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Abstract: In-wheel motor technology has reduced the number of components required in a vehicle’s
power train system, but it has also led to several additional technological challenges. According to
kinematic laws, during the turning maneuvers of a vehicle, the tires must turn at adequate rotational
speeds to provide an instantaneous center of rotation. An Electronic Differential System (EDS)
controlling these speeds is necessary to ensure speeds on the rear axle wheels, always guaranteeing a
tractive effort to move the vehicle with the least possible energy. In this work, we present an EDS
developed, implemented, and tested in a virtual environment using MATLAB™, with the proposed
developments then implemented in a test car. Exhaustive experimental testing demonstrated that
the proposed EDS design significantly improves the test vehicle’s longitudinal dynamics and energy
consumption. This paper’s main contribution consists of designing an EDS for an in-wheel motor
electric vehicle (IWMEV), with motors directly connected to the rear axle. The design demonstrated
effective energy management, with savings of up to 21.4% over a vehicle without EDS, while at the
same time improving longitudinal dynamic performance.

Keywords: electric vehicles; electromobility; in-wheel motors; electronic differential; wheel-speed
control; powertrain; energy consumption; automotive control; vehicle dynamics control

1. Introduction

As transport technology evolves, new opportunities arise. Formerly, the efficiency
of energy usage in street vehicles was close to being maxed out, up to a point limited
by the internal combustion engine’s physical principles. With the renewed interest in
electric vehicles (EVs) and the mass production of them, a vast new field for improvement
has opened up for research engineers, physicists, and designers in many areas, including
battery technology, charging stations, power train mechanics, and of course vehicle energy
management [1]. This era of in-vehicle technology has seen the advent of two significant
paradigm changes—the electrification of street vehicles and the implementation of higher
levels of autonomous driving—thanks to the increased availability of high computational
power onboard the vehicles and cloud computing connectivity [2].

The development of intelligent and connected vehicles and their integration with
energy management technology in their power train can further increase energy effi-
ciency [3,4]. The integration of all the methods mentioned earlier comprises a synergy of
great interest for studying, evaluating, and implementing, taking energy usage optimiza-
tion to new high possibilities [5]. The transformation of ground transport to electromobility
is an undeniable reality [6]. There is interest in increasing vehicle energy efficiency for
environmental, technical, and economic reasons.

In-wheel motor technology was first introduced to commercial vehicles by Ferdinand
Porsche around the year 1900. With this technology, it is possible to eliminate extra
components and simplify the power train system on hybrid and fully electric vehicles [7,8].
One of the main characteristics of an IWMEV is the absence of a transmission combined
with the wheel’s differential, which has been essential in every four-wheeled vehicle since
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they were first developed more than one hundred years ago. The mechanical transmission
has been improved over the years, aiming to maximize engine performance through its
speed range. It is still being developed, and the possibility of its pertinency in electric
vehicles is being researched [9].

On the other hand, the differential has been left alone as part of a specific and straight-
forward function. It is to maintain the freedom of spin of the rear axle wheels, allow-
ing them to rotate at different speeds, one relatively against the other according to the
car-specific requirements at any given time while still being capable of delivering a tractive
effort to the ground to move the vehicle. The in-wheel motor technology does not allow a
mechanical differential to be used in the vehicle [10]. However, the car still needs to control
the wheel spin velocity during turning maneuvers. The development of an EDS presents
the opportunity to solve this problem while also improving the vehicle’s energy efficiency
by addressing the energy management requirements of the IWMEV.

The re-emerging in-wheel motor technology promises to expand the powertrain archi-
tecture possibilities for electric vehicles, addressing particularities like moving the motor’s
weight out of the car’s suspended mass. At the same time, it increases the inertia of the
wheels, which has undesired consequences that are out of the scope of this work. These dif-
ferences bring new challenges like the one addressed in this work: the differentiation and
power distribution in the individual motors of the IWMEV.

This document explains the development, setup, and validation of the electric ve-
hicle’s onboard EDS with rear traction. The modeling was started using MATLAB™,
and following this, tests were carried out on a chassis dynamometer and in real circuit
driving experiments. The scope of this paper is to evaluate the performance of this EDS de-
veloped around vehicle geometry theory and dynamics equations to improve the handling
behavior and energy control of an IWMEV. This process starts with the programming and
simulation of the EDS in a numerical computing environment, followed by designing and
constructing the required hardware for the system to be implemented in the real electric
vehicle for further testing and evaluation. The approach followed was to take the vehicle’s
geometric and dynamic equations as the core of the EDS because it was a simple model
to put on board and observe the power train behavior with and without differential [11].
This evaluation was carried out by measuring the directly implied variables like the wheels’
angular speed, the throttle input signal, the steering angle, and the longitudinal speed.

This paper is organized as follows: Section 2 describes the state of the art in EDS.
Section 3 presents the methodology employed in this work. Section 4 presents the EV
prototype used for testing the EDS. Section 5 introduces the vehicle dynamics fundamentals
considered for the EDS design. Section 6 describes the EDS development process. Section 7
details the experimental procedures performed on the vehicle. Section 8 presents the EDS
test results. Finally, the findings are discussed in the last section.

2. State of the Art in EDS

Many studies have been conducted about EV efficiency [12–14], but few focus on the
particular case of IWMEVs [15]. The Ackermann steering geometry is the starting point
of most proposed models for wheel speed differentiation [16]. It specifies the geometric
relationships that should be complied with to achieve an optimum vehicle performance
during turning maneuvers, as stated in the vehicle dynamics literature [17]. The essential
inputs for the EDSs proposed in other works are the steering angle and the throttle posi-
tion [18]. For the EDS presented in this work, the inputs mentioned earlier are also used,
complete with the vehicle’s longitudinal speed information. The modeling of the IWMEV
results in a complex nonlinear system due to the tire characteristics during a turning or
direction-changing process [19]; rapid steering or a low-adhesion-coefficient road can cause
vehicle instability like tire slipping causing the driver to lose control. The testing of the
EDS proposed in this work was performed at low speeds and maintaining low mechanical
power demand on the testing vehicle; this guaranteed vehicle stability and eliminated the
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possibility of slipping during testing [20], simplifying the vehicle dynamics modeling and
allowing for energy interactions to be better observed.

The dynamics stability control approach is used by Hua et al. in their work [21].
Their proposed EDS follows the yaw rate’s value closely and distributes the torque on
both sides to ensure steering performance and driving stability. Using an input signal,
the steering angle values, and the vehicle speed, their proposed fuzzy logic controller
calculates the additional yaw moment necessary to maintain the vehicle’s stability. An-
other proposed approach is the one presented by Daya et al. [22]. They introduce an EDS
based on wavelength control, transforming the steering angle and the throttle input into
frequency components to calculate the respective gains fed into the system as input to the
motors. Daya et al. also compare the wavelength controller with their own PID controller.
It is noticeable that the wavelength controller provides a smoother response with less
overshot and a faster settling time than the PID controller. Zhou et al. [23] acknowledge the
nonlinearity of the vehicle dynamics in their proposed EDS, including the combined effects
and interactions of the longitudinal, lateral, and yaw dynamics together with tire dynamics.
The EDS calculations are made by a Model Predictive Control (MPC) controller that pro-
cesses the vehicle dynamics variables, achieving suitable stability parameters. MPC theory
is a recurrent method in vehicle dynamics control [24]. Hu et al. [25] used MPC for torque
distribution in a IWMEV that included the motor’s efficiency map to reduce energy con-
sumption, achieving savings of 4.5% and 0.8% for lane changing and straight acceleration
maneuvers, respectively. Xu et al. [26] also used MPC for torque control in their IWMEV
simulation model to optimize their in-wheel motors’ regenerative braking function.

EDS works focus on vehicle dynamics; however, there have been efforts in combining
dynamics control with energy optimization since both tasks imply powertrain control and
actuation. Ma et al. [27] use torque allocation to reduce side slipping by implementing a
penalty function within its controller; reducing side slip angle has positive effects on the
vehicle dynamics and reduces energy losses in the tire due to tire wear. Zhao et al. [28]
proposed a system with a dynamics stability approach, using a holistic corner controller for
a vehicle with four in-wheel motors to reduce tire slipping and thus tire wear, controlling the
yaw rate of the car and finally achieving a reduction of tire slip energy of 16.62%.

This paper’s main contribution consists of an EDS focused on energy management
and implementation in an IWMEV test car. The EDS manages energy by calculating the
optimal speed for each drive wheel, using proportional control and a deterministic vehicle
model. The EDS then allocates the required power to each in-wheel motor through the
motor controllers, while these handle the torque applied at the contact patch of the wheels
with the ground. Exhaustive experimental testing has demonstrated that the proposed
EDS design significantly improves vehicle longitudinal dynamics and powertrain energy.
In particular, the design has been shown savings of up to 21.4% over a vehicle without
EDS. The tests and analyses that lead to these results are widely described in the following
sections of the document.

3. Methodology

The methodology for EDS development is inspired by the classical design methodol-
ogy [29]. This methodology suits the project’s scope because it includes a preparatory phase,
conceptualizing an idea based on a given problem, conceptual design, embodiment design,
system development, physical model implementation, and testing (see Figure 1).
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4. Experimental Test Vehicle

This work’s experimental platform is a test vehicle available at the Research Center
for Automotive Mechatronics (CIMA) (Figure 2). This test vehicle is a recreational vehicle
that features a lightweight aluminum chassis. The car was specially designed and built to
research electric cars, in particular IWMEVs. Vehicle components have been adapted to the
chassis and are, for the most part, commercial components. The purpose of this test vehicle
is primarily to experience realistic vehicle dynamics conditions.
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Figure 2. Test car for IWMEV research.

The powertrain consists of two electric motors with a nominal power of 3 kW each.
Electric motors are commercial [ref: www.qsmotor.com, accessed on 12 June 2020] and
are direct-current brushless motors. The motors are installed in each of the vehicle’s rear
wheels. The operating region of the electric motors is in the voltage range of 48 to 72 volts.
These motors’ behavior curves are shown in Figure 3, where the torque behavior versus
speed and efficiency are described in the corresponding figure.
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Figure 4 shows the electronic architecture to implement the EDS, with the components
labeled with numbers from one to six. In particular, one encoder sensor (1) measures the
steering wheel angle. The corresponding angular speeds are measured using the three
hall effect sensors installed on each rear wheel (2). In addition, a potentiometer (3) has
been used to measure the throttle (accelerator pedal). All sensors connect to two systems,
Arduino™ UNO boards. These provide connectivity to the onboard computer (4) with an
application in MATLAB’s App Designer™ with the algorithm programming code. Finally,
two motor controllers (5) and the battery pack (6) are also shown in the figure.
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The operation of the entire system is described as follows. The EDS reads inputs
and calculates angular speeds required at the drive wheels. The motor controllers receive
instructions from the EDS and manage the energy delivered to the motors. A battery pack
stores and provides the energy required by the electric motors. The electric in-wheel motors
have the mechanical power as instructed by the controllers and report their angular speed
to the EDS. The throttle pedal reads the acceleration desired by the user and sends the
voltage signal to the EDS. The rotary encoder reads the position of the steering wheel and
sends the information to the EDS. Figure 4 shows signal communication and electric power
delivery in the direction of the arrows.

Table 1 summarizes the vehicle’s characteristics and the results obtained during the per-
formance tests applied using CIMA’s laboratory equipment, such as the chassis dynamometer.

Table 1. Physical parameters of the car test.

Vehicle Information
Power train Rear-drive, in-wheel motors

Weight 400 kg (44% front axle–56% rear axle)
Dimensions 2.96 m long × 2.14 m wide × 1.53 m high

Power source 59 volts—16 Li-ion Cells Battery pack
Frontal area 1.82 m2 Cd: 0.428

Tire effective radius 0.25 m Rolling Resistance coefficient: 0.027
Tire cornering coefficient 0.19 (1/deg) (normalized)

Wheelbase 1.72 m Inter-axle distance: 1.89 m
* CM to rear wheels distance 0.83 m * CM heigh: 0.3 m

Max torque 350 N-m
Max acceleration 1.54 m/s2 Max speed: 64 km/h

* CM refers to the center of mass of the vehicle.

5. Vehicle Dynamics Modeling

This section describes the vehicle dynamics characteristics and the testing performed
to gather this information.



Appl. Sci. 2021, 11, 4679 6 of 16

5.1. Steady-State Handling Characteristics

The steady-state handling characteristics of a vehicle provide information on how
the vehicle handles the steering and turning maneuvers and provides a classification into
three categories: understeer, neutral steer, and oversteer. The classification depends on
the vehicle’s understeer coefficient, Kus, a factor calculated as a function of the weight
distribution and the tire cornering stiffness, Cα. The normalized cornering coefficient
(defined as the cornering stiffness per unit normal load) of all the test car wheels was
estimated to have a value of 0.19 (1/deg).

The steering angle required for the vehicle to perform a given curve depends on
the wheelbase, turning radius, forward speed, and the mentioned understeer coefficient.
The test vehicle’s weight distribution has been measured as 44% and 56% for the front
and rear axles, respectively, making its understeer coefficient have a value of −0.632 [deg],
which indicates that the vehicle is classified as oversteer. If an oversteer vehicle is acceler-
ated in a constant radius, the driver must decrease the steering angle [17]. This characteristic
is considered in the EDS operation. The EDS will respond in real-time to any changes in the
user’s steering angle to maintain the vehicle in the desired path and at the desired speed.

5.2. Preliminary Dynamics Testing of VR1

The vehicle’s preliminary testing provides critical information later used in developing
the EDS, like the power train capabilities and dynamics response to handling maneuvers.
The following figures present the testing results of the test car using the dynamometer.
Figure 5 shows the acceleration and speed curves, and Figure 6 contains the torque response
and mechanic power development of the powertrain.

5.3. Kinematics

The basis for the EDS is the geometry implicit in the Ackermann equations. These equa-
tions describe the geometric and dynamic relationships that need to be achieved to guar-
antee that a no-slipping condition occurs in the drive wheels during a turning maneuver.
The base equations were taken from Jazar [30], and their development to obtain the
drive wheels’ angular speed is shown below. The symbols used in the equations are in
Appendix A.
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Figure 7 shows the existing relationship between the parameters of a car making a turn
with a radius R1. The angles δi and δo must be such that the line coming from the turning
center-point O is perpendicular to the left and right wheel’s lateral plane, which guarantees
that both turning wheels are in full rolling behavior, not slipping. The rear axle is of interest
to establish the correspondent geometric and dynamics equations for the drive wheels.
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Figure 8 shows the same rear-drive car with more parameters, like the distance a2
between the center of mass C and the rear axle, the distance R from the turning center-point
O to the center of mass, the angular speed of each rear wheel ωi and ωo, and the longitudinal
speed vector of the inner and outer rear wheel Vi and Vo, respectively. The relationship
between these parameters allows the construction of the following equations:

R =
√

a2
2 + l2 cot2 δ (1)

Equation (1) shows the vehicle’s turning radius as a function of δ, where δ is the cot-
average of the inner and outer steer angles and l distance between the front and rear axles.
Equation (2) shows the equivalent angle δ when the front wheels have different values.

cot(δ) =
cot(δo) + cot(δi)

2
(2)

The test car’s steering mechanism characteristics classify it as a parallel steer (Figure 9).
This means that the steering angle of both front wheels is equal (Equation (3)). The effects of
having a steering mechanism that does not adhere to the Ackerman geometry are increased
tire scrub during cornering, tire wear, and increased steering effort. The magnitude of not
having Ackerman steering is variable and depends on the steering angle or the radii of the
turning maneuver being performed. For all the tests considered in this work, the steering
angles were at or below 16 (deg), so the deviation from the ideal curve was minimal,
and the effects can be neglected.

δi = δo = δ (3)
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From the geometric relations in Figure 8, we obtain Equation (4).

Cot δ =
R1

l
(4)

The dynamics equations for each rear wheel’s longitudinal speed (Vi and Vo) and the
geometric proportions of a vehicle turning left can be written as shown in Equations (5) and (6)
for the inner wheel and the outer wheel, respectively. The wheel’s effective radius is
denoted by Rw and the Yaw-rate of the vehicle by YR.

Vi = YR

(
R1 −

w
2

)
= ωiRw (5)

Vo = YR

(
R1 +

w
2

)
= ωoRw (6)

Replacing Equation (4) with Equations (5) and (6) and solving the angular speed
of the inner (ωi) and outer (ωo) wheels of the rear axle of a rear-drive car, we obtain
Equations (7) and (8).

ωi =
YR
(
l ∗ Cot(δ)− w

2
)

Rw
(7)

ωo =
YR
(
l ∗ Cot(δ) + w

2
)

Rw
(8)

The former equations are the base for the EDS and are programmed in a series of
successive code lines that calculate the required speed for each of the rear wheels as a
function of the car’s instantaneous turning angle and velocity. The motor controllers set
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the voltage on the motors to achieve the individual speed calculated for each rear wheel,
ωi, and ωo. This information is then sent to the EDS to recalculate the power parameters
for the wheels in the next iteration.

6. EDS Development

After obtaining the critical characteristics of the vehicle dynamics, the EDS could
be developed.

EDS Development Using MATLAB

The program’s main purpose is to maintain the required angular velocity differential
between the two rear wheels. However, it also needs to control some other aspects, like ac-
knowledging the motors’ maximum speed capabilities and making smooth transitions
between speeds to reduce excessive vehicle accelerations. The main functions of the EDS
algorithm are shown in Figure 10.
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The EDS must acknowledge the limited capabilities of the hardware. In this case, the
electric motors have a maximum angular speed of 65 (rad/s). The motor’s manufacturer
specified this value, and it was confirmed by testing the electric vehicle in a chassis
dynamometer. In principle, the EDS must guarantee that the two wheels’ speed sustains
a calculated difference. If a turning maneuver at a given speed requires that the external
wheel goes at an angular speed higher than the maximum allowed by the in-wheel motor,
the total longitudinal speed of the car must be reduced so that the system keeps working
within its limits.

Considering the sensors’ specifications, the sampling period for the analog signals
measured by the EDS was defined so that the aliasing was avoided [31]. The variables in
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the control loop and the values for the motor’s speed are calculated for each computational
cycle (490 Hz). Still, the actuation introduces a delay so that the motor’s speeds are set
10 times per second.

7. Experimental Setup Specifications

This section provides information on the testing performed to evaluate the EDS. It is
of particular interest to evaluate its functionality in terms of longitudinal speed control
and energy management capabilities. For the testing design, it was necessary to have the
vehicle perform turning maneuvers to notice the EDS effects. This section presents the
different tests and the specific conditions of the experiments. It includes graphic profiles of
different variables and detailed instructions of the testing procedures.

Two different tests were designed and were applied to the testing vehicle. The speed
control and acceleration testing provided information on the longitudinal performance
of the test vehicle, providing data for both speed and acceleration analysis. The energy
management test provided data for the energy allocation performance analysis.

7.1. EDS Speed Control and Acceleration Testing

The longitudinal dynamics tests were performed on even terrain by accelerating the
vehicle to a moderated speed and performing turning maneuvers. A zig-zag steering angle
pattern was applied, starting at zero degrees and then turning left and right seven degrees
in both directions with the constant throttle. The complete specifications of the performed
experiments are described in Figure 11.
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7.2. Energy Management Testing

An onboard current and voltage measurement device (Dewesoft’s SIRIUS™) was
used to register the energy consumed by each motor and the instantaneous electric power
demanded. This set of tests consisted of driving in circles with a constant radius while
recording dynamics and energy data. For the energy consumption tests, the throttle
position is kept constant for the duration of the tests, and the maneuver starts with the
vehicle speed at 11 (km/h). In addition, no braking is applied, and the turning maneuver
is performed with a constant steering angle of 16 (deg) on even ground. Again, the turning
maneuver tests were performed with the EDS activated and deactivated. The details of the
experiments are presented in Figure 12.
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8. Results and Discussion

This section presents a further analysis of the EDS, looking at its impact on the vehicle’s
dynamic and energetic performance. The following results were obtained by employing
the test procedures described in Section 7.

8.1. EDS Results on Speed Control during the Turning Maneuvers

Tests were performed on the vehicle with the EDS disabled to be used as a baseline;
results are shown in Figure 13. As we could observe, the vehicle’s longitudinal velocity
presented a variation of 8.55% from its original velocity during the turning maneuvers.
This is an undesired effect. It is the EDS’s objective to compensate the relative angular
velocities of both wheels to maintain the vehicle’s net longitudinal speed constant unless
the user changes the throttle position. The same tests were carried out again with the
EDS activated (Figure 14). In this case, the EDS successfully reduced longitudinal velocity
variation during the turning maneuvers to 4.85%.

8.2. Acceleration Analysis

Acceleration is a critical factor to consider while evaluating the EDS performance.
In this case, the vehicle should not present any significant acceleration spikes that the
passengers perceive. The accelerations to observe are the longitudinal acceleration, the in-
dividual angular accelerations, and the lateral acceleration.

Results for longitudinal acceleration are shown in Table 2, with and without the EDS.
The highest values for longitudinal acceleration were around 1.5 (m/s2), both positive
and negative. During most of the acceleration tests, the longitudinal acceleration stayed
between −1.5 and 0.5 [m/s2], a comfortable value for the passengers.

During data analysis, it was also observed that the magnitudes of the instant accel-
eration values were similar for activated EDS and deactivated EDS; the difference is the
allocation of this acceleration event performed by the EDS when it is active, controlling
the longitudinal speed and reducing its undesired variation. The acceleration results are
presented in Figure 15. The turning maneuver tests are described in Section 7.
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Table 2. Acceleration values for zig-zag maneuvers with EDS activated.

Longitudinal Acceleration (m/s2)

Deactivated EDS Activated EDS
Max 0.5491 0.5374
Min −1.5168 −1.2662

mean + 0.1925 0.1495
mean − −0.5198 −0.1420

8.3. Energy Management Results

The EDS directly affects the power train system and the energy distribution. The mea-
sured energy data of a sustained right-turning maneuver for both cases (activated and
deactivated EDS) are presented in Table 3. Here we can observe that the power train
system’s total consumed energy was 21.4% less with the EDS activated. The power distri-
bution noticeably changed between the two in-wheel electric motors (left and right). For a
right turning maneuver, the right wheel required less energy than the left wheel.

The electric power delivered to each motor and the totals are presented in Figure 16A,B
for deactivated and activated EDS. The EDS guarantees that the power is delivered accord-
ing to each motor’s specific energy requirements. The energy management functionality is
observed in the orange and gray lines in the power distribution graphs; when the EDS was
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deactivated, these lines repeatedly crossed during testing, which means that both motors
were receiving nearly the same power. Meanwhile, with the EDS enabled, the orange and
gray lines stay noticeably separated.
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Table 3. Energy and power result in a right turning maneuver.

Right Turn with EDS Activated

Left Motor Right Motor Total

Energy (Wh) 2.12 0.89 3.01

Average Power (W) 621.69 262.99 884.68

Right Turn with EDS Deactivated

Left Motor Right Motor Total

Energy (Wh) 1.83 2.00 3.83

Average Power (W) 657.24 721.41 1378.65

Another interesting remark is that, in both cases, wheel speed differentiation was ob-
served, but the causes were different. In the first case, with the EDS deactivated, cinematic
and mechanical restrictions caused the differentiation. Thus, the excess power delivered to
the inner wheel was lost as wheel slipping or motor overcurrent heat. On the other hand,
when the EDS was activated, the energy was correctly allocated and effectively used to
accelerate the vehicle.
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9. Conclusions

By closely controlling the relative angular velocities of both rear wheels, the EDS
regulated the vehicle’s longitudinal acceleration and had a noticeable effect on the vehicle’s
longitudinal speed during turning maneuvers, achieving a decrease in longitudinal speed
variation from 8.55% to an average of 4.85% for the same driving maneuvers.

The EDS also improved the power train’s energy performance by avoiding sending
excess electric power to the physically restricted inner motor, noticeably minimizing energy
losses due to overcurrent heat, wheel slip, and friction. In addition, the outer motor
performed better as it now received the correct amount of energy. Depending on the
turning radius, the electric power misallocation can account for up to 21.4% of the turning
maneuver’s energy. With the EDS’s help, this lost energy was minimized and saved,
dramatically improving the vehicle’s energy efficiency.

10. Future Work

There is still plenty of research to be conducted on IWMEV technology; the following
are ideas that can further develop electronic differential capabilities:

• Evaluate advanced control strategies for the EDS, like machine learning models to
predict optimal power strategies. The optimization parameters can be measurements
provided by onboard sensors, while the model aims to minimize energy in real-
time driving.

• Study the effects of integrating regenerative braking functionality into the EDS.
• Increase the number of onboard sensors and include IMUs to enhance vehicle dynam-

ics together with energy management.
• Evaluate EDS capabilities in new terrains and driving scenarios, like uneven ground

and steep slopes, to find new fields for potential improvement.
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Appendix A

Table A1. List of acronyms.

Acronym Definition

EV Electric Vehicle
IWMEV In-Wheel Motor Electric Vehicle

EDS Electronic Differential System

Table A2. Nomenclature.

Variable Description

Cd aerodynamic drag coefficient
CM center of mass
Cα cornering stiffness
Kus understeer coefficient

l length between the front and rear axle
R turning radius

Rw tire effective radius
V longitudinal speed
Vi speed of the inner rear wheel
Vo speed of the outer rear wheel
w wheelbase or track of the vehicle
YR yaw rate of the car rad/s
ωi the angular speed of the inside rear tire
ωo the angular speed of the outside rear tire
δi steer angle of the inside front tire
δo steer angle of the outside front tire
δ the equivalent turning angle of the front wheels
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