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Abstract: The generalization error of conventional support vector machine (SVM) depends on the
ratio of two factors; radius and margin. The traditional SVM aims to maximize margin but ignore
minimization of radius, which decreases the overall performance of the SVM classifier. However,
different approaches are developed to achieve a trade-off between the margin and radius. Still, the
computational cost of all these approaches is high due to the requirements of matrix transformation.
Furthermore, a conventional SVM tries to set the best hyperplane between classes, and due to some
robust kernel tricks, an SVM is used in many non-linear and complex problems. The configuration of
the best hyperplane between classes is not effective; therefore, it is required to bind a class within its
limited area to enhance the performance of the SVM classifier. The area enclosed by a class is called its
Minimum Enclosing Ball (MEB), and it is one of the emerging problems of SVM. Therefore, a robust
solution is needed to improve the performance of the conventional SVM to overcome the highlighted
issues. In this research study, a novel weighted radius SVM (WR-SVM) is proposed to determine the
tighter bounds of MEB. The proposed solution uses a weighted mean to find tighter bounds of radius,
due to which the size of MEB decreases. Experiments are conducted on nine different benchmark
datasets and one synthetic dataset to demonstrate the effectiveness of our proposed model. The
experimental results reveal that the proposed WR-SVM significantly performed well compared to
the conventional SVM classifier. Furthermore, experimental results are compared with F-SVM and
traditional SVM in terms of classification accuracy to demonstrate the significance of the proposed
WR-SVM.

Keywords: radius-margin error bound; weighted-radius support vector machine; minimum enclos-
ing ball; support vector machine (SVM)

1. Introduction

Machine Learning (ML) has achieved a significant rise in many fields in the past two
decades. The rapid growth of data has become a challenging task to find patterns and
information from the data. ML has been successfully applied in many disciplines like
fraud detection in credit card transaction and object recognition [1–3], face recognition [4,5],
and decision making systems [6,7]. ML-based algorithms are developed based on the
patterns learned from the data and used these patterns to conclude unseen data samples.
SVM is the most prevailing supervised learning model used in many problems related to
classification [8], regression [9], computer vision [10], outliers detection [11], to name a
few, SVM is one of the most efficient ML algorithms because of its kernel tricks and less
computational cost. These kernel tricks transform the data into different feature spaces
so that the data are more linearly separable than the original feature space. SVM and its
extensions try to set optimal hyperplane with maximum intraclass margin, i.e., the margin
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between two classes [12]. However, the generalization error of SVM depends on both ratio
of the radius and the margin [13]. According to the generalization error function, if feature
mapping is given, SVM can minimize the error by maximizing intraclass margin [14]. In
feature transformation, radius margin is valuable and cannot be ignored.

In the binary classification problem, we have {(xi, yi), . . . (xn, yn)} training dataset
where x ∈ Rd and y ∈ {1,−1} Then,

ŷ = βTx + βo, (1)

where βT is weight matrix, x is a feature matrix and βo is bias, is an equation to separate
two classes linearly.

SVM tries to find the best hyperplane in a binary classification problem that separates
positive samples from negative samples with maximum margin. The shortest distance
among positive samples and negative samples, closest to the hyperplane, is called mar-
gin [12]. It is more effective to find a hyperplane with the largest margin because it is more
restricted to noise than a hyperplane with a smaller margin. The hyperplane with a smaller
margin can make mistakes on testing data. SVM without a slack variable ξ variable is hard
margin SVM.

In hard margin SVM, all data points satisfy the constraints depicted in (2) and (3) [15].
After passing the linear separability check, SVM can achieve 100% training accuracy but
not grantees for testing.

w.xi + b ≥ 1 yi = +1 (2)

w.xi + b ≤ −1 yi = −1, (3)

where w is vector, which is normal to the hyperplane. The perpendicular distance from
hyperplane to the origin is given by b

‖w‖ where ‖w‖ is Euclidean norm of vector w. (2) and
(3) can be combined as

yi(w.xi + b) ≥ 1 ∀i. (4)

Most of the real-world datasets are not linearly separable; therefore, it is needed to
draw a non-linear boundary. In case of non-linear datasets, two types of solutions can be
adopted. One is to use soft-margin SVM to accept some errors, and another is to draw a
non-linear boundary. Linear separability of the data can be affected by a single point. Even
a single sample in the dataset can affect the hyperplane of the SVM. If the data is sensed
from sensors, then a single incorrect datum can make the dataset non-linear [16], as shown
in Figure 1.

Figure 1. Non-linearity of the data.
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Linear separability can also be applied to check the non-linearity of the data before
using SVM as a classifier. SVM with the linear kernel can be applied to the data for linear
separability check. By getting 1.0 accuracy on training data, the data are linearly separable,
and we can go for hard margin SVM. If the accuracy value is less than 1.0 but in an
acceptable range, the soft margin SVM can be applied by accepting some errors (5).

yi(w.xi + b) ≥ 1− ξ ∀i (5)

Here the ξ > 0 variable relaxes the constraints given in (4). The objective function be-
comes

minimize wTw + C
m

∑
i=1

ξk
i

Subject to yi(w.xi + b) ≥ 1− ξi and ξi ≥ 0; (i = 1 · · ·m) (6)

With the same problem, i.e., non-linear dataset, the classification method can also use
kernel tricks to classify the data in kernelized feature space. These kernel tricks transform
the data from the original to a kernelized feature space. Among all types of kernels, RBF
(7) and polynomial kernels (8) are the most famous [17].

K(xi, yi) = exp(−γ ‖ xi − xj ‖2) (7)

K(xi + yi) = (xi.yi + 1)d. (8)

In RBF, the parameter γ is used to scale the mapping, and in the polynomial kernel, d is
the degree of the polynomial. Typically, RBF outperforms as compared to polynomial kernel.

Feature transformation techniques can also be used in non-linear datasets and SVM to
transform data into different feature spaces and try to set a hyperplane [18].

µT Ax + b, (9)

where A is a transformation matrix, µT is weights vector, x is input, and b is a bias.
Along with the feature transformation, another strategy that is used with SVM is

metric learning. To learn a linear transformation matrix, which is available more than once,
metric learning can be used [19,20]. The researchers used a straightforward approach to
deploy the transformation by combining metric learning and SVM. This approach is unable
to produce satisfying results, however. Therefore, to integrate metric learning with SVM,
many approaches have been proposed, e.g., Metric Learning with SVM (MSVM) [19] and
Support Vector Metric Learning (SVML) [21]. There was a limitation with SVML; it only
works with a Gaussian radial basis function kernel (RBF_SVM) and ignores the information
of radius, while, on the other hand, MSVM [19] was nonconvex.

SVM and its extensions are best to cused lassify the data, but the boundary within a
class is not enough to achieve higher prediction accuracy. Each class should be bounded
in its limited area. To do so, F-SVM [14] proposed a method to bound the class in its
narrow region. Mean strategies were used to calculate the radius of the MEB of the class.
However, the mean can shift to a dense area of the class. Real-world datasets are with
mixed behavior; some classes may be closed and others or scattered. In this case, the value
of radius calculated by the mean will be very high. As a result, the MEB can cross the
hyperplane or can overlap samples of other classes.

In this paper, a weighted mean approach is proposed to enhance the performance
of F-SVM. The F-SVM method computes the MEB of the class by calculating the mean
of samples, but the mean can shift to the dense area of the class. If a class contains
scattered points along with the dense area, then the radius (maximum distance from mean
to samples) will be higher. While the proposed model is based on two steps, the first is the
computation of the SVM classifier, and the second is the calculation of the weighted mean.
In the first stage, conventional SVM is applied to get the classifier’s parameters; after that,
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the mean of the class is computed. The distance of the sample from the mean is used as the
weight of the sample. By assigning the weight to each instance, the samples show different
behavior in the weighted feature space. Now the mean is computed in weighed feature
space; thus, the mean shifted to the scattered area of the class. The radius calculated by the
weighted mean is always less than the radius by mean. Finally, the size of MEB is reduced.
The proposed model named WR-SVM is compared with existing margin radius methods,
i.e., F-SVM [14]. The proposed model will use the same parameters on which F-SVM was
trained. The 10-fold strategy is used to train and test the model.

The core contributions of the proposed research study is followed:

• Calculate a tighter bound of MEB by using weighted mean.
• By using kernel tricks, non-linear data can be linearly separable, due to which we find

w and b with the optimal solution in weighted feature space.
• Proposed model is evaluated on 9 different benchmark datasets and one synthetic

dataset, and results are compared with traditional SVM and margin radius-based
F-SVM.

2. Related Work

SVM initially was proposed by Vapnik and his team in 1990 [22]. The concept of SVM
is derived from neural networks, or we can say that SVM is a mathematical extension of
neural networks. Both linear and non-linear datasets can be classified by SVM [23]. SVM
performs classification by transforming data into different feature spaces and construct
hyperplane on higher dimensions.

SVM finds w and b to set optimal hyperplanes in feature space in the binary class.

Dw,b(x) = wϕ(x) + b, (10)

where w and b can be determined by Lagrange’s multiplier [24]. The decision rule of SVM
is, if Dw,b > 0 then classify as positive otherwise negative class.

As we know in the binary classification problem, the training samples and the classes
are given, and they all belong to Rd, where the class labels are given as +1,−1. SVM
can be used for feature selection. Parameter optimization and feature selection are two
primary perspectives to enhance the performance of the classifier. An innovative method
based upon the genetic algorithm (GA) for feature selection and parameter optimization of
support vector machine (SVM) is introduced to enhance the hospitalization cost model’s
prediction accuracy [25]. Another technique [26] presents a different feature adoption
method to deal with machine learning’s two main issues: class imbalance and high di-
mensionality. The proposed fixed strategy punishes the feature set’s cardinality via the
scaling factors method also is applied with two support vector machine (SVM) formula-
tions intended to deal with the class-imbalanced problem, namely Cost-Sensitive SVM and
Support Vector Data Description. A lot of work has been done on feature selection by using
SVM [27,28]. In [16] the author proposed a model called SVMRFE. They use the smallest
weight to eradicate the features.

SVM features selection method used for prostate histopathological grading. Features
selection is mainly used for diagnosing histopathological images [29]. In this study, they
use textual features that were obtained from nuclei cytoplasm and stroma. The first step of
methodology was to categorize the tissue images. Based on the text of a single classifier
and then ensemble learning model was applied by combining the values obtained by
each classifier. For that purpose, they use SVM-RFE (Recursive Features Elimination) that
integrates SVM-RFE with Absolute Cosine (AC). The results obtained by SVM-RFE (AC)
were better than the results of simple SVM.

SVM is used in real-life problems due to its strong kernel tricks. SVM with multi-
domain features used for diagnosing rolling bearing [30]. Sensitive features extracted from
the highly vibrated signal are still challenging tasks and for diagnosing rolling bearing.
An existing classifier that uses single domain features is easy for extraction and recognition
of low accuracy. To address this challenge of low accuracy, they proposed a new approach
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called SVM with multi-domain features that are consist of three stages, i.e., is features
extraction, feature selection, and feature weighting. In [31] author proposed Digital Signal
Processing platform and PCA-SVM Algorithm for rapid beef meat freshness prediction
and identification. They used PCA and kernelized SVM algorithm and embedded system
by DSP. In [32], the authors have used kernelized SVM for determining the effectiveness of
treatment of tuberculosis. They used SVM to check the effectiveness of the drug. Traditional
doctors provide solutions to these problems only on their own experience. Multiple real-life
problems in the field of medical and signal processing have been solved by SVM.

Intra-class validation and intra-class ambiguity in the feature space was tackled and
resolved by [33]. The concept of large margin and local estimate classification was used.
Most of the time, SVM was applied after feature selection. The concept of a single large
sparse autoencoder for feature learning was used in [34] and then SVM was applied for
classification. SVM performs well but on a small number of samples. In [35] author
proposed a new model for feature extraction and classification using SVM. Different
features are extracted, combined, and then the similarity is computed by SVM. In [36] SVM
was used for tongue image classification. The main problem of this research was to extract
features of the tongue. These features are extracted by the Histograms of Oriented Gradient
(HOG) concept [37], and then SVM was applied to classify. Experiment results show good
classification and prediction results.

Reduced SVM (R-SVM) is proposed by [38] they select features by minimizing R2

γ σ.
They used the SVM radius margin ratio for selecting features. This model was used
to optimize the radius margin bound. Moreover, the authors first scaled a feature by
multiplying each feature by a vector

√
µ, and then SVM is applied to these resulting

features. The resulting feature space is not the same as the original feature space. Due to
this, in resulting feature space classes are more linearly separable than the actual feature
space. The radius of feature space after transformation was denoted by Rµ. In R-SVM,
two-step classification was performed; in the first step, SVM is used to select features,
and then the radius margin is optimized by using extended feature space. They aimed
to achieve a better generalization error. For achieving this aim, they optimize the radius
margin, which accomplishes the following optimization problem.

min
w, b, µ, Rµ

=
1
2
‖ w ‖2

2 Rµ
2 (11)

where Rµ is computed by Vapnik 1998 [39]. The constraints involved to restrict the parame-
ters of (11) are

yi((w,
√

µ + b) > 1, ∀i

where yi is the label, w and b are classification parameters. The value of µ is restricted by
another constraint which was

d

∑
k=0

µk = 1, µk > 0, ∀K

The smooth feature selection was performed through this optimization problem. It
had the main limitation that it is not convex. To eliminate this limitation, an upper bound
of the objective function was proposed [40].

µkR2
k 6 R2

µ 6
d

∑
k

µkR2
k (12)

By using this upper bound, the optimization problem becomes convex.
The radius margin error bound not only separates the class from all others but also re-

stricts it within a bounded area. For xi training samples given a feature mapping Φ : x 7→ H,
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to transform the features space H, the radius of MEB according to [41] in that extended
feature space is given by

min
R,x0

R2, s.t.‖Φ(xi)−Φ(x0)‖2
2 ≤ R2 ∀i (13)

Another solution to minimize the area of MEB is proposed by [42]. The authors
proposed two variants of SVM, R− SVM+

µ , and R− SVM+. R− SVM+
µ was a non-convex

and difficult to solve because of radius constraints. It was based on R-SVM, in which the
ratio of the optimization problem replaces the sum. It first determines the transformation
matrix and then projects it into a new feature space.

min
w,ξ,µ,b,Rµ ,x0

1
2
‖w‖2

2 + λR2
µ + C

l

∑
i

ξi (14)

s.t. yi(
〈

w, D√µXi

〉
+ b) ≥ 1− ξi, ∀i

d

∑
k=1

µk = 1 µ, ξ ≥ 0

‖D√µXi − D√µX0‖
2 ≤ R2

µ, ∀i

The radius constraints here were non-convex, and the optimization problem was
difficult to solve.

On the other hand, R− SVM+ was a metric learning-based extension of SVM. In this
algorithm, a matrix D is used to transform features, and SVM is used to classify the data
in that new feature space. The extended feature space is also used by [43] in which the
author used LogDet regularization with SVM, called LSVM. The methodology was based
on the two-step minimization strategy, where the first is to use LogDet to regularize the
feature space and then compute the radius. The radius computation method was the same
as F-SVM, which was the mean of the class.

An extended version of SVM is proposed [14] to reduce the value of the radius of MEB.
According to F-SVM, a class area is a maximum distance from the mean to any sample.
If we have scattered data, the mean of a class shift to higher values due to which a point is
so far from a mean. As a result, we get a higher value of the radius, and MEB becomes very
large, as shown in Figure 2. MEB bound the class area within a specific limit and restrict
the samples to be in a particular range. By limiting the instances of one class in a particular
region, the performance of SVM is improved. The proposed section will discuss the impact
of MEB on results.

Figure 2. Minimum Enclosing Ball (MEB) of class using Mean.
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In F-SVM jointly learn the feature transformation and a classifier. F-SVM proposed a
new bound of MEB. Where radius of MEB is bound by R which is

1
2

R 6 R 6 R (15)

where,
R = maxi ‖ Axi − Ax ‖2

2 (16)

The authors computed each point’s distance from the mean value, and then the radius
is the maximum value from the vector of distances. Here they got the Radius of MEB.

The computed radius was biased to the dense area of the class and had a large value
in the case of scattered points. The mean strategy of computing the radius of MEB will
always move to the dense area. To reduce the size of MEB, the proposed method introduces
the weighted feature space and calculates the radius of MEB from that space. As a result,
the size of MEB is reduced. By reducing the size of MEB, the area covered by the class
is decreased.

3. Proposed Methodology

Experiments are conducted on different benchmark datasets. The performance of
WR-SVM is compared with F-SVM, which was the recently proposed radius margin
technique. WR-SVM learns classifiers such as w & b and then weighted mean of the class
simultaneously. The classifier attributes are first used to classify the data in the case of the
linear kernel. In contrast, in the case of RBF, kernel data are transformed into feature space,
and the classification is applied to that extended space [44].

In the first stage, after loading the data into the simulation environment, the linear
separability of the data is checked to reduce execution time. For this purpose, SVM with
the linear kernel is used by applying one vs. all techniques for all experiments. The linear
separability allows us to apply either soft margin SVM or hard margin SVM.

In the first stage of experiments, SVM is applied to check the linear separability of the
data [45]. Based on the separability check result, either soft margin SVM or hard margin
SVM is applied.

There are multiple classes in single feature space in a multi-class problem, due to
which samples of one class may overlap another class [46]. Therefore, there is a need to
separate these classes in a way that the maximum prediction accuracy will be achieved.
The multi-class problem can be solved using the one-vs-all technique. It is not easy to find
out a mathematical equation that separates all classes from one another. In many cases, it is
not possible to find an optimal solution. In the One-Against-All technique, firstly proposed
by Vapnik in 1995 [16], one class is classified from all other classes. First, we computer w
and b and then draw a hyperplane between one and all other classes using these weights
and bias as shown in Figure 3a–c.

(a) Class A (b) Class B (c) Class C
Figure 3. One Against All technique.
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After finding these hyperplanes between classes, we set all hyperplane in one plot to
show separability between all classes as shown in Figure 4.

Figure 4. All classes are separated by hyperplane and bounded with MEB.

Next, each class sample should be bounded in an enclosing ball. To do the task, initial
mean is computed, and the radius of each class is calculated to draw MEB.

According to [40], the upper bound of the radius-margin is bounded with maxkµkR2
k 6

R2
µ 6 ∑k µkR2

k where Rk is the radius of dimension k. Ref. [42] proposed a tighter bound
for the radius-margin, where

Ro 6 Rµ 6 ((1 +
√

3)/2)Ro (17)

However, the experiments are restricted to only linear feature space. The kernelized
features space is not used to compute the radius. While the proposed technique first
transforms the data into kernelized feature space, and then the radius of the MEB kernelized
feature space is transformed into weighted kernelized feature space.

3.1. Minimum Enclosing Ball of F-SVM

According to F-SVM the radius of MEB is bounded by R̄ (15). The mean of a class is
not a solution to get the tighter upper bound because the mean can shift to higher values.
After applying the conventional SVM and initializing the classifier attributes, the mean

of class is computed X̄ = ∑n
i=1 xi

n . If we calculate the distance of mean from all samples of
class, then according to F-SVM, the radius of MEB is:

R = maxi ‖ Axi − Ax ‖2
2 (18)

If we have more than two classes, then the radius is essential because each class should
have its bounded area. However, in the binary class problem, one side of the hyperplane is
occupied by one class, as shown in Figure 5. So, we need to bound the class area because
when we have anomalies in test data or a new class emerging in actual data, we should
have an enclosed space for both classes.

The radius of MEB according to F-SVM is given in (18) and Figure 6 shows the
bounded a rea of class using its mean. It is clear from the figure that the mean of the class
is shifted to a dense area, due to which area of MEB is increased. It might be possible
to have anomalies in the data in scattered form. By predicting the test data using the
classifier and MEB of F-SVM, the higher chances are the model predicting the anomalies as
a positive sample. If a large number of outliers are in the class, the prediction accuracy can
be very low.
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Figure 5. Unbounded area for a class.

Figure 6. Class bounded by its mean.

The main problem with the radius computed by (18) is that it cannot deal with the
anomalies and scatter points of the class. Because of the higher value of the radius, MEB
can cross the separating line or hyperplane in multi-class problem [47]. When the MEB
cross the hyperplane, samples from other class can also be in the area of MEB that cross the
line. Similarly, in the case of the multi-class problem, more than one class can be in one
MEB. The proposed technique of computing MEB also restricts the MEB on one side of
the hyperplane.

3.2. Proposed Minimum Enclosing Ball

In the proposed method of calculating the minimum enclosing ball, a weighted mean
is calculated instead of a mean. Firstly, SVM is applied to compute the classifier attributes,
i.e., w and b. Secondly, the mean of each class is calculated by using the same method
adopted by F-SVM, i.e., Euclidean distance. As the time complexity of SVM is O(n2)

In the proposed method, a weighted mean is calculated instead of a mean. First, F-
SVM followed by SVM is applied to get the MEB of SVM. After that, the weighted mean is
computed, where the weight of each sample is its Euclidean distance from the mean of class,
as shown in (19). The selected square Euclidean distance allows us to get the weighted
feature space based on the distance of each sample from mean to samples. Moreover, it
is observed that the additional iterations of the weighted feature space lead to the same
result due to the choice of weight based on the square of the Euclidean distance. These
weights are calculated in kernelized feature space, whereas F-SVM uses these distances as
the radius of MEB, as shown in (18).

weightxi =‖ x− xi ‖2
2 (19)
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After calculating the weight for each sample. Weighted features are calculated by
using (20). The weight of each sample is added to all the samples of the class.

x(w) =
∑n

i=1 xi.weightxi

∑n
i=1 weightxi

(20)

After assigning weights to each sample, all the class points are shifted from kernelized
feature space to weighted kernelized feature space. By approaching the weighted feature
space again, the mean of the weighted feature space is calculated. The mean of weighted
feature minimizes the MEB radius of each class as shown in Figure 7.

Figure 7. Class bounded by its weighted mean.

After calculating weight for each sample from (19) and then weighted samples from
(20), the mean of the class shift towards scattered points of the class, as a result, our radius
of MEB is minimized.

The weighted mean for the multiclass problem using one vs all technique is illustrated
in Figure 8a–c. Furthermore, the MEB crosses the separating line; these points of MEB are
excluded by calculating the circumference of the MEB. All the points which do not satisfy
the constraint given in (4) are excluded from MEB.

(a) Class bounded by its mean (b) Scatter point can increase the size of MEB (c) Dense class bounded by its mean

Figure 8. Multi classes bounded by their mean.

3.3. Flow and Mathematical Model of WR-SVM

The proposed model accepts the data and applies pre-processing techniques to make
it classifiable by the model. The flow model of WR-SVM is given in Figure 9. First,
the data are encoded by using an ordinal encoder. Some dataset features are alpha-numeric;
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therefore, to perform the calculations on the data, attributes are encoded into numeric
values. After that, data are divided into 10 folds to apply classification by selecting one
as a test fold and the remaining as training. Instead of applying soft margin SVM or hard
margin SVM directly, the linear separability is checked, and the decision is made based
on the accuracy value. SVM with the linear kernel is used to check the linear separability
of the data. If the accuracy value on training data is 1 then the data are linearly separable;
otherwise, data is not separable.

Data Encoding

Data preprocessing

Apply 10 fold

Fold 1 Fold 2 Fold 3 Fold 10

Ordinal Encoder

Separate class 
samples 

Accuracy 
Value

= 100%<100%

Sep
ara

b
le C

ase

N
o

n Sep
arab

le C
ase

Distance 
from mean 
to sample

Distance As 
weight

Assign 
weight to 

sample

Weighted Feature Space

Compute Mean 
of Weighted 

Space

Distance from 
mean to 
samples 

Radius of MEB
(Max 

Distance)

Data

Apply hard-margin 
SVM

Linear Kernel RBF kernel

Select Kernel

Conventional SVM

Apply soft-margin 
SVM

Compute Mean of class

Select Samples

Weighted Feature Space

New Feature Space

Assign weights to samples 
based on their distance

One vs All

SVM Linerar Kernel

Compute Training 
Accuracy

Select another 
class

Select kernel

Linear separability Check

Figure 9. WR-SVM flow model.

In case of Hard margin SVM each sample should satisfy the constraints given in (2)
and (3). The hard margin SVM strictly draws a line; if the data are separable, then return
the value of w and b. By applying the soft margin SVM, the value of the slack variable
is selected to accept some error. Next, the kernel is selected based on the accuracy value
achieved in the separability test. The kernel tricks transform the data into a kernelized
feature space and classify the data in that space. The one-vs-all technique is used to classify
two classes at a time. One class is separated from all others and assigned a label as 1.
Similar samples of other classes are merged and assigned a label as −1. Now, the problem
is converted from multi-class to binary class. Other classes are selected iteratively one
by one. All the weights are saved for each class and used at the time of testing. In both
cases, soft margin SVM and hard margin SVM, the feature space is passed to the next
phase. In that phase, the MEB of the class is computed, which is the core idea of WR-SVM.
First, the mean of class and the Euclidean distance of samples from the mean is computed.
After that, the distance matric is used as the weight of samples. The kernelized feature
space is moved to the weighted kernelized feature space by assigning the weights to the
samples. The mean of each class in the new feature space gives us a minimized radius value
compared to kernelized feature space. The MEB with the computed radius is drawn on the
original feature space. Using radius and mean value, we compute circumference points
of the circle and exclude all those points that belong to another side of the hyperplane.
WR-SVM is based on two steps: the classifier and calculation of the MEB radius as shown
in Algorithm 1.

The mathematical model of WR-SVM is illustrated in Figure 10. First, the data are
pre-processed and divided into k-folds, as discussed earlier. The processed data are passed
to conventional SVM by selecting the kernel function, which changes the datas’ dimension.
Lagrange Multiplier [48] is used to find the value of α, which is used to find the value of
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w and b in the next step. The classifier values i.e., w and b are used to classify the test
data, as shown in (2) and (3). Next, the radius of MEB is computed in three steps. Firstly,
the mean of each class is computed, and the radius according to F-SVM is computed.
Secondly, the distance of each sample from the mean is computed, which is used as the
weight of that sample. The weights are assigned to each sample, and the weighted mean is
computed. From the weighted feature space, again, the radius is computed. The radius
which is computed from the weighted feature space is minimized. For the test samples,
first, w and b are used to predict the class of samples, and after that distance of that test,
the sample is computed from the weighted mean of the sample. If the distance is less than
the radius of class, i.e., R, then the sample belongs to +1 and −1 in other cases.

Algorithm 1: The two-step minimization algorithm for WR-SVM.
Data: Training set S = ((x1, y1),(x2, y2), . . ., (xn, yn))
Result: Optimal (w, b) and R radius of MEB
initialization;
k-fold← 10;
Folds← SplitDatatoFolds(S)
for each fold do

one, all← Split one group from others
Serparable← SeparabilityCheck(one, all)
if Separable then

ξ ← 0; C← 0;
K← linear

else
K = exp(−γ ‖ xi − xj ‖2)

w← ∑m
i=1 αiyixi

b← yi − w.xi
Radius of MEB
Step 1: x̄ = ∑n

i=1 xi
n

Step 2: R = maxi ‖ Axi − Ax ‖2
2

weightxi =‖ x− xi ‖2
2

Weighted Feature Space: x(w) = ∑n
i=1 xi .weightxi

∑n
i=1 .weightxi

Weighted Radius of MEB
Repeat Step 1 and 2 for weighted feature space

Figure 10. WR-SVM Mathematical Model.
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4. Experimental Results and Analysis

Multiple benchmark and one synthetic dataset (https://github.com/atifrizwan91/
Synthetic-Dataset/blob/main/synthetic-dataset.csv, accessed on 3 April 2021) is used to
evaluate the performance of proposed model. All the features of synthetic dataset are
visualized in the Figure 11 and the datasets are listed in Table 1. The results are compared
with conventional SVM and F-SVM in terms of accuracy. As it is clear from Table 1 that
all datasets have different numbers of samples, dimensions, and classes. The reason for
selecting these datasets is that the results of MEB-based F-SVM are also reported based
on these datasets. All the datasets are best to evaluate and compare the performance of
the proposed model. The synthetic dataset is generated by using the library of python
called Keras.

Table 1. Description of the 10 UCI datasets used in experiments.

ID Dataset # of Samples # of Classes # of Dimensions

1 Iris 150 3 4
2 Waveform3 5000 3 21
3 Glass 214 6 9
4 USPS 9298 10 257
5 Synthetic 5000 10 15
6 Segment 2310 7 18
7 Sonar 208 2 60
8 Musk 6598 2 166
9 Zoo 101 7 16
10 Breast Cancer Dataset 277 2 9

The parameters of the data generator are set in a way that there is no linear separability
between the classes of the data. The relationship between all features of synthetic data
is given in Figure 11. It is clear from the illustration that there is no linear separability
between any feature of the dataset. Furthermore, the number of synthetic dataset samples
is also high compared to all other benchmark datasets.

To measure the effectiveness of our proposed solution, we compared our results with
F-SVM [14]. For a fair comparison, we employed accuracy as a performance evaluation
measure similar to the case of F-SVM. The proposed model is evaluated on both Linear
and RBF kernel, and results are reported based on accuracy. All the benchmark datasets
are openly available and discoverable online on the UCI machine learning repository.
The results of WR-SVM based on linear kernel and RBF kernel is shown in Tables 2
and 3 respectively.

Table 2. Comparison of the average classification accuracy (%) of Linear WR-SVM by Linear SVM
and Linear F-SVM.

ID Dataset SVM F-SVM WR-SVM

1 Iris 96.67 ± 0.34 98.00 ± 0.56 98.90 ± 0.23
2 Waveform3 87.40 ± 0.59 87.80 ± 0.31 88.86 ± 1.05
3 Glass 66.36 ± 0.98 70.45 ± 0.74 72.15 ± 0.67
4 USPS 97.89 ± 0.21 98.80 ± 0.10 98.91 ± 0.09
5 Synthetic 83.85 ± 1.7 90.65 ± 0.09 90.86 ± 0.10
6 Segment 90.61 ± 1.06 92.60 ± 0.41 93.4 ± 0.47
7 Sonar 81.43 ± 0.63 85.71 ± 1.17 90.47 ± 0.96
8 Musk 91.98 ± 0.86 92.52 ± 0.91 94.05 ± 0.63
9 Zoo 94.55 ± 1.51 98.18 ± 0.52 98.18 ± 0.49
10 Breast Cancer Dataset 97.36 ± 0.85 98.68 ± 0.13 98.78 ± 0.11

https://github.com/atifrizwan91/Synthetic-Dataset/blob/main/synthetic-dataset.csv
https://github.com/atifrizwan91/Synthetic-Dataset/blob/main/synthetic-dataset.csv
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Table 3. Comparison of the average classification accuracy (%) of kernel WR-SVM by Kernel-SVM
and Kernel-F-SVM.

ID Dataset SVM F-SVM WR-SVM

1 Iris 96.67 ± 0.41 97.33 ± 0.64 98.12 ± 0.37
2 Waveform3 87.56 ± 1.20 87.64 ± 0.67 88.81 ± 0.91
3 Glass 66.36 ± 1.97 74.55 ± 0.96 74.94 ± 0.96
4 USPS 97.92 ± 0.45 98.85 ± 0.38 98.96 ± 0.42
5 Synthetic 85.67 ± 1.42 92.71 ± 0.49 93.04 ± 0.45
6 Segment 97.36 ± 0.99 98.23 ± 0.47 98.62 ± 0.42
7 Sonar 86.19 ± 1.35 95.71 ± 0.82 97.85 ± 0.93
8 Musk 99.73 ± 0.21 99.86 ± 0.14 99.86 ± 0.16
9 Zoo 93.64 ± 1.39 97.27 ± 0.54 98.03 ± 0.39
10 Breast Cancer Dataset 97.82 ± 0.71 99.18 ± 0.24 99.57 ± 0.15

Figure 11. Features distribution of the synthetic dataset.

In all types of datasets, WR-SVM’s performance is good compared to conventional
SVM and F-SVM. The reason behind this performance is that the proposed model performs
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one step higher than F-SVM. The performance of WR-SVM cannot be less than the base
model in any case because when the data has some scattered points, the performance of
the model will be improved and will remain the same in another case.

It is noticed from the experiments that when MEB of both classes overlap each other
than some samples of both classes can be in intersected area as shown in Figure 12. The non-
linear separating line can classify these points, but it is difficult to draw the non-linear
boundary between all classes in the case of a multi-class problem.

Figure 12. Intersected area of two MEBs using mean.

To evaluate the performance of the proposed WR-SVM in terms of computational cost,
time factor is considered. The big O notation is commonly used time and space complexity
measure to illustrate the worst time taken by the algorithm. As the time complexity of
SVM for n training samples is O(n3) while the space complexity is O(n2). F-SVM takes
one step after the classification of the data, which was the calculation of the radius of MEB.

F-SVM takes one step after the classification of the data, which calculates the radius of
MEB. The calculation of MEB for n number of classes can increase the time complexity and
take more space. While in the case of WR-SVM, the radius of MEB is, and the classification
parameters, i.e., w and b, are calculated simultaneously. While calculating the radius of
MEB, weights are assigned to each sample, and the weighted mean is calculated. The
weighted mean helps the model to reduce the radius of MEB. F-SVM takes the time to
calculate the mean of each class, while the proposed method takes the same time to assign
weights to each sample. Consequently, the time complexity of both F-SVM and WR-SVM is
the same, which is O(n4).

Sometimes, it is impossible to draw the non-linear boundary between two classes
in actual feature space, so the kernel tricks can be used to transform the data to another
kernelized feature space, as shown in Figure 13. In the case of testing samples, when the
data are dekernelized to the original feature space, the testing samples can be located on
another side of the hyperplane. So, there is a need for MEB, which encloses the samples
within a limited area.
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Figure 13. Original and kernelized feature space [49].

We have performed two sets of experiments in our work. The first step is to classify
all samples that are given in the training set. Then the second step is to find the radius of
MEB by using the weighted mean of class. Classification is performed on a continuous
numeric dataset listed in Table 1. The following steps are performed to classify the data.

1. First of all, one class is separated from all others to apply one against all techniques.
Here we apply conventional SVM to get the value of w and b such as classifier

2. Check whether these two classes are linearly separable or not by applying linear SVM
as discussed before.

3. Apply a kernel trick to classify the training data in transformed feature space in case
of soft margin SVM.

K(x1, x2, ...xm) =


x1.x1 x1.x2 . . . x1.xm
x2.x1 x2.x2 . . . x2.xm

...
...

. . .
...

xm.x1 xm.x2 . . . xm.xm


4. Find the value of Lagrange multiplier (α)
5. Find the value of w using

w =
m

∑
i=1

αiyixi

6. Find the value of bais (b) using
b = yi − w.xi

7. Repeat Step 1 to 6 for each class of training set.

It is not always possible to get a hyperplane with zero training error so, we go with
soft margin SVM by accepting some mistakes. In some cases, we get the hyperplane in
acceptable error, but when we have mixed samples of all classes, as shown in Figure 10,
then the soft margin will not work in an acceptable range. To solve the mentioned problem,
the RBF kernel is applied (7) to transform the data into kernelized feature space.

After classifying data in feature space, we need to bound a class within its area.
The weighted mean is computed to get the upper bound of radius, and then the circumfer-
ence is calculated to get the whole area of the class. Our proposed method targets those
samples located in an intersected area of both classes as shown in Figure 12. In Figure 12
the mean of a class is computed to get the upper bound of radius. Figure 14 shows both
mean and weighted mean of class in two-dimensional space. In experiments, all datasets
are multi-dimensional. WR-SVM shows improvement in terms of accuracy compared to
existing methods such as SVM and F-SVM using linear and RBF kernels.
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Figure 14. Intersected area of two MEBs using weighted mean.

Therefore, it is noticed that many samples are in the intersected area and far from the
mean of its actual class. When weighted mean is used to get the upper bound of class,
then it is clear that the number of samples in an intersected area in Figure 14 is less than
Figure 15.

Figure 15. Intersected area of two MEBs using mean and weighted mean.

5. Discussion

This section presents the comparative analysis of the proposed weighted radius
approach and explains how the proposed method shows better results than other margin
radius approaches. SVM is a famous and commonly used classification technique because
it not only focuses on the separation of the data but also considers the maximum margin
between two classes, as shown in Figure 3. Along with the maximum margin, the radius of
the class is equally important to be considered to improve the overall performance of the
algorithm. To achieve the objective, multiple margin radius-based techniques are proposed,
and different radius bounds are presented. The recently proposed margin radius-based
approach presented in [14] computes the radius using the mean of the class. The mean
can shift to higher values. When the data contain some scattered points, then the radius of
MEB will be higher, as shown in Figure 6. Because of the high radius value, the MEB of
the class crosses the hyperplane and can also cover the area of another class in binary and
multiclass problems. As a result, the samples in the intersected area of multiple MEBs can
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be predicted incorrectly, as shown in Figure 15. To minimize the radius of MEB instead
of the mean, the weighted mean of the class is computed. The samples targeted by the
proposed methods are scattered points of one class. The proposed solution assigns weights
to each class sample based on their distance from the mean value. The scattered samples
always far from the mean as compared to the dense area’s points. By assigning the weights
to each instance, features are transformed from their original space to weighted feature
space. The mean of weighted feature space, for instance, weighted mean, shifts to scattered
points of the class. By moving the mean value from dense to scattered points, the radius of
the class is decreased. As a result, the MEB of each class is minimized, as shown in Figure 7.
Moreover, the area occupied by the proposed MEB is also reduced, and intersected area of
multiclass is also decreased. Two-step training of WR-SVM is based on the computation of
classification parameters and radius of MEB. After the training phase, when the samples
are tested, the SVM classifier is used to classify the sample, and then the radius is used
to check whether the sample is within MEB or not. The proposed model compared with
F-SVM in terms of the true predicted number of samples for Linear and kernelized feature
space as shown in Table 4. The existing techniques used kernelized feature space to
compute the radius of MEB. In contrast, our proposed method considered the weighted
kernelized feature space to minimize the value of radius for enhancing the efficiency of
conventional SVM.

Table 4. Compaison of F-SVM and WR-SVM in terms of true predicted samples in linear and
kernelized feature space for each dataset.

Linear Kernel RBF Kernel

ID Dataset a 1 b 2 c 3 d 4 e 5 f 6 g 7 h 8 I 9

1 Iris 150 147 148 98 98.9 145 147 97.33 98.12
2 Waveform3 5000 4390 4443 87.8 88.86 4378 4441 87.64 88.81
3 Glass 214 151 154 70.45 72.15 142 160 74.55 74.94
4 USPS 9298 9186 9197 98.8 98.91 9105 9201 98.85 98.96
5 Synthetic 5000 4533 4543 90.65 90.86 4284 4652 92.71 93.04
6 Segment 2310 2139 2158 92.6 93.4 2249 2278 98.23 98.62
7 Sonar 208 178 188 85.71 90.47 179 204 95.71 97.85
8 Musk 6598 6104 6205 92.52 94.05 6580 6589 99.86 99.86
9 Zoo 101 99 99 98.18 98.18 95 99 97.27 98.03
10 Breast Cancer Dataset 277 273 273 98.68 98.68 271 276 99.18 99.57

1 Number of Samples in the dataset; 2 Number of True predicted Samples by Linear F-SVM; 3 Number of True
predicted Samples by Linear WR-SVM; 4 Linear F-SVM Accuracy; 5 Linear WR-SVM Accuracy; 6 Number of true
predicted Samples by kernelized F-SVM; 7 Number of True predicted Samples by kernelized WR-SVM; 8 Kernel
F-SVM Accuracy; 9 Kernel WR-SVM Accuracy.

In the first step, the kernel matrix transforms the feature space into kernelized feature
space. After that, the weights are assigned to each sample based on its distance from
the mean of the class. The MEB computed from the weighted kernelized feature space
is reduced as compared to kernelized feature space. It is clear from Table 4 that the
number of true predicted samples of the proposed model is higher than F-SVM. The
proposed model’s results on a ten-dimensional and non-linear dataset, i.e., synthetic dataset,
in terms of accuracy is better than conventional SVM and margin radius-based F-SVM.
The data contain some scattered points along with dense area, so the mean computed from
kernelized feature space is shifted to a dense class area. The average accuracy achieved
by Linear SVM on the synthetic dataset is 83.85, while the proposed model shows 90.86.
Similarly, on two-dimensional datasets, including Sonar, Musk, and Breast cancer data,
the samples move from MEB of F-SVM to proposed MEB because the true predicted
samples rate is highter.
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6. Conclusions and Future Work

ML techniques are used to build a decision system based on past experiences to make
data more informative and reliable. These algorithms can be used in various domains, such
as science, engineering, and business. There are some issues noticed in these algorithms
related to scalability and stability along with benefits. These issues are solved step by step
by different researchers. The increasing growth of data needed an effective algorithm that
extracts some patterns in data. The core contribution of the proposed research study is to
develop a novel approach to minimize the radius of MEB for enhancing the classification
accuracy of the conventional SVM. To improve the performance of SVM, a lower and
upper bound of MEB is introduced. Instead of using the feature weighting technique,
WR-SVM learns classifier and feature transformation simultaneously. Due to which the
training time of the proposed model is decreased. The radius of MEB proposed by F-SVM
was shifted to a higher value, due to which the size of MEB was too large. The proposed
method first checks the linear separability and then applies the kernel to transform the data
into feature space. The kernelized feature space is then converted to weighted kernelized
feature space. Instead of getting the mean from kernelized features pace, the weighted
mean was computed from weighted kernelized feature space. The experimental results
showed that the radius of MEB is minimized. The experiments were conducted on nine
different benchmark datasets and one synthetic dataset to show the significance of the
proposed WR-SVM compared to the conventional SVM. The performance of WR-SVM
is significantly better than traditional SVM and F-SVM. The possible future direction of
the proposed WR-SVM is to extend radius-margin bound to other conventional learning
models for enhancing classification accuracy and fast training.
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