it = σ(Wixxt + Wihht−1 + bi) (8)

ot = σ(Woxxt + Wohht−1 + bo) (9)

The current cell state (Ct) can be formulated as follows:

Ct = ft � Ct−1 + it � C̃t (10)

The unit state C̃t can be described by the following formula:

C̃t = tan h(WCxxt + WChht−1 + bC) (11)

The LSTM unit (ht) can be formulated as follows:

ht = ot � tan h(Ct) (12)

where W f h, Wih, Woh, and WCh are the linear correlation coefficient matrices; W f x, Wix,
Wox, and WCx are the coefficient matrices of the input variable; σ(·) denotes the sigmoid
activation function; and b f , bi, bo, and bC are the bias terms of the corresponding formula.

3.3.3. GRU

GRU was developed by [43] to simplify LSTM. Figure 5c shows the basic structure of
GRU. A typical GRU unit contains two types of gates: A reset gate (rt) and an update gate
(zt). The reset gate (rt) controls how much information from the previous state is written
into the current candidate hidden layer vector h̃t. The smaller the reset gate (rt), the less
information from the previous state is written. The update gate (zt) is used to control the
degree to which the state information ht−1 at the previous time step t − 1 will be brought
into the current time step t. The larger the value of the update gate (zt), the more the state
information at the previous time step is brought in. The reset gate (rt) and update gate (zt)
can be defined by the following formula:

rt = σ(Wrxxt + Wrhht−1 + br) (13)

zt = σ(Wzxxt + Wzhht−1 + bz) (14)

The candidate hidden layer vector h̃t is defined as follows:

h̃t = tan h(Whxxt + Whh(rt � ht−1) + bh) (15)

The output of the GRU unit can be formulated as follows:

ht = (1 − zt)� ht−1 + zt � h̃t (16)

where Wrx, Wrh, Wzx, and Wzh are the weight matrices; br and bz are the bias terms.

3.4. Decomposition-Ensemble Learning Model for Landslide Displacement Prediction

Based on the principle of the “decomposition-ensemble” methodology, a three-step
learning model integrating EEMD and RNN can be formulated for landslide displacement
prediction. As shown in Figure 6, the proposed EEMD-RNN learning model mainly
consists of the following steps: Data decomposition, individual prediction, and ensemble
prediction.
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Figure 6. Overall process of the decomposition-ensemble learning model based on EEMD and RNN.

3.4.1. Data Decomposition

The data decomposition technique is useful for the accurate prediction of landslide
displacement, as it can reduce the complexity and improve the interpretability of nonlinear
time series. In the present study, EEMD and kurtosis criteria were applied for landslide
displacement decomposition and construction of trend and periodic components for further
landslide displacement prediction.

Kurtosis is a dimensionless parameter [44,45] describing the waveform peak that is
formulated as follows:

K =
1
M

M

∑
t=1

[
x(t)− µ

σ

]4
(17)

where M is the signal length, µ presents the average of the signal, and σ presents the stan-
dard deviation. A decomposed component with a higher kurtosis retains more deformation
characteristics.

EEMD was used to decompose the landslide displacement data shown in Figure 3
into six IMFs and one residual (Figure 7). According to previous works [32], the noise
added to the original signal and the maximum number of iterations were set to 0.2 and
100, respectively. The decomposed IMFs oscillate in descending order. The corresponding
kurtoses for the decomposition components are listed in Table 1. The obtained kurtoses
indicate that the decomposed residual term retains the overall deformation trend of the
original time series with the largest kurtosis. Therefore, the residual component was
treated as the main trend series for further landslide displacement prediction. The periodic
series was obtained by subtracting the trend series from the original series [15]. As shown
in Figure 7, the obtained trend components (yT) and periodic components (yP) show
two characteristics: The trend components show an approximate monotonic increase in
displacement with time, and the periodic components exhibit characteristics of a chaotic
time series.

Table 1. The kurtoses for the decomposition components.

KIMF1 KIMF2 KIMF3 KIMF4 KIMF5 KIMF6 KResidue

−18.318 −26.058 −46.556 −36.069 −17.362 0.137 28.819
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Figure 7. Decomposition results of landslide displacement using the EEMD method and time series
of original landslide displacement and the trend and periodic components.

3.4.2. Individual Prediction

In the present study, 124 measurements from October 2006 to January 2017 were
used as the training set for the prediction model, and 21 measurements from February
2017 to October 2018 were treated as testing data. According to previous research on
landslide displacement prediction [46,47], the trend components are mainly controlled by
internal geological conditions and can be perfectly predicted by polynomial regression
fitting. In contrast, the periodic component is mainly controlled by external triggering
factors, such as rainfall intensity and reservoir fluctuation. The major difficulty in landslide
displacement prediction is accurate prediction of the periodic components. Therefore,
polynomial regression fitting was treated as an individual prediction model to predict
trend components. The trend component shown in Figure 7 can be fitted as follows:

yT(t) = −0.0337t2 + 21.7046t + 7.1479 (18)

The coefficient of determination (R2) for the trend component is 1000, which indicates
a perfect model for the prediction of the trend component.

Aiming at interpreting the behaviors between input candidates and model outputs
and excluding irrelevant and redundant variables to develop accurate and cost-effective
prediction models [48], the RNN with MIC-based input variable selection was implemented
for individual prediction of periodic components. Based on previous research related to
landslide displacement prediction [49], seven commonly used variables were selected as
input candidates, including three state candidates and four trigger candidates. The selected
four trigger input candidates are one-month antecedent rainfall (x1), two-month antecedent
rainfall (x2), average values of reservoir level for the current month (x3), and reservoir
fluctuation for the current month (x4). The state candidates are displacement in the past
month (x5), displacement of landslides in the past two months (x6), and displacement of
landslides in the past three months (x7). Pair plots and MICs between the input candidates
and periodic components are shown in Figure 8. The pair plots show an approximately
linear dependency between the periodic components (yP) and state candidates (x5, x6, and
x7). The MICs indicate that the seven input candidates have significant dependency on the
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periodic components, with MIC values larger than 0.2. Therefore, seven input candidates
were treated as the input for individual prediction of periodic components.

Figure 8. Pair plots and MICs between the input candidates and periodic components.

The landslide measurements were first normalized in the range of 0 to 1 by min-max
feature scaling. After the outputs from the EEMD-RNN approach were renormalized,
the final displacement predictions were obtained. The simple trial and error method was
adopted for the parameter tuning in RNN, GRU, and LSTM networks. The results from
trial-and-error analysis show that RNN, GRU, and LSTM networks with one hidden layer
for landslide displacement prediction is better than using a multi-layer network. Therefore,
one hidden layer with topologies of 7-50-1, 7-55-1, and 7-50-1 was set up for RNN, LSTM,
and GRU in the present study. The epoch strategy referring to the process by which all
data are sent into the network to complete an iterative calculation was adopted. The
epoch sizes were set to 1000, 400, and 100, respectively. Moreover, learning rate scheduling
was adopted for faster convergence and convergence to a better minimum [50]. The
corresponding learning rate parameters for RNN, LSTM, and GRU were set to 0.6, 0.7, and
0.5, respectively. More details about the parameter settings in the comparative studies are
shown in Table 2.
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Table 2. Parameter settings in the comparative studies.

Model Parameters

EMD Maximum value of siftings as an ending standard = 10

EEMD

Maximum value of siftings as an ending standard = 10;
Quantity of copies of the original signal to use as the ensemble = 200

Value of additional noise = 0.2
Maximum number of parallel threads = 1

RNN
Learning rate = 0.6

Neuronic quantity in hidden layer = 55
Maximum value of interactions = 1000

GRU
Learning rate = 0.5

Neuronic quantity in hidden layer = 50
Maximum value of interactions = 400

LSTM
Learning rate = 0.7

Neuronic quantity in hidden layer = 50
Maximum value of interactions = 1000

SVM
Penalty factor = 0.1

Kernel function parameter = 3
Tolerance of termination criterion = 0.001

ELM Neuronic quantity in hidden layer = 20
Random seed = 1

3.4.3. Ensemble Prediction

The final ensemble predictions of landslide displacement were obtained by aggre-
gating the predictions of trends and periodic components. A comparative analysis was
conducted with the following decomposition-ensemble learning model: EEMD-based
RNN, EEMD-LSTM, EEMD-GRU, EEMD-SVM, EEM-ELM, and EMD-LSTM. The parame-
ters of the different models used in the comparative studies are listed in Table 2. The model
comparative processes were performed in RStudio Version 1.2.5042 running on an Intel(R)
Core (TM) i5-6300HQ CPU @ 2.3 GHz with 4 GB RAM.

3.5. Evaluation Metrics

In the present study, six evaluation metrics, namely the mean absolute error (MAE),
mean square error (MSE), mean absolute percentage error (MAPE), normalized root mean
square error (NRMSE), coefficient of determination (R2), and Kling-Gupta efficiency (KGE),
were applied to evaluate the model performance. These evaluation metrics are defined
as follows:

MAE =
1
N

(
N

∑
t=1

∣∣ypre,t − yobs,t
∣∣) (19)

MSE =
1
N

N

∑
t=1

(
ypre,t − yobs,t

)2 (20)

MAPE =
1
N

(
N

∑
t=1

∣∣∣∣ypre,t − yobs,t

yobs,t

∣∣∣∣
)
× 100% (21)

NRMSE =
1

yobs

√
∑t

t=1
(
ypre,t − yobs,t

)2

N
(22)

where N is the quantity of deformation monitoring data; yobs,t presents the measured values
of landslide displacement; ypre,t is predicted values of landslide displacement; yobs and ypre
represent the mean values of observations and predictions; r is the linear relative coefficient
between simulated displacement values ypre,t and observed displacement values yobs,t;
α = = σypre /σyobs is a metric of the relative variability between predicted and observed
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displacement; and β = µypre /µyobs is the ratio between the average predicted displacement
to the average observed displacement. The MAE is the average of the absolute errors
between the predicted values and actual values, which reflects the actual predicted value
error. The MSE is the expected value of the square of the difference between the predicted
values and actual values, which evaluates the degree of variability in the data. The MAPE
further considers the radio between error and the actual value. In general, the smaller the
MAE, MSE, and MAPE values, the better the model performs. The NRMSE allows to read
the errors in a more understandably way, since it is a non-dimensional parameter. The
R2 measures the linear relationship between the predicted values and actual values of a
dependent variable, whereby a high value of R2 (up to one) signposts a perfect model. The
KGE values range from negative infinity to 1. It can evaluate the model performance from
three perspective views: Correlation, bias, and variability [51,52]. For an ideal prediction
model, the value of KGE should be as close to 1 as possible.

4. Results and Discussion

The final ensemble predictions from EEMD-RNN, EEMD-LSTM, EEMD-GRU, EEMD-
SVM, EEMD-ELM, and EMD-LSTM are shown in Figure 9. The evaluation metrics, in-
cluding MAE, MSE, MAPE, NRMSE, R2, and KGE, are shown in Figure 10. As shown,
satisfactory predictions were achieved, with R2 values greater than 0.98, which demonstrate
the effectiveness of the “decomposition-ensemble” learning model.

Figure 9. Time series plots of observed and predicted landslide displacement. The training set is
shown with the white background, while the testing set is shown with the blue background.



Appl. Sci. 2021, 11, 4684 14 of 18

Figure 10. Comparison of model performance in terms of MAE, MSE, MAPE, NRMSE, R2, and KGE.

4.1. Comparison of EEMD-SVM, EEMD-ELM, and EEMD-RNNs

As shown in Figure 10, in terms of correlation (R2), there are no significant differences
among the models. For standard RNN, SVM, and ELM, the values of R2 are 0.994, 0.992,
and 0.993, respectively, and the values of KGE are 0.987, 0.983, and 0.974, respectively. In
terms of KGE, predictions with less bias and variability were achieved by the RNN-type
network than SVM and ELM because recurrent networks provide higher nonlinearity.
Moreover, landslide movements are essentially suspended during the dry season. Because
static models can only learn current information and can only learn from a portion of
historical data, static approaches, including ELM and SVM, provide unreasonable results.
The suspended movement characteristics can be approximated well using dynamic RNN
approaches through connections of adjacent hidden neurons and learning from a fully
historical sequence.

4.2. Comparison of EEMD-Based Standard RNN, LSTM and GRU

As shown in Figure 10, LSTM has higher prediction accuracy than GRU, both of
which are better than standard RNN. For the standard RNN, LSTM, and GRU models,
the MAE values are 16.935, 5.357, and 9.8425, respectively, and the NRMSE values are 6.1,
11.3, and 17, respectively. The evaluation metrics in Figure 10 illustrate that the prediction
accuracy of the LSTM and GRU models is better than that of the standard RNN model.
The problem of gradient disappearance in standard RNN is the primary cause for this
performance distinction. The LSTM and GRU approaches are more practicable for landslide
displacement prediction because of the gated unit structures.
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In this study, the GRU model consumes 47.66 s to train, while the LSTM model
consumes 201.75s, an increase of nearly three times the computational cost due to the
complex network structure. The comparative analysis shows that the LSTM and GRU
models provide equally satisfactory performance for landslide displacement prediction,
but GRU is more efficient because of its simpler network structure.

4.3. Comparison of EMD-LSTM and EEMD-LSTM

As shown in Figure 10, the R2 and KGE of EMD-LSTM are lower than those of the
EEMD-LSTM decomposition-ensemble learning model. The lower performance statistics of
the EMD-LSTM decomposition-ensemble learning model are caused mainly by the mode
mixing problem in EMD.

Figure 11 compares the model performance for the periodic component in terms
of R2 when varying the training data size: The model performance improves with the
data capacity of the training set. The outperformance of EEMD-LSTM over EEMD-based
static methods, including ELM and SVM, is not remarkable when the training dataset is
smaller than 80%. This can be explained as follows: Compared to traditional models, more
parameters must be tuned in the LSTM-based prediction model. Therefore, more input
data are required to maintain the model performance.

Figure 11. Comparison of model performance for periodic components in terms of R2 when varying
the training set size.

The case study from the Muyubao landslide shows that the hybrid EEMD-RNN
decomposition-ensemble learning model is promising for accurate prediction of landslide
displacement by combining the advantages of EEMD and RNN. The main advantages of
the proposed EEMD-based RNN decomposition-ensemble learning model can be outlined
as follows:

The MIC-based input variable selection is a systematic process without any a priori
expert knowledge, computationally inexpensive, and capable of describing the nonlinear
relationships. The performance of prediction model is able to be improved by EEMD
decomposition of complicated forecasting problems into several easier ones, and the
temporal dependency in complicated monitoring data is captured by adopting a RNN
approach, thereby improving the ability to model dynamic systems.

Although the EEMD-RNN decomposition-ensemble learning model has potential for
the accurate prediction of landslide displacement, it has inherent limitations associated
with data-driven approaches, including lack of transparency and a requirement for large
quantities of training data [53,54].
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5. Conclusions

According to the decomposition-ensemble principle, a novel three-step decomposition-
ensemble learning model integrating EEMD and RNN was proposed for landslide dis-
placement prediction. The experimental results from the Muyubao landslide in the
Three Gorges Reservoir area demonstrate that the proposed EEMD-RNN decomposition-
ensemble learning model is capable of increasing prediction accuracy and outperforms
traditional decomposition-ensemble learning models (including EMD-LSTM, EEMD-SVM,
and EEMD-ELM) in terms of prediction accuracy. Moreover, the GRU- and LSTM-based
models perform better than standard RNN by providing equally satisfactory performance
in terms of predicting accuracy. Due to the simpler structure, GRU is more efficient than
standard RNN and LSTM. Therefore, in practical application, EEMD-GRU learning model
is more suitable for medium-term to long-term horizon displacement prediction of reser-
voir landslide in the Three Gorges Reservoir area. In addition to landslide displacement
prediction, the proposed EEMD-RNN decomposition-ensemble learning model can also
be extended to other difficult forecasting tasks in geosciences with extremely complex
nonlinear data characteristics.
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